

Available online at www.sciencedirect.com

Discrete Mathematics 308 (2008) 5144-5148

www.elsevier.com/locate/disc

Transformation graph G^{-+-}

Lan Xu^{a, b}, Baoyindureng Wu^{a,*,1}

^a College of Mathematics and System Science, Xinjiang University, Urumqi 830046, Xinjiang, PR China ^bDepartment of Mathematics, Changji University, Changji 831100, Xinjiang, PR China

Received 31 March 2007; received in revised form 10 September 2007; accepted 17 September 2007 Available online 7 November 2007

Abstract

The transformation graph G^{-+-} of a graph *G* is the graph with vertex set $V(G) \cup E(G)$, in which two vertices *u* and *v* are joined by an edge if one of the following conditions holds: (i) $u, v \in V(G)$ and they are not adjacent in *G*, (ii) $u, v \in E(G)$ and they are adjacent in *G*, (iii) one of *u* and *v* is in V(G) while the other is in E(G), and they are not incident in *G*. In this paper, for any graph *G*, we determine the connectivity and the independence number of G^{-+-} . Furthermore, for a graph *G* of order $n \ge 4$, we show that G^{-+-} is hamiltonian if and only if *G* is not isomorphic to any graph in $\{2K_1+K_2, K_1+K_3\} \cup \{K_{1,n-1}, K_{1,n-1}+e, K_{1,n-2}+K_1\}$. © 2007 Elsevier B.V. All rights reserved.

Keywords: Transformation graph; Complement; Hamilton cycle

1. Introduction

All graphs considered here are finite, undirected and simple. We refer to [1] for unexplained terminology and notations. Let G = (V(G), E(G)) be a graph. For a vertex v of G, if there is no confusion, the degree $d_G(v)$ is simply denoted by d(v). The symbols $\Delta(G)$, $\delta(G)$, $\kappa(G)$, $\alpha(G)$, $\omega(G)$, $\operatorname{comp}(G)$ and M(G) denote the maximum degree, the minimum degree, the connectivity, the independence number, the clique number, the number of components and the cardinality of a maximum matching of G, respectively. As usual, K_n is the complete graph of order n. For two positive integers r and s, $K_{r,s}$ is the complete bipartite graph with two partite sets containing r and s vertices.

In particular, $K_{1,s}$ is called a star. For $s \ge 2$, $K_{1,s} + e$ is the graph obtained from $K_{1,s}$ by adding a new edge which joins two vertices of degrees one. $K_{r,s} - e$ is the graph obtained from $K_{r,s}$ by deleting an edge. We say two graphs G and H are disjoint if they have no vertex in common, and denote their union by G + H; such a graph is called the disjoint union of G and H. The disjoint union of k copies of G is written as kG.

The *complement* of *G*, denoted by \overline{G} , is the graph with the same vertex set as *G*, but where two vertices are adjacent if and only if they are not adjacent in *G*. The total graph T(G) of *G* is the graph whose vertex set is $V(G) \cup E(G)$, and in which two vertices are adjacent if and only if they are adjacent or incident in *G*. Wu and Meng [6] introduced some new graphical transformations which generalize the concept of total graph.

Let G = (V(G), E(G)) be a graph, and α , β be two elements of $V(G) \cup E(G)$. We define the associativity of α and β is + if they are adjacent or incident, and – otherwise. Let *xyz* be a 3-permutation of the set {+, -}. We say that α and

* Corresponding author.

E-mail address: baoyin@xju.edu.cn (B. Wu).

¹ Research supported by NSFC(No. 10601044) and XJEDU2006S05.

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter @ 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2007.09.040

Transformation graph	References and results	
G+++	In [4], a necessary and sufficient condition	
G^{++-}	In [8], a sufficient condition	
G^{+-+}		
G^{+}	In [9], a necessary and sufficient condition	
G^{-++}	In [7], a necessary and sufficient condition	
G^{-+-}	In this paper, a necessary and sufficient condition	
G^{+}		
<i>G</i>	In [5], a necessary and sufficient condition	

 β correspond to the first term *x* (resp. the second term *y* or the third term *z*) if both α and β are in *V*(*G*) (resp. both α and β are in *E*(*G*), or one of α and β is *V*(*G*) and the other is in *E*(*G*). The transformation graph G^{xyz} of *G* is defined on the vertex set *V*(*G*) \cup *E*(*G*). Two vertices α and β of G^{xyz} are joined by an edge if and only if their associativity in *G* is consistent with the corresponding term of *xyz*.

