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Abstract

The transformation graph G−+− of a graph G is the graph with vertex set V (G)∪E(G), in which two vertices u and v are joined
by an edge if one of the following conditions holds: (i) u, v ∈ V (G) and they are not adjacent in G, (ii) u, v ∈ E(G) and they are
adjacent in G, (iii) one of u and v is in V (G) while the other is in E(G), and they are not incident in G. In this paper, for any graph
G, we determine the connectivity and the independence number of G−+−. Furthermore, for a graph G of order n�4, we show that
G−+− is hamiltonian if and only if G is not isomorphic to any graph in {2K1+K2, K1+K3}∪{K1,n−1, K1,n−1+e, K1,n−2+K1}.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

All graphs considered here are finite, undirected and simple. We refer to [1] for unexplained terminology and
notations. Let G = (V (G), E(G)) be a graph. For a vertex v of G, if there is no confusion, the degree dG(v) is simply
denoted by d(v). The symbols �(G), �(G), �(G), �(G), �(G) , comp(G) and M(G) denote the maximum degree, the
minimum degree, the connectivity, the independence number, the clique number, the number of components and the
cardinality of a maximum matching of G, respectively. As usual, Kn is the complete graph of order n. For two positive
integers r and s, Kr,s is the complete bipartite graph with two partite sets containing r and s vertices.

In particular, K1,s is called a star. For s�2, K1,s + e is the graph obtained from K1,s by adding a new edge which
joins two vertices of degrees one. Kr,s − e is the graph obtained from Kr,s by deleting an edge. We say two graphs
G and H are disjoint if they have no vertex in common, and denote their union by G + H ; such a graph is called the
disjoint union of G and H. The disjoint union of k copies of G is written as kG.

The complement of G, denoted by G, is the graph with the same vertex set as G, but where two vertices are adjacent
if and only if they are not adjacent in G. The total graph T (G) of G is the graph whose vertex set is V (G) ∪ E(G), and
in which two vertices are adjacent if and only if they are adjacent or incident in G. Wu and Meng [6] introduced some
new graphical transformations which generalize the concept of total graph.

Let G = (V (G), E(G)) be a graph, and �, � be two elements of V (G) ∪ E(G). We define the associativity of � and
� is + if they are adjacent or incident, and − otherwise. Let xyz be a 3-permutation of the set {+, −}. We say that � and
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Table 1
Hamiltonicity of Gxyz

Transformation graph References and results

G+++ In [4], a necessary and sufficient condition
G++− In [8], a sufficient condition
G+−+
G+−− In [9], a necessary and sufficient condition
G−++ In [7], a necessary and sufficient condition
G−+− In this paper, a necessary and sufficient condition
G−−+
G−−− In [5], a necessary and sufficient condition

� correspond to the first term x (resp. the second term y or the third term z) if both � and � are in V (G) (resp. both �
and � are in E(G), or one of � and � is V (G) and the other is in E(G). The transformation graph Gxyz of G is defined
on the vertex set V (G) ∪ E(G). Two vertices � and � of Gxyz are joined by an edge if and only if their associativity in
G is consistent with the corresponding term of xyz.

Therefore, one can obtain eight graphical transformations of graphs, since there are eight distinct 3-permutation of
{+, −}. Note that G+++ is just the total graph T (G) of G, and G−−− is the complement of T (G). Fleischner and
Hobbs [4] showed that G+++ is hamiltonian if and only if G contains an EPS-subgraph, that is, a connected spanning
subgraph S which is the edge-disjoint union of a (not necessarily connected) graph E, all of whose vertices have even
degree, with a (possibly empty) forest P each of whose component is a path. Ma and Wu [5] showed that for a graph G
of order n�3, G−−− is hamiltonian if and only if G is not isomorphic to any graph in {K1,n−1, K1,n−1 + e, K1,n−2 +
K1}∪ {K2 +2K1, K3 +K1, K3 +2K1, K4}. Wu et al. [7] proved that for any graph G of order n, G−++ is hamiltonian
if and only if n�3. Chen [2] studied the super-connectivity of these transformation graphs. Table 1 summarizes the
known results on hamiltonicity of Gxyz.

