Transformation graph G^{-+-}

Lan Xu ${ }^{\text {a,b }}$, Baoyindureng $\mathrm{Wu}^{\mathrm{a}, *, 1}$
${ }^{\text {a }}$ College of Mathematics and System Science, Xinjiang University, Urumqi 830046, Xinjiang, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, Changji University, Changji 831100, Xinjiang, PR China

Received 31 March 2007; received in revised form 10 September 2007; accepted 17 September 2007
Available online 7 November 2007

Abstract

The transformation graph G^{-+-}of a graph G is the graph with vertex set $V(G) \cup E(G)$, in which two vertices u and v are joined by an edge if one of the following conditions holds: (i) $u, v \in V(G)$ and they are not adjacent in G, (ii) $u, v \in E(G)$ and they are adjacent in G, (iii) one of u and v is in $V(G)$ while the other is in $E(G)$, and they are not incident in G. In this paper, for any graph G, we determine the connectivity and the independence number of G^{-+-}. Furthermore, for a graph G of order $n \geqslant 4$, we show that G^{-+-}is hamiltonian if and only if G is not isomorphic to any graph in $\left\{2 K_{1}+K_{2}, K_{1}+K_{3}\right\} \cup\left\{K_{1, n-1}, K_{1, n-1}+e, K_{1, n-2}+K_{1}\right\}$. © 2007 Elsevier B.V. All rights reserved.

Keywords: Transformation graph; Complement; Hamilton cycle

1. Introduction

All graphs considered here are finite, undirected and simple. We refer to [1] for unexplained terminology and notations. Let $G=(V(G), E(G))$ be a graph. For a vertex v of G, if there is no confusion, the degree $d_{G}(v)$ is simply denoted by $d(v)$. The symbols $\Delta(G), \delta(G), \kappa(G), \alpha(G), \omega(G), \operatorname{comp}(G)$ and $M(G)$ denote the maximum degree, the minimum degree, the connectivity, the independence number, the clique number, the number of components and the cardinality of a maximum matching of G, respectively. As usual, K_{n} is the complete graph of order n. For two positive integers r and $s, K_{r, s}$ is the complete bipartite graph with two partite sets containing r and s vertices.

In particular, $K_{1, s}$ is called a star. For $s \geqslant 2, K_{1, s}+e$ is the graph obtained from $K_{1, s}$ by adding a new edge which joins two vertices of degrees one. $K_{r, s}-e$ is the graph obtained from $K_{r, s}$ by deleting an edge. We say two graphs G and H are disjoint if they have no vertex in common, and denote their union by $G+H$; such a graph is called the disjoint union of G and H. The disjoint union of k copies of G is written as $k G$.

The complement of G, denoted by \bar{G}, is the graph with the same vertex set as G, but where two vertices are adjacent if and only if they are not adjacent in G. The total graph $T(G)$ of G is the graph whose vertex set is $V(G) \cup E(G)$, and in which two vertices are adjacent if and only if they are adjacent or incident in G. Wu and Meng [6] introduced some new graphical transformations which generalize the concept of total graph.

Let $G=(V(G), E(G))$ be a graph, and α, β be two elements of $V(G) \cup E(G)$. We define the associativity of α and β is + if they are adjacent or incident, and - otherwise. Let $x y z$ be a 3-permutation of the set $\{+,-\}$. We say that α and

[^0]Table 1
Hamiltonicity of $G^{x y z}$

Transformation graph	References and results
G^{+++}	In [4], a necessary and sufficient condition
G^{++-}	In [8], a sufficient condition
G^{+-+}	In [9], a necessary and sufficient condition
G^{+--}	In [7], a necessary and sufficient condition
G^{-++}	In this paper, a necessary and sufficient condition
G^{-+-}	In [5], a necessary and sufficient condition
G^{--+}	
G^{---}	

β correspond to the first term x (resp. the second term y or the third term z) if both α and β are in $V(G)$ (resp. both α and β are in $E(G)$, or one of α and β is $V(G)$ and the other is in $E(G)$. The transformation graph $G^{x y z}$ of G is defined on the vertex set $V(G) \cup E(G)$. Two vertices α and β of $G^{x y z}$ are joined by an edge if and only if their associativity in G is consistent with the corresponding term of $x y z$.