Therefore, one can obtain eight graphical transformations of graphs, since there are eight distinct 3-permutation of $\{+, -\}$. Note that G^{+++} is just the total graph T(G) of G, and G^{---} is the complement of T(G). Fleischner and Hobbs [4] showed that G^{+++} is hamiltonian if and only if G contains an EPS-subgraph, that is, a connected spanning subgraph S which is the edge-disjoint union of a (not necessarily connected) graph E, all of whose vertices have even degree, with a (possibly empty) forest P each of whose component is a path. Ma and Wu [5] showed that for a graph G of order $n \ge 3$, G^{---} is hamiltonian if and only if G is not isomorphic to any graph in $\{K_{1,n-1}, K_{1,n-1} + e, K_{1,n-2} + K_1\} \cup \{K_2 + 2K_1, K_3 + K_1, K_3 + 2K_1, K_4\}$. Wu et al. [7] proved that for any graph G of order n, G^{-++} is hamiltonian if and only if $n \ge 3$. Chen [2] studied the super-connectivity of these transformation graphs. Table 1 summarizes the known results on hamiltonicity of G^{xyz} .

In this paper, we shall investigate the transformation graph G^{-+-} of a graph G, and determine its connectivity and independence number. Furthermore, we obtain a necessary and sufficient condition for G^{-+-} to be hamiltonian when the order of G is at least 4.

Theorem 1. For a graph G of order $n \ge 4$, G^{-+-} is hamiltonian if and only if G is not isomorphic to any graph in $\{K_{1,n-1}, K_{1,n-1} + e, K_{1,n-2} + K_1\} \cup \{2K_1 + K_2, K_1 + K_3\}.$

2. Preliminary

We start with some simple observations. Let *G* be a graph of order *n* and size *m*. Then the order of G^{-+-} is n + m, $d_{G^{-+-}}(x) = n + m - 1 - 2d(x)$ for $x \in V(G)$ and $d_{G^{-+-}}(e) = n - 4 + d(u) + d(v)$ for any $e = uv \in E(G)$.

So $\delta(G^{-+-}) = \min\{n + m - 1 - 2\Delta(G), n - 4 + \min_{uv \in E(G)} \{d(u) + d(v)\}\}$. Wu and Meng [6] proved that G^{-+-} is connected if and only if G is not a star, and that diam $(G^{-+-}) \leq 3$ if G is not a star.

Theorem 2. For a graph G of order n and size m, $\kappa(G^{-+-}) = \min\{\delta(G^{-+-}), n + \kappa(L(G)) - 1, m + \kappa(\overline{G})\}$ or $\min\{\delta(G^{-+-}), n + \kappa(L(G)), m + \kappa(\overline{G})\}.$

Proof. If *G* is a star then its center must be an isolated vertex in G^{-+-} , and thus $\kappa(G^{-+-}) = 0 = \delta(G^{-+-})$. Next we assume that *G* is not a star. It is easy to see that $\kappa(G^{-+-}) \leq \min\{\delta(G^{-+-}), n + \kappa(L(G)), m + \kappa(\overline{G})\}$. So it suffices to prove $\kappa(G^{-+-}) \geq \min\{\delta(G^{-+-}), n + \kappa(L(G)) - 1, m + \kappa(\overline{G})\}$. Let *S* be a minimum cut of G^{-+-} with $|S| < \delta(G^{-+-})$.

Thus each component of $G^{-+-} - S$ has at least two vertices. We say that a component H of $G^{-+-} - S$ is of type-1 (respectively, type-2, or type-3) if $V(H) \subseteq V(G)$ (respectively, $V(H) \subseteq E(G)$, or $V(H) \cap V(G) \neq \emptyset$ and $V(H) \cap E(G) \neq \emptyset$).

Claim 1. If $G^{-+-} - S$ contains a component of type-1 then all components of $G^{-+-} - S$ are of type-1.