In this paper, we shall investigate the transformation graph G−+− of a graph G, and determine its connectivity and
independence number. Furthermore, we obtain a necessary and sufficient condition for G−+− to be hamiltonian when
the order of G is at least 4.

Theorem 1. For a graph G of order n�4, G−+− is hamiltonian if and only if G is not isomorphic to any graph in
{K1,n−1, K1,n−1 + e, K1,n−2 + K1} ∪ {2K1 + K2, K1 + K3}.

2. Preliminary

We start with some simple observations. Let G be a graph of order n and size m. Then the order of G−+− is n + m,
dG−+−(x) = n + m − 1 − 2d(x) for x ∈ V (G) and dG−+−(e) = n − 4 + d(u) + d(v) for any e = uv ∈ E(G).

So �(G−+−) = min{n + m − 1 − 2�(G), n − 4 + minuv∈E(G) {d(u) + d(v)}}. Wu and Meng [6] proved that G−+−
is connected if and only if G is not a star, and that diam (G−+−)�3 if G is not a star.

Theorem 2. For a graph G of order n and size m, �(G−+−) = min{�(G−+−), n + �(L(G)) − 1, m + �(G)} or
min{�(G−+−), n + �(L(G)), m + �(G)}.

Proof. If G is a star then its center must be an isolated vertex in G−+−, and thus �(G−+−) = 0 = �(G−+−). Next we
assume that G is not a star. It is easy to see that �(G−+−)� min{�(G−+−), n + �(L(G)), m + �(G)}. So it suffices to
prove �(G−+−)� min{�(G−+−), n+�(L(G))−1, m+�(G)}. Let S be a minimum cut of G−+− with|S| < �(G−+−).

Thus each component of G−+− − S has at least two vertices. We say that a component H of G−+− − S is of
type-1 (respectively, type-2, or type-3) if V (H) ⊆ V (G) (respectively, V (H) ⊆ E(G), or V (H) ∩ V (G) �= ∅ and
V (H) ∩ E(G) �= ∅).

Claim 1. If G−+− − S contains a component of type-1 then all components of G−+− − S are of type-1.
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Proof of Claim 1. To see this, let H1 be a component of type-1 and we take two adjacent vertices x, y from H1.
Then they are not adjacent in G. If there is a component of type-2 or type-3 in G−+− − S, we choose a vertex
e ∈ V (G−+−) ∩ E(G) from it. It is obvious that e is not adjacent to neither x nor y in G−+−. So, e must be incident
with both x and y in G by the definition of G−+−. Namely, x and y are adjacent in G. It contradicts that x and y are not
adjacent in G. The claim is true. �

Claim 2. If G−+− − S has a component of type-3 then comp(G−+− − S) = 2.

Proof of Claim 2. By contradiction, suppose comp(G−+− − S)�3. By Claim 1, all components of G−+− − S are
of type-2 or of type-3. We take a vertex v from a component of type-3 with v ∈ V (G), and two vertices e1 and e2 from
other two components with e1, e2 ∈ E(G). By definition of G−+−, v is the common end vertex of e1 and e2 in G while
e1 and e2 are not adjacent in G, a contradiction. �

Claim 3. All components of G−+− − S cannot be of type-3.

Proof of Claim 3. By contradiction, suppose all components of G−+− −S are of type-3. By Claim 2, comp(G−+− −
S) = 2, and let H1 and H2 be the two components of G−+− − S. By the adjacency relation between vertices of G−+−,
|V (Hi) ∩ V (G)|�2 for each i = 1 and 2, since otherwise one can find an edge of G from V (Hi) which will have
three end vertices coming from V (Hj ) ∩ V (G), where {i, j} = {1, 2}, a contradiction. We consider two cases. Assume
first that |V (Hi) ∩ V (G)| = 2, and let V (Hi) ∩ V (G) = {xi, yi} for i = 1, 2. Again by the definition of G−+−, the
four vertices x1, x2, y1, y2 are pairwise adjacent in G, V (H1) ∩ E(G) = {x2y2} and V (H2) ∩ E(G) = {x1y1}. Thus
�(G)�d(x1)�3 and |S| = n + m − 6 > n + m − 1 − 2�(G)��(G−+−), a contradiction. So by symmetry, it remains
to consider the case |V (H1) ∩ V (G)| = 1 and |V (H2) ∩ V (G)|�2. Let ui ∈ V (Hi) ∩ V (G) for i = 1, 2. Then
V (Hi) ∩ E(G) is a set of edges incident with uj in G, where {i, j} = {1, 2}, which gives |V (Hi) ∩ E(G)|�d(uj ).
Therefore, |S|�(n − 3) + m − ((d(u1) − 1) + (d(u2) − 1))�n + m − 2�(G) − 1, a contradiction. So by Claim 1,
2 and 3, there are only three possibilities for the type of components of G−+− − S: all components of G−+− − S are
of type-1, all components of G−+− − S are of type-2, or G−+− − S consists of one component of type-2 and one of
type-3. If all components of G−+− −S are of type-1 then |S|�m+�(G); if all components of G−+− −S are of type-2
then |S|� + �(L(G)); in the last case, |S|�n + �(L(G)) − 1. �

This completes the proof. �

Corollary 3. For a graph G of order n�4, the following statements are equivalent.

(1) �(G−+−)�2.
(2) �(G−+−)�2.
(3) G /∈ {K1,n−1, K1,n−1 + e, K1,n−2 + K1}.
Proof. By Theorem 2 �(G−+−)� min{�(G−+−), n + �(L(G)) − 1, m + �(G)}, where �(G−+−) = min{n + m −
1 − 2�(G), n − 4 + minuv∈E(G)(d(u) + d(v))}. First we claim that both n + �(L(G)) − 1�3 and m + �(G)�3.

Since n�4, n + �(L(G)) − 1�4 − 1 = 3. If m�3, m + �(G)�m�3. If m = 2, G is not connected since n�4, and
so m + �(G)�2 + 1 = 3. For the case of m = 1, one can easily check that �(G)�2, so we also obtain m + �(G)�3.
Thus the claim implies that (1) and (2) are equivalent. Moreover, one can easily check that �(G−+−) = 0 if and only
if G�K1,n−1, �(G−+−) = 1 if and only if G�K1,n−1 + e or K1,n−2 + K1. Thus (2) and (3) are equivalent. �

One can also note from the proof of Corollary 3 that:

Corollary 4. For a graph G of order n�4, �(G−+−) = 2 if and only if �(G−+−) = 2.

Theorem 5. For any graph G, �(G−+−) = 1 if �(G) = 0 and �(G−+−) = max{�(G), M(G), 3} otherwise.

Proof. If �(G)=0 then G−+− is a complete graph, and thus �(G−+−)=1. Suppose �(G) > 0 as follows. Since {u, v, e}
is an independent set of G−+− for any e = uv ∈ E(G), �(G−+−)�3. Moreover, since all cliques and matchings of G
are independent sets of G−+−, �(G−+−)��(G) and �(G−+−)�M(G). Hence �(G−+−)� max{�(G), M(G), 3}.
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To complete the proof, we will show that �(G−+−)� max{�(G), M(G), 3}. Let S be a maximum independent set
of G−+− and S = S1 ∪ S2, where S1 ⊆ V (G) and S2 ⊆ E(G). Note that |S1| �= 1. Otherwise, it implies that |S2| = 1
since S2 is a matching of G and each element of S2 is incident with the vertex of S1 in G. Thus |S|=2, which contradicts
|S|�3. Therefore we consider the following three cases.

Case 1: |S1|�3.
Then S2 = ∅, since otherwise each element of S2 is an edge of G and has all vertices of S1 as its end vertices in G.

This is not possible because of |S1|�3. So |S| = |S1|��(G)� max{�(G), M(G), 3}.
Case 2: |S1| = 2.
Let {S1} = {u, v}. By the same argument as in the proof of Case 1, S2 = {uv} since G is a simple graph. Hence

|S| = 3� max{�(G), M(G), 3}.
Case 3: |S1| = 0. Then S = S2. Since S2 is a matching of G, |S2|�M(G).
The proof is complete. �

We use the following classical theorem due to Chvátal and Erdös [3].

Theorem 6. Let G be a graph of order at least three. If �(G)��(G), then G is hamiltonian.