Therefore, one can obtain eight graphical transformations of graphs, since there are eight distinct 3-permutation of $\{+,-\}$. Note that G^{+++}is just the total graph $T(G)$ of G, and G^{---}is the complement of $T(G)$. Fleischner and Hobbs [4] showed that G^{+++}is hamiltonian if and only if G contains an EPS-subgraph, that is, a connected spanning subgraph S which is the edge-disjoint union of a (not necessarily connected) graph E, all of whose vertices have even degree, with a (possibly empty) forest P each of whose component is a path. Ma and Wu [5] showed that for a graph G of order $n \geqslant 3, G^{---}$is hamiltonian if and only if G is not isomorphic to any graph in $\left\{K_{1, n-1}, K_{1, n-1}+e, K_{1, n-2}+\right.$ $\left.K_{1}\right\} \cup\left\{K_{2}+2 K_{1}, K_{3}+K_{1}, K_{3}+2 K_{1}, K_{4}\right\}$. Wu et al. [7] proved that for any graph G of order n, G^{-++}is hamiltonian if and only if $n \geqslant 3$. Chen [2] studied the super-connectivity of these transformation graphs. Table 1 summarizes the known results on hamiltonicity of $G^{x y z}$.

In this paper, we shall investigate the transformation graph G^{-+-}of a graph G, and determine its connectivity and independence number. Furthermore, we obtain a necessary and sufficient condition for G^{-+-}to be hamiltonian when the order of G is at least 4 .

Theorem 1. For a graph G of order $n \geqslant 4, G^{-+-}$is hamiltonian if and only if G is not isomorphic to any graph in $\left\{K_{1, n-1}, K_{1, n-1}+e, K_{1, n-2}+K_{1}\right\} \cup\left\{2 K_{1}+K_{2}, K_{1}+K_{3}\right\}$.

2. Preliminary

We start with some simple observations. Let G be a graph of order n and size m. Then the order of G^{-+-}is $n+m$, $d_{G^{-+-}}(x)=n+m-1-2 d(x)$ for $x \in V(G)$ and $d_{G^{-+-}}(e)=n-4+d(u)+d(v)$ for any $e=u v \in E(G)$.

So $\delta\left(G^{-+-}\right)=\min \left\{n+m-1-2 \Delta(G), n-4+\min _{u v \in E(G)}\{d(u)+d(v)\}\right\}$. Wu and Meng [6] proved that G^{-+-} is connected if and only if G is not a star, and that diam $\left(G^{-+-}\right) \leqslant 3$ if G is not a star.

Theorem 2. For a graph G of order n and size $m, \kappa\left(G^{-+-}\right)=\min \left\{\delta\left(G^{-+-}\right), n+\kappa(L(G))-1, m+\kappa(\bar{G})\right\}$ or $\min \left\{\delta\left(G^{-+-}\right), n+\kappa(L(G)), m+\kappa(\bar{G})\right\}$.

Proof. If G is a star then its center must be an isolated vertex in G^{-+-}, and thus $\kappa\left(G^{-+-}\right)=0=\delta\left(G^{-+-}\right)$. Next we assume that G is not a star. It is easy to see that $\kappa\left(G^{-+-}\right) \leqslant \min \left\{\delta\left(G^{-+-}\right), n+\kappa(L(G)), m+\kappa(\bar{G})\right\}$. So it suffices to prove $\kappa\left(G^{-+-}\right) \geqslant \min \left\{\delta\left(G^{-+-}\right), n+\kappa(L(G))-1, m+\kappa(\bar{G})\right\}$. Let S be a minimum cut of G^{-+-}with $|S|<\delta\left(G^{-+-}\right)$.

