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Abstract Continuing improvements in DNA sequencing tech-
nologies are providing us with vast amounts of genomic data
from an ever-widening range of organisms. The resulting chal-
lenge for bioinformatics is to interpret this deluge of data and
place it back into its biological context. Biological networks pro-
vide a conceptual framework with which we can describe part of
this context, namely the different interactions that occur between
the molecular components of a cell. Here, we review the compu-
tational methods available to predict biological networks from
genomic sequence data and discuss how they relate to high-
throughput experimental methods.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

As a result of breakthroughs in genome sequencing, we now

have access to a huge amount of genomic data from a diverse

selection of organisms and environments. However, in order to

realise the full potential of this resource we have to be able to

convert genomic sequence data into biological knowledge. The

first step in this process involves the prediction of genes, which

in turn permits some level of functional annotation using do-

main predictions, homology or orthology. In essence this pro-

duces a �parts list� of genes for that genome, however in order

to understand the complexity encoded within we need to un-

cover which of these parts function together and how. This

process is best conceptualised as building a network: the gene

predictions give us the parts list (nodes) and the next step is to

discover the interactions (edges) connecting them. The most di-

rect way to do this is to experimentally determine which genes

interact and how, but this is an expensive process in terms of

time and resources and may not be possible for some organ-

isms. Therefore, computational methods have been developed

to predict functional interactions between genes, either based

on genomic sequence alone or in combination with experimen-

tal data. In this review, we will discuss the role of computa-
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tional methods in the construction of biological networks

and discuss the current methods available.

1.1. Experimental methods for determining network structure

The use of the word �network� has only become common in

molecular biology in recent years and reflects a change in the

scale of experimental data available rather than the birth of

an entirely novel concept. The classical framework for organ-

ising and presenting biological models has been the pathway.

The traditional approach to building such a pathway would

start with a particular phenotype, for example the ability to

utilise a particular metabolite, for which a genetic screen could

be designed to identify the genes involved. Having identified

the components of the system a large variety of techniques

can be employed on a gene-by-gene basis, usually in a hypoth-

esis-driven manner, to determine which interact, how and,

where possible, in what order. One of the earliest successes

of this approach was the discovery of the lac operon and the

means by which it is regulated [1] and has since been the dom-

inant paradigm in molecular research [2].

Facilitated by advances in miniaturisation and robotics,

some of the classical techniques used to pick apart interactions

have been scaled up for application at the genome-wide level.

For instance the yeast two-hybrid method used to detect phys-

ical interactions between proteins has now been applied on a

genome-wide scale in a handful of organisms [3–8]. Similarly,

affinity purification methods have been coupled to high-

throughput mass spectrometry to uncover the composition of

protein complexes in human [9], yeast [10–12] and Escherichia

coli [13]. The construction of gene deletion libraries in yeast

[14] and RNAi libraries in Caenorhabditis elegans [15], have al-

lowed the construction of genetic interaction networks. In

addition to increasing the throughput of existing methods

many novel methods have been developed to map biological

networks. One example of this is the development of micro-

array technology which has allowed the parallel measurement

of transcript levels [16], thus allowing the construction of gene

co-expression networks [17].

One of the major advantages that these high-throughput ap-

proaches offer over the classical methods is the broader scope

that they bring. Rather than considering only the components

identified to be responsible for a particular phenotype many

more are considered, allowing the detection of cross talk be-

tween different pathways and the characterisation of multi-

functional proteins [18]. However, this increased coverage

comes at the expense of resolution. Until now we have used
blished by Elsevier B.V. All rights reserved.
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the word �edge� to describe any relationship between a pair of

nodes, however the exact nature of this relationship can vary

widely. For example, in a genetic interaction network two

genes are linked by an edge if one gene influences the pheno-

typic effects of the other [19]. For some pairs of genes in this

network the edge might represent a physical interaction, for

others it might represent the phosphorylation of one protein

by the other and for other pairs it might merely mean that both

genes function at opposite ends of the same pathway. The

differences between these edges can be thought of as differences

in resolution, at a low level of resolution we know that

the genes interact and at higher levels of resolution we

know how. Recently efforts have been made to formalise the

description of these edges [18,19]. An ontology proposed by

Lu et al. provides not only a controlled vocabulary to describe

the edges, but also a hierarchical relationship between the

different edge types [18]. The depth of an edge in this hierarchy

can be thought of as its resolution, edges near the root are

low and those at the tips are high (see Fig. 1). It is also

important to be able to distinguish between functional and

non-functional interactions. Non-functional interactions are

those that when disrupted have no phenotypic effect and are

due to either false positives in the experimental method or

biological noise.