Proof of Claim 1. To see this, let H_1 be a component of type-1 and we take two adjacent vertices x, y from H_1 . Then they are not adjacent in G. If there is a component of type-2 or type-3 in $G^{-+-} - S$, we choose a vertex $e \in V(G^{-+-}) \cap E(G)$ from it. It is obvious that e is not adjacent to neither x nor y in G^{-+-} . So, e must be incident with both x and y in G by the definition of G^{-+-} . Namely, x and y are adjacent in G. It contradicts that x and y are not adjacent in G. The claim is true. \Box

Claim 2. If $G^{-+-} - S$ has a component of type-3 then $comp(G^{-+-} - S) = 2$.

Proof of Claim 2. By contradiction, suppose $\operatorname{comp}(G^{-+-} - S) \ge 3$. By Claim 1, all components of $G^{-+-} - S$ are of type-2 or of type-3. We take a vertex v from a component of type-3 with $v \in V(G)$, and two vertices e_1 and e_2 from other two components with $e_1, e_2 \in E(G)$. By definition of G^{-+-}, v is the common end vertex of e_1 and e_2 in G while e_1 and e_2 are not adjacent in G, a contradiction. \Box

Claim 3. All components of $G^{-+-} - S$ cannot be of type-3.

Proof of Claim 3. By contradiction, suppose all components of $G^{-+-} - S$ are of type-3. By Claim 2, $\operatorname{comp}(G^{-+-} - S) = 2$, and let H_1 and H_2 be the two components of $G^{-+-} - S$. By the adjacency relation between vertices of G^{-+-} , $|V(H_i) \cap V(G)| \leq 2$ for each i = 1 and 2, since otherwise one can find an edge of *G* from $V(H_i)$ which will have three end vertices coming from $V(H_j) \cap V(G)$, where $\{i, j\} = \{1, 2\}$, a contradiction. We consider two cases. Assume first that $|V(H_i) \cap V(G)| = 2$, and let $V(H_i) \cap V(G) = \{x_i, y_i\}$ for i = 1, 2. Again by the definition of G^{-+-} , the four vertices x_1, x_2, y_1, y_2 are pairwise adjacent in G, $V(H_1) \cap E(G) = \{x_2y_2\}$ and $V(H_2) \cap E(G) = \{x_1y_1\}$. Thus $\Delta(G) \geq d(x_1) \geq 3$ and $|S| = n + m - 6 > n + m - 1 - 2\Delta(G) \geq \delta(G^{-+-})$, a contradiction. So by symmetry, it remains to consider the case $|V(H_1) \cap V(G)| = 1$ and $|V(H_2) \cap V(G)| \leq 2$. Let $u_i \in V(H_i) \cap V(G)$ for i = 1, 2. Then $V(H_i) \cap E(G)$ is a set of edges incident with u_j in G, where $\{i, j\} = \{1, 2\}$, which gives $|V(H_i) \cap E(G)| \leq d(u_j)$. Therefore, $|S| \geq (n - 3) + m - ((d(u_1) - 1) + (d(u_2) - 1)) \geq n + m - 2\Delta(G) - 1$, a contradiction. So by Claim 1, 2 and 3, there are only three possibilities for the type of components of $G^{-+-} - S$ can of type-2 and one of type-3. If all components of $G^{-+-} - S$ are of type-1, then $|S| \geq n + \kappa(L(G))$; in the last case, $|S| \geq n + \kappa(L(G)) - 1$.

This completes the proof. \Box

Corollary 3. For a graph G of order $n \ge 4$, the following statements are equivalent.

(1) $\kappa(G^{-+-}) \ge 2$. (2) $\delta(G^{-+-}) \ge 2$. (3) $G \notin \{K_{1,n-1}, K_{1,n-1} + e, K_{1,n-2} + K_1\}.$

Proof. By Theorem 2 $\kappa(G^{-+-}) \ge \min\{\delta(G^{-+-}), n + \kappa(L(G)) - 1, m + \kappa(\overline{G})\}\)$, where $\delta(G^{-+-}) = \min\{n + m - 1 - 2\Delta(G), n - 4 + \min_{uv \in E(G)}(d(u) + d(v))\}\)$. First we claim that both $n + \kappa(L(G)) - 1 \ge 3$ and $m + \kappa(\overline{G}) \ge 3$.