Thus each component of $G^{-+-}-S$ has at least two vertices. We say that a component H of $G^{-+-}-S$ is of type-1 (respectively, type-2, or type-3) if $V(H) \subseteq V(G)$ (respectively, $V(H) \subseteq E(G)$, or $V(H) \cap V(G) \neq \emptyset$ and $V(H) \cap E(G) \neq \emptyset)$.

Claim 1. If $G^{-+-}-S$ contains a component of type-1 then all components of $G^{-+-}-S$ are of type-1.

Proof of Claim 1. To see this, let H_{1} be a component of type-1 and we take two adjacent vertices x, y from H_{1}. Then they are not adjacent in G. If there is a component of type-2 or type-3 in $G^{-+-}-S$, we choose a vertex $e \in V\left(G^{-+-}\right) \cap E(G)$ from it. It is obvious that e is not adjacent to neither x nor y in G^{-+-}. So, e must be incident with both x and y in G by the definition of G^{-+-}. Namely, x and y are adjacent in G. It contradicts that x and y are not adjacent in G. The claim is true.

Claim 2. If $G^{-+-}-S$ has a component of type-3 then $\operatorname{comp}\left(G^{-+-}-S\right)=2$.
Proof of Claim 2. By contradiction, suppose $\operatorname{comp}\left(G^{-+-}-S\right) \geqslant 3$. By Claim 1, all components of $G^{-+-}-S$ are of type-2 or of type-3. We take a vertex v from a component of type-3 with $v \in V(G)$, and two vertices e_{1} and e_{2} from other two components with $e_{1}, e_{2} \in E(G)$. By definition of G^{-+-}, v is the common end vertex of e_{1} and e_{2} in G while e_{1} and e_{2} are not adjacent in G, a contradiction.

Claim 3. All components of $G^{-+-}-S$ cannot be of type-3.
Proof of Claim 3. By contradiction, suppose all components of $G^{-+-}-S$ are of type-3. By Claim 2, $\operatorname{comp}\left(G^{-+-}-\right.$ $S)=2$, and let H_{1} and H_{2} be the two components of $G^{-+-}-S$. By the adjacency relation between vertices of G^{-+-}, $\left|V\left(H_{i}\right) \cap V(G)\right| \leqslant 2$ for each $i=1$ and 2, since otherwise one can find an edge of G from $V\left(H_{i}\right)$ which will have three end vertices coming from $V\left(H_{j}\right) \cap V(G)$, where $\{i, j\}=\{1,2\}$, a contradiction. We consider two cases. Assume first that $\left|V\left(H_{i}\right) \cap V(G)\right|=2$, and let $V\left(H_{i}\right) \cap V(G)=\left\{x_{i}, y_{i}\right\}$ for $i=1,2$. Again by the definition of G^{-+-}, the four vertices $x_{1}, x_{2}, y_{1}, y_{2}$ are pairwise adjacent in $G, V\left(H_{1}\right) \cap E(G)=\left\{x_{2} y_{2}\right\}$ and $V\left(H_{2}\right) \cap E(G)=\left\{x_{1} y_{1}\right\}$. Thus $\Delta(G) \geqslant d\left(x_{1}\right) \geqslant 3$ and $|S|=n+m-6>n+m-1-2 \Delta(G) \geqslant \delta\left(G^{-+-}\right)$, a contradiction. So by symmetry, it remains to consider the case $\left|V\left(H_{1}\right) \cap V(G)\right|=1$ and $\left|V\left(H_{2}\right) \cap V(G)\right| \leqslant 2$. Let $u_{i} \in V\left(H_{i}\right) \cap V(G)$ for $i=1,2$. Then $V\left(H_{i}\right) \cap E(G)$ is a set of edges incident with u_{j} in G, where $\{i, j\}=\{1,2\}$, which gives $\left|V\left(H_{i}\right) \cap E(G)\right| \leqslant d\left(u_{j}\right)$. Therefore, $|S| \geqslant(n-3)+m-\left(\left(d\left(u_{1}\right)-1\right)+\left(d\left(u_{2}\right)-1\right)\right) \geqslant n+m-2 \Delta(G)-1$, a contradiction. So by Claim 1, 2 and 3 , there are only three possibilities for the type of components of $G^{-+-}-S$: all components of $G^{-+-}-S$ are of type-1, all components of $G^{-+-}-S$ are of type-2, or $G^{-+-}-S$ consists of one component of type-2 and one of type-3. If all components of $G^{-+-}-S$ are of type-1 then $|S| \geqslant m+\kappa(\bar{G})$; if all components of $G^{-+-}-S$ are of type-2 then $|S| \geqslant+\kappa(L(G))$; in the last case, $|S| \geqslant n+\kappa(L(G))-1$.