3. The Proof of Theorem 1

If G ∈ {K1,n−1, K1,n−1 + e, K1,n−2 + K1} then by Corollary 3, �(G−+−) < 2, and so G−+− is not hamiltonian.
It is easy to check that both (2K1 + K2)

−+− and (K1 + K3)
−+− are not hamiltonian. To show its sufficiency,

assume G /∈ {K1,n−1, K1,n−1 + e, K1,n−2 + K1} ∪ {2K1 + K2, K1 + K3}. Then by Corollary 3 G−+− is 2-connected.
If G�Kn then G−+−�Kn, and is hamiltonian. So assume G is not an empty graph. Recall that by Theorem 2
�(G−+−)� min{�(G−+−), n + �(L(G)) − 1, m + �(G)}, where �(G−+−) = min{n + m − 1 − 2�(G), n − 4 +
minuv∈E(G)(d(u) + d(v))} and by Theorem 5 �(G−+−) = max{�(G), M(G), 3}.

We consider three cases.
Case 1: M(G)��(G)�3.
Then by Theorem 5, �(G−+−) = M(G). Since min{m, n

2 }�M(G) and n − 2� n
2 for n�4, m + �(G)�M(G)

and n + �(L(G)) − 1�M(G). Moreover, since G is not an empty graph, minuv∈E(G){d(u) + d(v)}�2 and n − 4 +
minuv∈E(G)(d(u) + d(v))�n − 2�M(G). Hence, if n + m − 1 − 2�(G)�M(G) then �(G−+−)�M(G) and by
Theorem 6 G−+− is hamiltonian. Otherwise n + m − 1 − 2�(G) = M(G) − 1 since m��(G) + M(G) − 1 and
n��(G)+1 hold for any graph G. In this case, n=�(G)+1 and m=�(G)+M(G)−1. Let V (G)={v0, v1, . . . , vn−1},
E(G) = {e1, e2, . . . , en−1, e

′
1, e

′
2, . . . , e

′
M(G)−1}, where ei = v0vi for i = 1, 2, . . . , n − 1 and e′

j = v2j−1v2j for j =
1, . . . , M(G) − 1. Then we can find a Hamilton cycle of G−+−:

v0e
′
1e1e2e3e4e5e

′
3e6e7e

′
4e8 · · · e′

M(G)−1e2(M(G)−1)e2M(G)−1 · · · en−1v1v3

· · · v2M(G)−1v2M(G) · · · vn−1v2(M(G)−1)v2(M(G)−2) · · · v2e
′
2v0.

Case 2: �(G) > M(G)�3.
Then by Theorem 5 �(G−+−) = �(G). We shall show that �(G−+−)��(G). Since �(G)�4, m + �(G)�m�(

�(G)
2

)
��(G). If G is connected then �(L(G))�1, and n − 1��(G), otherwise. Thus n + �(L(G)) − 1��(G).

It remains to show that �(G−+−)��(G). Since n − 4 + minuv∈E(G){d(u) + d(v)}�n − 2, if �(G)�n − 2 then
�(G−+−)��(G). For each case of �(G) = n − 1 and �(G) = n, one can easily check that minuv∈E(G){d(u) +
d(v)}��(G), which implies n − 4 + minuv∈E(G){d(u) + d(v)}��(G).

On the other hand, note that m�
(

�(G)
2

)
+ (�(G) − (�(G) − 1)). If �(G)�5 then

(
�(G)

2

)
�2�(G) − 1 and

n + m − 1 − 2�(G)�(�(G) + 1) + (�(G) + �(G)) − 1 − 2�(G) = �(G). So, there is only one case �(G) = 4 and
M(G) = 3 to consider. Since m��(G) + M(G) − 1 = �(G) + 2, n + m − 1 − 2�(G)�n + 1 − �(G).

If n + 1 − �(G)�4 then by �(G) = 4, n + 1 − �(G)��(G). So we treat the cases n + 1 − �(G) = 2 and 3. If
n + 1 − �(G) = 2 then �(G) = n − 1, and thus m�n + 3 by �(G) = 4 and M(G) = 3. Therefore n + m − 1 −
2�(G)�n + (n + 3) − 1 − 2(n − 1) = 4 = �(G).
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If �(G) = n − 2 then by �(G) = 4 and M(G) = 3, m�n + 2. Hence n + m − 1 − 2�(G)�n + (n + 2) − 1 − 2(n −
2) = 5��(G).