Since $n \ge 4$, $n + \kappa(L(G)) - 1 \ge 4 - 1 = 3$. If $m \ge 3$, $m + \kappa(\overline{G}) \ge m \ge 3$. If m = 2, *G* is not connected since $n \ge 4$, and so $m + \kappa(\overline{G}) \ge 2 + 1 = 3$. For the case of m = 1, one can easily check that $\kappa(\overline{G}) \ge 2$, so we also obtain $m + \kappa(\overline{G}) \ge 3$. Thus the claim implies that (1) and (2) are equivalent. Moreover, one can easily check that $\delta(G^{-+-}) = 0$ if and only if $G \cong K_{1,n-1}$, $\delta(G^{-+-}) = 1$ if and only if $G \cong K_{1,n-1} + e$ or $K_{1,n-2} + K_1$. Thus (2) and (3) are equivalent. \Box

One can also note from the proof of Corollary 3 that:

Corollary 4. For a graph G of order $n \ge 4$, $\kappa(G^{-+-}) = 2$ if and only if $\delta(G^{-+-}) = 2$.

Theorem 5. For any graph G, $\alpha(G^{++-}) = 1$ if $\Delta(G) = 0$ and $\alpha(G^{++-}) = \max\{\omega(G), M(G), 3\}$ otherwise.

Proof. If $\Delta(G) = 0$ then G^{-+-} is a complete graph, and thus $\alpha(G^{-+-}) = 1$. Suppose $\Delta(G) > 0$ as follows. Since $\{u, v, e\}$ is an independent set of G^{-+-} for any $e = uv \in E(G)$, $\alpha(G^{-+-}) \ge 3$. Moreover, since all cliques and matchings of *G* are independent sets of G^{-+-} , $\alpha(G^{-+-}) \ge \omega(G)$ and $\alpha(G^{-+-}) \ge M(G)$. Hence $\alpha(G^{-+-}) \ge \max\{\omega(G), M(G), 3\}$.

To complete the proof, we will show that $\alpha(G^{-+-}) \leq \max\{\omega(G), M(G), 3\}$. Let *S* be a maximum independent set of G^{-+-} and $S = S_1 \cup S_2$, where $S_1 \subseteq V(G)$ and $S_2 \subseteq E(G)$. Note that $|S_1| \neq 1$. Otherwise, it implies that $|S_2| = 1$ since S_2 is a matching of *G* and each element of S_2 is incident with the vertex of S_1 in *G*. Thus |S| = 2, which contradicts $|S| \geq 3$. Therefore we consider the following three cases.

Case 1: $|S_1| \ge 3$.

Then $S_2 = \emptyset$, since otherwise each element of S_2 is an edge of G and has all vertices of S_1 as its end vertices in G. This is not possible because of $|S_1| \ge 3$. So $|S| = |S_1| \le \omega(G) \le \max\{\omega(G), M(G), 3\}$.

Case 2: $|S_1| = 2$.

Let $\{S_1\} = \{u, v\}$. By the same argument as in the proof of Case 1, $S_2 = \{uv\}$ since G is a simple graph. Hence $|S| = 3 \leq \max\{\omega(G), M(G), 3\}$.

Case 3: $|S_1| = 0$. Then $S = S_2$. Since S_2 is a matching of G, $|S_2| \leq M(G)$.

The proof is complete. \Box

We use the following classical theorem due to Chvátal and Erdös [3].

Theorem 6. Let G be a graph of order at least three. If $\alpha(G) \leq \kappa(G)$, then G is hamiltonian.

3. The Proof of Theorem 1

If $G \in \{K_{1,n-1}, K_{1,n-1} + e, K_{1,n-2} + K_1\}$ then by Corollary 3, $\kappa(G^{-+-}) < 2$, and so G^{-+-} is not hamiltonian. It is easy to check that both $(2K_1 + K_2)^{-+-}$ and $(K_1 + K_3)^{-+-}$ are not hamiltonian. To show its sufficiency, assume $G \notin \{K_{1,n-1}, K_{1,n-1} + e, K_{1,n-2} + K_1\} \cup \{2K_1 + K_2, K_1 + K_3\}$. Then by Corollary 3 G^{-+-} is 2-connected. If $G \cong \overline{K_n}$ then $G^{-+-} \cong K_n$, and is hamiltonian. So assume *G* is not an empty graph. Recall that by Theorem 2 $\kappa(G^{-+-}) \ge \min\{\delta(G^{-+-}), n + \kappa(L(G)) - 1, m + \kappa(\overline{G})\}$, where $\delta(G^{-+-}) = \min\{n + m - 1 - 2\Delta(G), n - 4 + \min_{uv \in E(G)}(d(u) + d(v))\}$ and by Theorem 5 $\alpha(G^{-+-}) = \max\{\omega(G), M(G), 3\}$.