This completes the proof.
Corollary 3. For a graph G of order $n \geqslant 4$, the following statements are equivalent.
(1) $\kappa\left(G^{-+-}\right) \geqslant 2$.
(2) $\delta\left(G^{-+-}\right) \geqslant 2$.
(3) $G \notin\left\{K_{1, n-1}, K_{1, n-1}+e, K_{1, n-2}+K_{1}\right\}$.

Proof. By Theorem $2 \kappa\left(G^{-+-}\right) \geqslant \min \left\{\delta\left(G^{-+-}\right), n+\kappa(L(G))-1, m+\kappa(\bar{G})\right\}$, where $\delta\left(G^{-+-}\right)=\min \{n+m-$ $\left.1-2 \Delta(G), n-4+\min _{u v \in E(G)}(d(u)+d(v))\right\}$. First we claim that both $n+\kappa(L(G))-1 \geqslant 3$ and $m+\kappa(\bar{G}) \geqslant 3$.

Since $n \geqslant 4, n+\kappa(L(G))-1 \geqslant 4-1=3$. If $m \geqslant 3, m+\kappa(\bar{G}) \geqslant m \geqslant 3$. If $m=2, G$ is not connected since $n \geqslant 4$, and so $m+\kappa(\bar{G}) \geqslant 2+1=3$. For the case of $m=1$, one can easily check that $\kappa(\bar{G}) \geqslant 2$, so we also obtain $m+\kappa(\bar{G}) \geqslant 3$. Thus the claim implies that (1) and (2) are equivalent. Moreover, one can easily check that $\delta\left(G^{-+-}\right)=0$ if and only if $G \cong K_{1, n-1}, \delta\left(G^{-+-}\right)=1$ if and only if $G \cong K_{1, n-1}+e$ or $K_{1, n-2}+K_{1}$. Thus (2) and (3) are equivalent.

One can also note from the proof of Corollary 3 that:
Corollary 4. For a graph G of order $n \geqslant 4, \kappa\left(G^{-+-}\right)=2$ if and only if $\delta\left(G^{-+-}\right)=2$.
Theorem 5. For any graph $G, \alpha\left(G^{-+-}\right)=1$ if $\Delta(G)=0$ and $\alpha\left(G^{-+-}\right)=\max \{\omega(G), M(G), 3\}$ otherwise.
Proof. If $\Delta(G)=0$ then G^{-+-}is a complete graph, and thus $\alpha\left(G^{-+-}\right)=1$. Suppose $\Delta(G)>0$ as follows. Since $\{u, v, e\}$ is an independent set of G^{-+-}for any $e=u v \in E(G), \alpha\left(G^{-+-}\right) \geqslant 3$. Moreover, since all cliques and matchings of G are independent sets of $G^{-+-}, \alpha\left(G^{-+-}\right) \geqslant \omega(G)$ and $\alpha\left(G^{-+-}\right) \geqslant M(G)$. Hence $\alpha\left(G^{-+-}\right) \geqslant \max \{\omega(G), M(G), 3\}$.