Thus �(G−+−) = �(G)��(G−+−), by Theorem 6 G−+− is hamiltonian.
Case 3: max{�(G), M(G), 3} = 3.
Then �(G−+−)=3. If �(G−+−)�3 we are done. So we assume �(G−+−)=2 as follows. By Corollary 4 �(G−+−)=2.

Since �(G−+−) = min{n + m − 1 − 2�(G), n − 4 + minuv∈E(G){d(u) + d(v)}}, we distinguish two cases.
First suppose n − 4 + minuv∈E(G){d(u) + d(v)} = 2. Since n�4 and minuv∈E(G){d(u) + d(v)}�2, G must be

isomorphic to 2K2 or 2K1+K2. But by the hypothesis that G�2K1+K2, G�2K2. One can see that (2K2)
−+−�K3,3−

e is hamiltonian.
Now we consider the case m + n − 1 − 2�(G) = 2. It follows from n��(G) + 1 and m��(G) that (n, m) ∈

{(�(G)+1, �(G)+2), (�(G)+2, �(G)+1), (�(G)+3, �(G))}. If (n, m)=(�(G)+3, �(G)) then G�K1,n−3+2K1.
Let V (G) = {v0, v1, . . . , vn−1} and E(G) = {e1, e2, . . . , en−3}, where ei = v0vi for i = 1, 2, . . . , n − 3. Then we can
find a Hamilton cycle of G−+−: v0vn−1e1e2 · · · en−3v1v2 · · · vn−3vn−2v0.

If (n, m) = (�(G) + 2, �(G) + 1) then G is isomorphic either (K1,n−2 + e) + K1 or the tree obtained from joining
a new vertex to a vertex with degree one in K1,n−2. If G�(K1,n−2 + e) + K1, let V (G) = {v0, v1, . . . , vn−1} and
E(G) = {e1, e2, · · · en−1}, where ei = v0vi for i = 1, · · · , n − 2 and en−1 = e1e2. Note that for n = 4, (K1,n−2 + e)

+ K1�K3 + K1, but G�K1 + K3 by the assumption, we have n�5. Hence, one can find a Hamilton cycle of
G−+− as follows: v0vn−1v1e2e3 · · · en−2v2v3 · · · vn−2e1en−1v0. For the latter case, let V (G) = {v0, v1, . . . , vn−1} and
E(G) = {e1, e2, . . . , en−2, en−1}, where ei = v0vi for i = 1, 2, . . . , n − 2 and en−1 = vn−2vn−1. Then we can find a
Hamilton cycle of G−+−: v0en−1v1v2 · · · vn−2e1e2 · · · en−2vn−1v0.

If (n, m)= (�(G)+ 1, �(G)+ 2) then G is isomorphic to a graph obtained from K1,n−1 by adding two edges (there
are two possibilities: the two new edges may be adjacent or not in G). If the two new edges are not adjacent in G, let
V (G)={v0, v1, . . . , vn−1} and E(G)={e1, e2, . . . , en−1, en, en+1}, where ei =v0vi for i =1, 2, . . . , n−1, en =v1v2
and en+1 = v3v4. Then v0env3v5 · · · vn−1v1v4v2e1e2e3e5 · · · en−1e4en+1v0 is a Hamilton cycle of G−+−. If the two
new edges are adjacent in G, let V (G) = {v0, v1, . . . , vn−1} and E(G) = {e1, e2, . . . , en−1, en, en+1}, where ei = v0vi

for i = 1, 2, . . . , n − 1, en = v1v2 and en+1 = v2v3. Then v0env3v4 · · · vn−1e1v2e3e4 · · · en−1v1e2en+1v0 is a Hamilton
cycle of G−+−.

The proof is complete.

4. Concluding remarks

In this note, we prove that for a graph G of order n�4, G−+− is hamiltonian if and only if G is not isomorphic to
any graph in {K1,n−1, K1,n−1 + e, K1,n−2 + K1} ∪ {2K1 + K2}. Corollary 3 implies that if G is a graph of order n�4
and not isomorphic to 2K1 + K2 then G−+− is hamiltonian if and only if �(G−+−)�2.
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