We consider three cases.

Case 1: $M(G) \ge \omega(G) \ge 3$.

Then by Theorem 5, $\alpha(G^{-+-}) = M(G)$. Since $\min\{m, \frac{n}{2}\} \ge M(G)$ and $n - 2 \ge \frac{n}{2}$ for $n \ge 4$, $m + \kappa(\overline{G}) \ge M(G)$ and $n + \kappa(L(G)) - 1 \ge M(G)$. Moreover, since *G* is not an empty graph, $\min_{uv \in E(G)} \{d(u) + d(v)\} \ge 2$ and $n - 4 + \min_{uv \in E(G)} (d(u) + d(v)) \ge n - 2 \ge M(G)$. Hence, if $n + m - 1 - 2\Delta(G) \ge M(G)$ then $\kappa(G^{-+-}) \ge M(G)$ and by Theorem 6 G^{-+-} is hamiltonian. Otherwise $n + m - 1 - 2\Delta(G) = M(G) - 1$ since $m \ge \Delta(G) + M(G) - 1$ and $n \ge \Delta(G) + 1$ hold for any graph *G*. In this case, $n = \Delta(G) + 1$ and $m = \Delta(G) + M(G) - 1$. Let $V(G) = \{v_0, v_1, \dots, v_{n-1}\}$, $E(G) = \{e_1, e_2, \dots, e_{n-1}, e'_1, e'_2, \dots, e'_{M(G)-1}\}$, where $e_i = v_0v_i$ for $i = 1, 2, \dots, n - 1$ and $e'_j = v_{2j-1}v_{2j}$ for $j = 1, \dots, M(G) - 1$. Then we can find a Hamilton cycle of G^{-+-} :

$$v_{0}e'_{1}e_{1}e_{2}e_{3}e_{4}e_{5}e'_{3}e_{6}e_{7}e'_{4}e_{8}\cdots e'_{M(G)-1}e_{2(M(G)-1)}e_{2M(G)-1}\cdots e_{n-1}v_{1}v_{3}$$

$$\cdots v_{2M(G)-1}v_{2M(G)}\cdots v_{n-1}v_{2(M(G)-1)}v_{2(M(G)-2)}\cdots v_{2}e'_{2}v_{0}.$$

Case 2: $\omega(G) > M(G) \ge 3$.

Then by Theorem 5 $\alpha(G^{-+-}) = \omega(G)$. We shall show that $\kappa(G^{-+-}) \ge \omega(G)$. Since $\omega(G) \ge 4$, $m + \kappa(\overline{G}) \ge m \ge \binom{\omega(G)}{2} \ge \omega(G)$. If *G* is connected then $\kappa(L(G)) \ge 1$, and $n - 1 \ge \omega(G)$, otherwise. Thus $n + \kappa(L(G)) - 1 \ge \omega(G)$.

It remains to show that $\delta(G^{-+-}) \ge \omega(G)$. Since $n - 4 + \min_{uv \in E(G)} \{d(u) + d(v)\} \ge n - 2$, if $\omega(G) \le n - 2$ then $\delta(G^{-+-}) \ge \omega(G)$. For each case of $\omega(G) = n - 1$ and $\omega(G) = n$, one can easily check that $\min_{uv \in E(G)} \{d(u) + d(v)\} \ge \omega(G)$, which implies $n - 4 + \min_{uv \in E(G)} \{d(u) + d(v)\} \ge \omega(G)$.