To complete the proof, we will show that $\alpha\left(G^{-+-}\right) \leqslant \max \{\omega(G), M(G), 3\}$. Let S be a maximum independent set of G^{-+-}and $S=S_{1} \cup S_{2}$, where $S_{1} \subseteq V(G)$ and $S_{2} \subseteq E(G)$. Note that $\left|S_{1}\right| \neq 1$. Otherwise, it implies that $\left|S_{2}\right|=1$ since S_{2} is a matching of G and each element of S_{2} is incident with the vertex of S_{1} in G. Thus $|S|=2$, which contradicts $|S| \geqslant 3$. Therefore we consider the following three cases.

Case 1: $\left|S_{1}\right| \geqslant 3$.
Then $S_{2}=\emptyset$, since otherwise each element of S_{2} is an edge of G and has all vertices of S_{1} as its end vertices in G. This is not possible because of $\left|S_{1}\right| \geqslant 3$. So $|S|=\left|S_{1}\right| \leqslant \omega(G) \leqslant \max \{\omega(G), M(G), 3\}$.

Case 2: $\left|S_{1}\right|=2$.
Let $\left\{S_{1}\right\}=\{u, v\}$. By the same argument as in the proof of Case $1, S_{2}=\{u v\}$ since G is a simple graph. Hence $|S|=3 \leqslant \max \{\omega(G), M(G), 3\}$.

Case 3: $\left|S_{1}\right|=0$. Then $S=S_{2}$. Since S_{2} is a matching of $G,\left|S_{2}\right| \leqslant M(G)$.
The proof is complete.
We use the following classical theorem due to Chvátal and Erdös [3].
Theorem 6. Let G be a graph of order at least three. If $\alpha(G) \leqslant \kappa(G)$, then G is hamiltonian.

3. The Proof of Theorem 1

If $G \in\left\{K_{1, n-1}, K_{1, n-1}+e, K_{1, n-2}+K_{1}\right\}$ then by Corollary $3, \kappa\left(G^{-+-}\right)<2$, and so G^{-+-}is not hamiltonian. It is easy to check that both $\left(2 K_{1}+K_{2}\right)^{-+-}$and $\left(K_{1}+K_{3}\right)^{-+-}$are not hamiltonian. To show its sufficiency, assume $G \notin\left\{K_{1, n-1}, K_{1, n-1}+e, K_{1, n-2}+K_{1}\right\} \cup\left\{2 K_{1}+K_{2}, K_{1}+K_{3}\right\}$. Then by Corollary $3 G^{-+-}$is 2 -connected. If $G \cong \overline{K_{n}}$ then $G^{-+-} \cong K_{n}$, and is hamiltonian. So assume G is not an empty graph. Recall that by Theorem 2 $\kappa\left(G^{-+-}\right) \geqslant \min \left\{\delta\left(G^{-+-}\right), n+\kappa(L(G))-1, m+\kappa(\bar{G})\right\}$, where $\delta\left(G^{-+-}\right)=\min \{n+m-1-2 \Delta(G), n-4+$ $\left.\min _{u v \in E(G)}(d(u)+d(v))\right\}$ and by Theorem $5 \alpha\left(G^{-+-}\right)=\max \{\omega(G), M(G), 3\}$.

We consider three cases.
Case 1: $M(G) \geqslant \omega(G) \geqslant 3$.
Then by Theorem 5, $\alpha\left(G^{-+-}\right)=M(G)$. Since $\min \left\{m, \frac{n}{2}\right\} \geqslant M(G)$ and $n-2 \geqslant \frac{n}{2}$ for $n \geqslant 4, m+\kappa(\bar{G}) \geqslant M(G)$ and $n+\kappa(L(G))-1 \geqslant M(G)$. Moreover, since G is not an empty graph, $\min _{u v \in E(G)}\{d(u)+d(v)\} \geqslant 2$ and $n-4+$ $\min _{u v \in E(G)}(d(u)+d(v)) \geqslant n-2 \geqslant M(G)$. Hence, if $n+m-1-2 \Delta(G) \geqslant M(G)$ then $\kappa\left(G^{-+-}\right) \geqslant M(G)$ and by Theorem $6 G^{-+-}$is hamiltonian. Otherwise $n+m-1-2 \Delta(G)=M(G)-1$ since $m \geqslant \Delta(G)+M(G)-1$ and $n \geqslant \Delta(G)+1$ hold for any graph G. In this case, $n=\Delta(G)+1$ and $m=\Delta(G)+M(G)-1$. Let $V(G)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$, $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{n-1}, e_{1}^{\prime}, e_{2}^{\prime}, \ldots, e_{M(G)-1}^{\prime}\right\}$, where $e_{i}=v_{0} v_{i}$ for $i=1,2, \ldots, n-1$ and $e_{j}^{\prime}=v_{2 j-1} v_{2 j}$ for $j=$ $1, \ldots, M(G)-1$. Then we can find a Hamilton cycle of G^{-+-}:

$$
\begin{aligned}
& v_{0} e_{1}^{\prime} e_{1} e_{2} e_{3} e_{4} e_{5} e_{3}^{\prime} e_{6} e_{7} e_{4}^{\prime} e_{8} \cdots e_{M(G)-1}^{\prime} e_{2(M(G)-1)} e_{2 M(G)-1} \cdots e_{n-1} v_{1} v_{3} \\
& \quad \cdots v_{2 M(G)-1} v_{2 M(G)} \cdots v_{n-1} v_{2(M(G)-1)} v_{2(M(G)-2)} \cdots v_{2} e_{2}^{\prime} v_{0} .
\end{aligned}
$$

Case 2: $\omega(G)>M(G) \geqslant 3$.
Then by Theorem $5 \alpha\left(G^{-+-}\right)=\omega(G)$. We shall show that $\kappa\left(G^{-+-}\right) \geqslant \omega(G)$. Since $\omega(G) \geqslant 4, m+\kappa(\bar{G}) \geqslant m \geqslant$ $\binom{\omega(G)}{2} \geqslant \omega(G)$. If G is connected then $\kappa(L(G)) \geqslant 1$, and $n-1 \geqslant \omega(G)$, otherwise. Thus $n+\kappa(L(G))-1 \geqslant \omega(G)$.

It remains to show that $\delta\left(G^{-+-}\right) \geqslant \omega(G)$. Since $n-4+\min _{u v \in E(G)}\{d(u)+d(v)\} \geqslant n-2$, if $\omega(G) \leqslant n-2$ then $\delta\left(G^{-+-}\right) \geqslant \omega(G)$. For each case of $\omega(G)=n-1$ and $\omega(G)=n$, one can easily check that $\min _{u v \in E(G)}\{d(u)+$ $d(v)\} \geqslant \omega(G)$, which implies $n-4+\min _{u v \in E(G)}\{d(u)+d(v)\} \geqslant \omega(G)$.

On the other hand, note that $m \geqslant\binom{\omega(G)}{2}+(\Delta(G)-(\omega(G)-1))$. If $\omega(G) \geqslant 5$ then $\binom{\omega(G)}{2} \geqslant 2 \omega(G)-1$ and $n+m-1-2 \Delta(G) \geqslant(\Delta(G)+1)+(\Delta(G)+\omega(G))-1-2 \Delta(G)=\omega(G)$. So, there is only one case $\omega(G)=4$ and $M(G)=3$ to consider. Since $m \geqslant \Delta(G)+M(G)-1=\Delta(G)+2, n+m-1-2 \Delta(G) \geqslant n+1-\Delta(G)$.

If $n+1-\Delta(G) \geqslant 4$ then by $\omega(G)=4, n+1-\Delta(G) \geqslant \omega(G)$. So we treat the cases $n+1-\Delta(G)=2$ and 3 . If $n+1-\Delta(G)=2$ then $\Delta(G)=n-1$, and thus $m \geqslant n+3$ by $\omega(G)=4$ and $M(G)=3$. Therefore $n+m-1-$ $2 \Delta(G) \geqslant n+(n+3)-1-2(n-1)=4=\omega(G)$.