 $\begin{aligned} d(v) \geqslant \omega(G), \text{ which implies } n-4 + \min_{uv \in E(G)} \{d(u) + d(v)\} \geqslant \omega(G). \\ \text{On the other hand, note that } m \geqslant \binom{\omega(G)}{2} + (\varDelta(G) - (\omega(G) - 1)). \text{ If } \omega(G) \geqslant 5 \text{ then } \binom{\omega(G)}{2} \geqslant 2\omega(G) - 1 \text{ and } n+m-1-2\varDelta(G) \geqslant (\varDelta(G)+1) + (\varDelta(G) + \omega(G)) - 1 - 2\varDelta(G) = \omega(G). \text{ So, there is only one case } \omega(G) = 4 \text{ and } M(G) = 3 \text{ to consider. Since } m \geqslant \varDelta(G) + M(G) - 1 = \varDelta(G) + 2, n+m-1 - 2\varDelta(G) \geqslant n+1 - \varDelta(G). \end{aligned}$

If $n + 1 - \Delta(G) \ge 4$ then by $\omega(G) = 4$, $n + 1 - \Delta(G) \ge \omega(G)$. So we treat the cases $n + 1 - \Delta(G) = 2$ and 3. If $n + 1 - \Delta(G) = 2$ then $\Delta(G) = n - 1$, and thus $m \ge n + 3$ by $\omega(G) = 4$ and M(G) = 3. Therefore $n + m - 1 - 2\Delta(G) \ge n + (n + 3) - 1 - 2(n - 1) = 4 = \omega(G)$.

If $\Delta(G) = n - 2$ then by $\omega(G) = 4$ and M(G) = 3, $m \ge n + 2$. Hence $n + m - 1 - 2\Delta(G) \ge n + (n + 2) - 1 - 2(n - 2) = 5 \ge \omega(G)$.

Thus $\alpha(G^{-+-}) = \omega(G) \leq \kappa(G^{-+-})$, by Theorem 6 G^{-+-} is hamiltonian. *Case* 3: max{ $\omega(G), M(G), 3$ } = 3.

Then $\alpha(G^{-+-})=3$. If $\kappa(G^{-+-}) \ge 3$ we are done. So we assume $\kappa(G^{-+-})=2$ as follows. By Corollary $4\delta(G^{-+-})=2$. Since $\delta(G^{-+-}) = \min\{n+m-1-2\Delta(G), n-4+\min_{uv \in E(G)}\{d(u)+d(v)\}\}\)$, we distinguish two cases.

First suppose $n - 4 + \min_{uv \in E(G)} \{d(u) + d(v)\} = 2$. Since $n \ge 4$ and $\min_{uv \in E(G)} \{d(u) + d(v)\} \ge 2$, *G* must be isomorphic to $2K_2$ or $2K_1 + K_2$. But by the hypothesis that $G \not\cong 2K_1 + K_2$, $G \cong 2K_2$. One can see that $(2K_2)^{-+-} \cong K_{3,3} - e$ is hamiltonian.

Now we consider the case $m + n - 1 - 2\Delta(G) = 2$. It follows from $n \ge \Delta(G) + 1$ and $m \ge \Delta(G)$ that $(n, m) \in \{(\Delta(G)+1, \Delta(G)+2), (\Delta(G)+2, \Delta(G)+1), (\Delta(G)+3, \Delta(G))\}$. If $(n, m) = (\Delta(G)+3, \Delta(G))$ then $G \cong K_{1,n-3}+2K_1$. Let $V(G) = \{v_0, v_1, \ldots, v_{n-1}\}$ and $E(G) = \{e_1, e_2, \ldots, e_{n-3}\}$, where $e_i = v_0v_i$ for $i = 1, 2, \ldots, n-3$. Then we can find a Hamilton cycle of $G^{-+-}: v_0v_{n-1}e_1e_2\cdots e_{n-3}v_1v_2\cdots v_{n-3}v_{n-2}v_0$.