If $\Delta(G)=n-2$ then by $\omega(G)=4$ and $M(G)=3, m \geqslant n+2$. Hence $n+m-1-2 \Delta(G) \geqslant n+(n+2)-1-2(n-$ 2) $=5 \geqslant \omega(G)$.

Thus $\alpha\left(G^{-+-}\right)=\omega(G) \leqslant \kappa\left(G^{-+-}\right)$, by Theorem $6 G^{-+-}$is hamiltonian.
Case 3: $\max \{\omega(G), M(G), 3\}=3$.
Then $\alpha\left(G^{-+-}\right)=3$. If $\kappa\left(G^{-+-}\right) \geqslant 3$ we are done. So we assume $\kappa\left(G^{-+-}\right)=2$ as follows. By Corollary $4 \delta\left(G^{-+-}\right)=2$. Since $\delta\left(G^{-+-}\right)=\min \left\{n+m-1-2 \Delta(G), n-4+\min _{u v \in E(G)}\{d(u)+d(v)\}\right\}$, we distinguish two cases.

First suppose $n-4+\min _{u v \in E(G)}\{d(u)+d(v)\}=2$. Since $n \geqslant 4$ and $\min _{u v \in E(G)}\{d(u)+d(v)\} \geqslant 2, G$ must be isomorphic to $2 K_{2}$ or $2 K_{1}+K_{2}$. But by the hypothesis that $G \not \not 2 K_{1}+K_{2}, G \cong 2 K_{2}$. One can see that $\left(2 K_{2}\right)^{-+-} \cong K_{3,3}-$ e is hamiltonian.

Now we consider the case $m+n-1-2 \Delta(G)=2$. It follows from $n \geqslant \Delta(G)+1$ and $m \geqslant \Delta(G)$ that $(n, m) \in$ $\{(\Delta(G)+1, \Delta(G)+2),(\Delta(G)+2, \Delta(G)+1),(\Delta(G)+3, \Delta(G))\}$. If $(n, m)=(\Delta(G)+3, \Delta(G))$ then $G \cong K_{1, n-3}+2 K_{1}$. Let $V(G)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{n-3}\right\}$, where $e_{i}=v_{0} v_{i}$ for $i=1,2, \ldots, n-3$. Then we can find a Hamilton cycle of $G^{-+-}: v_{0} v_{n-1} e_{1} e_{2} \cdots e_{n-3} v_{1} v_{2} \cdots v_{n-3} v_{n-2} v_{0}$.

If $(n, m)=(\Delta(G)+2, \Delta(G)+1)$ then G is isomorphic either $\left(K_{1, n-2}+e\right)+K_{1}$ or the tree obtained from joining a new vertex to a vertex with degree one in $K_{1, n-2}$. If $G \cong\left(K_{1, n-2}+e\right)+K_{1}$, let $V(G)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $E(G)=\left\{e_{1}, e_{2}, \cdots e_{n-1}\right\}$, where $e_{i}=v_{0} v_{i}$ for $i=1, \cdots, n-2$ and $e_{n-1}=e_{1} e_{2}$. Note that for $n=4,\left(K_{1, n-2}+e\right)$ $+K_{1} \cong K_{3}+K_{1}$, but $G \nsucceq K_{1}+K_{3}$ by the assumption, we have $n \geqslant 5$. Hence, one can find a Hamilton cycle of G^{-+-}as follows: $v_{0} v_{n-1} v_{1} e_{2} e_{3} \cdots e_{n-2} v_{2} v_{3} \cdots v_{n-2} e_{1} e_{n-1} v_{0}$. For the latter case, let $V(G)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{n-2}, e_{n-1}\right\}$, where $e_{i}=v_{0} v_{i}$ for $i=1,2, \ldots, n-2$ and $e_{n-1}=v_{n-2} v_{n-1}$. Then we can find a Hamilton cycle of $G^{-+-}: v_{0} e_{n-1} v_{1} v_{2} \cdots v_{n-2} e_{1} e_{2} \cdots e_{n-2} v_{n-1} v_{0}$.

If $(n, m)=(\Delta(G)+1, \Delta(G)+2)$ then G is isomorphic to a graph obtained from $K_{1, n-1}$ by adding two edges (there are two possibilities: the two new edges may be adjacent or not in G). If the two new edges are not adjacent in G, let $V(G)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{n-1}, e_{n}, e_{n+1}\right\}$, where $e_{i}=v_{0} v_{i}$ for $i=1,2, \ldots, n-1, e_{n}=v_{1} v_{2}$ and $e_{n+1}=v_{3} v_{4}$. Then $v_{0} e_{n} v_{3} v_{5} \cdots v_{n-1} v_{1} v_{4} v_{2} e_{1} e_{2} e_{3} e_{5} \cdots e_{n-1} e_{4} e_{n+1} v_{0}$ is a Hamilton cycle of G^{-+-}. If the two new edges are adjacent in G, let $V(G)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $E(G)=\left\{e_{1}, e_{2}, \ldots, e_{n-1}, e_{n}, e_{n+1}\right\}$, where $e_{i}=v_{0} v_{i}$ for $i=1,2, \ldots, n-1, e_{n}=v_{1} v_{2}$ and $e_{n+1}=v_{2} v_{3}$. Then $v_{0} e_{n} v_{3} v_{4} \cdots v_{n-1} e_{1} v_{2} e_{3} e_{4} \cdots e_{n-1} v_{1} e_{2} e_{n+1} v_{0}$ is a Hamilton cycle of G^{-+-}.

The proof is complete.

4. Concluding remarks

In this note, we prove that for a graph G of order $n \geqslant 4, G^{-+-}$is hamiltonian if and only if G is not isomorphic to any graph in $\left\{K_{1, n-1}, K_{1, n-1}+e, K_{1, n-2}+K_{1}\right\} \cup\left\{2 K_{1}+K_{2}\right\}$. Corollary 3 implies that if G is a graph of order $n \geqslant 4$ and not isomorphic to $2 K_{1}+K_{2}$ then G^{-+-}is hamiltonian if and only if $\delta\left(G^{-+-}\right) \geqslant 2$.

Acknowledgements

The authors are grateful to the referees for their critical comments.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, Macmillan, New York, London, 1976.
[2] J. Chen, Super edge-connectivity of two classes of transformation graphs, Doctoral Thesis, Xinjiang University, 2006.
[3] V. Chvátal, P. Erdös, A note on hamiltonian circuits, Discrete Math. 2 (1972) 111-113.
[4] H. Fleischner, A.M. Hobbs, Hamiltonian total graphs, Math. Notes 68 (1975) 59-82.
[5] G. Ma, B. Wu, Hamiltonicity of complements of total graphs, Discrete Geometry, Combinatorics and Graph Theory, 7th China-Japan Conference, Lecture Notes in Computer Science, vol. 4381, 2007, Springer, pp. 109-119.
[6] B. Wu, J. Meng, Basic properties of total transformation graphs, J. Math. Study 34 (2) (2001) 109-116.
[7] B. Wu, L. Zhang, Z. Zhang, The transformation graph $G^{x y z}$ when $x y z=-++$, Discrete Math. 296 (2005) 263-270.
[8] L. Yi, B. Wu, The transformation graph G^{++-}, Submitted for publication.
[9] L. Zhen, B. Wu, Hamiltonicity of transformation graph G^{+--}, Submitted for publication.

[^0]: * Corresponding author.

 E-mail address: baoyin@xju.edu.cn (B. Wu).
 ${ }^{1}$ Research supported by NSFC(No. 10601044) and XJEDU2006S05.