If $(n, m) = (\Delta(G) + 2, \Delta(G) + 1)$ then *G* is isomorphic either $(K_{1,n-2} + e) + K_1$ or the tree obtained from joining a new vertex to a vertex with degree one in $K_{1,n-2}$. If $G \cong (K_{1,n-2} + e) + K_1$, let $V(G) = \{v_0, v_1, \dots, v_{n-1}\}$ and $E(G) = \{e_1, e_2, \dots e_{n-1}\}$, where $e_i = v_0v_i$ for $i = 1, \dots, n-2$ and $e_{n-1} = e_1e_2$. Note that for n = 4, $(K_{1,n-2} + e) + K_1 \cong K_3 + K_1$, but $G \cong K_1 + K_3$ by the assumption, we have $n \ge 5$. Hence, one can find a Hamilton cycle of G^{-+-} as follows: $v_0v_{n-1}v_1e_2e_3 \cdots e_{n-2}v_2v_3 \cdots v_{n-2}e_1e_{n-1}v_0$. For the latter case, let $V(G) = \{v_0, v_1, \dots, v_{n-1}\}$ and $E(G) = \{e_1, e_2, \dots, e_{n-2}, e_{n-1}\}$, where $e_i = v_0v_i$ for $i = 1, 2, \dots, n-2$ and $e_{n-1} = v_{n-2}v_{n-1}$. Then we can find a Hamilton cycle of G^{-+-} : $v_0e_{n-1}v_1v_2 \cdots v_{n-2}e_1e_2 \cdots e_{n-2}v_{n-1}v_0$.

If $(n, m) = (\Delta(G) + 1, \Delta(G) + 2)$ then *G* is isomorphic to a graph obtained from $K_{1,n-1}$ by adding two edges (there are two possibilities: the two new edges may be adjacent or not in *G*). If the two new edges are not adjacent in *G*, let $V(G) = \{v_0, v_1, \ldots, v_{n-1}\}$ and $E(G) = \{e_1, e_2, \ldots, e_{n-1}, e_n, e_{n+1}\}$, where $e_i = v_0v_i$ for $i = 1, 2, \ldots, n-1, e_n = v_1v_2$ and $e_{n+1} = v_3v_4$. Then $v_0e_nv_3v_5\cdots v_{n-1}v_1v_4v_2e_1e_2e_3e_5\cdots e_{n-1}e_4e_{n+1}v_0$ is a Hamilton cycle of G^{-+-} . If the two new edges are adjacent in *G*, let $V(G) = \{v_0, v_1, \ldots, v_{n-1}\}$ and $E(G) = \{e_1, e_2, \ldots, e_{n-1}, e_n, e_{n+1}\}$, where $e_i = v_0v_i$ for $i = 1, 2, \ldots, n-1, e_n = v_1v_2$ and $e_{n+1} = v_2v_3$. Then $v_0e_nv_3v_4\cdots v_{n-1}e_1v_2e_3e_4\cdots e_{n-1}v_1e_2e_{n+1}v_0$ is a Hamilton cycle of G^{-+-} .

The proof is complete.

4. Concluding remarks

In this note, we prove that for a graph *G* of order $n \ge 4$, G^{-+-} is hamiltonian if and only if *G* is not isomorphic to any graph in $\{K_{1,n-1}, K_{1,n-1} + e, K_{1,n-2} + K_1\} \cup \{2K_1 + K_2\}$. Corollary 3 implies that if *G* is a graph of order $n \ge 4$ and not isomorphic to $2K_1 + K_2$ then G^{-+-} is hamiltonian if and only if $\delta(G^{-+-}) \ge 2$.

Acknowledgements

The authors are grateful to the referees for their critical comments.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, Macmillan, New York, London, 1976.
- [2] J. Chen, Super edge-connectivity of two classes of transformation graphs, Doctoral Thesis, Xinjiang University, 2006.
- [3] V. Chvátal, P. Erdös, A note on hamiltonian circuits, Discrete Math. 2 (1972) 111-113.
- [4] H. Fleischner, A.M. Hobbs, Hamiltonian total graphs, Math. Notes 68 (1975) 59-82.
- [5] G. Ma, B. Wu, Hamiltonicity of complements of total graphs, Discrete Geometry, Combinatorics and Graph Theory, 7th China-Japan Conference, Lecture Notes in Computer Science, vol. 4381, 2007, Springer, pp. 109–119.
- [6] B. Wu, J. Meng, Basic properties of total transformation graphs, J. Math. Study 34 (2) (2001) 109–116.
- [7] B. Wu, L. Zhang, Z. Zhang, The transformation graph G^{XyZ} when xyZ = + +, Discrete Math. 296 (2005) 263–270.
- [8] L. Yi, B. Wu, The transformation graph G^{++-} , Submitted for publication.
- [9] L. Zhen, B. Wu, Hamiltonicity of transformation graph G^{+--} , Submitted for publication.