If we now consider the networks derived from high-through-

put methods in this light, we can see that they all detect differ-

ent edge types with different resolutions. For instance the yeast

two-hybrid and affinity purification methods both detect phys-

ical interactions between proteins. The former mostly detects

direct binding between proteins, although may include some

indirect interactions [20]. Affinity purification methods on the
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Fig. 1. An adapted version of the edge ontology proposed by Lu et al. [1
interaction (edges). Different methods of detecting and predicting interactio
predict interactions based on genomic sequence alone yield low resolution p
other hand, detect a mixture of direct binding associations

and indirect complex associations. In neither case can these

methods distinguish between functional and non-functional

interactions. Genetic interaction methods can determine which

interactions are functional with respect to a certain phenotype,

but remain poorly resolved with respect to edge type. In con-

trast to the networks generated by high-throughput methods,

those determined by classical methods have many different

types of nodes (genes, transcripts, proteins, metabolites, etc.)

and a huge variety of edges (Fig. 1) and generally only include

functional interactions. In addition to the number of edge

types, the level of description of these edges is far higher, with

information available on the direction of these edges and even

aspects such as binding affinity and reaction rate. Moreover,

classical pathways often contain spatial and temporal informa-

tion that allows a hierarchical structure to be imposed on the

network. As technology continues to improve, the cost of the

trade-off between coverage and resolution will decline, allow-

ing high-throughput methods to create richer descriptions of

network structure. In the meantime however, computational

methods will continue to play an important role in determining

the structure of biological networks.

1.2. The role of computational methods in determining network

structure

Computational biology currently contributes to the under-

standing of biological networks in three main areas: (i) gener-

ating predictions of interactions, (ii) determining which

interactions are functionally relevant and (iii) integrating dif-

ferent interaction data to provide richer and higher resolution

network representations.
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Fig. 2. Experimentally derived interactions are not equally distributed across the tree of life. The inner ring (blue) shows the number of physical
protein–protein interactions for each species contained in the STRING7 database [69]. The middle ring (green) shows the number of microarray
experiments, the basis for co-expression networks. The outer ring (red) shows the number of Pubmed abstracts that mention this species, providing
the basis for collections of manually-curated interactions. This tree was created using iTOL [73], note that in order to display the full range of data the
colour intensity is on a log-scale.
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Since the publication of the first whole bacterial genome se-

quence [21] both the cost of sequencing and the time taken to

do so have dropped by orders of magnitude, to the point

where we now have the genome sequences of hundreds of

organisms [22]. Over the same period, however, the phyloge-

netic distribution of experimentally confirmed interactions

has failed to spread much beyond a handful of model organ-

isms (Fig. 2). This is partly due to the fact that a whole gen-

ome sequence is often a prerequisite for the high-throughput

methods of interaction detection. However, in addition to this

natural lag, there are many more technical barriers to the

application of high-throughput methods of interaction detec-

tion. Currently the only requirement for an organism to be se-

quenced is that enough source material is available for

sequencing, meaning that only unculturable prokaryotes are

unamenable to whole genome sequencing [23]. In contrast,

most of the methods of detecting interactions require signifi-

cant investments of time and resources before they can be

transferred to another organism. Many of the high-through-

put methods mentioned above require the construction of

large libraries of gene deletion mutants or fusion proteins,
which prevents their widespread application. Similarly the

investment required to develop a microarray platform has

meant that such experiments have only been carried out in a

handful of organisms. In other cases species-specific biology

prevents the general application of a method. For instance

the methods to detect synthetic lethal genetic interactions in

yeast rely on libraries of gene deletion mutants, while in

eukaryotes RNAi is used [24]. All of these factors have lead

to a very peaked distribution of experimentally determined

interactions (Fig. 2).

Over the next few years it is likely that the need to culture

organisms for whole genome sequencing will be eliminated

[25,26], meaning that there will be many more organisms for

which complete genome sequences but no experimental inter-

action data are available. The computational methods de-

scribed below are based on evolutionary principles and

therefore do not require experimentally determined interac-

tions for each organism in order to make predictions. There-

fore, these methods can be used to reconstruct some of the

networks in these organisms [27,28] and indeed will become

more powerful as additional genomes are sequenced.
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In addition to their limited phylogenetic coverage, experi-

mental methods are also limited with respect to the proportion

of a given species network that they cover. This is partly due to

the dynamic nature of the networks being examined, with

many interactions present only in certain cellular, developmen-

tal or environmental contexts [29]. Therefore to achieve full

coverage of the network, one would face the daunting task

of have to experimentally sample the network over all of these

contexts. On the other hand, by detecting relationships be-

tween genes that are evolutionarily conserved, computational

methods implicitly include all contexts in which this interaction

functions.

The coverage of these networks is also limited by the techni-

cal shortcomings of the methods used [30]. For example, it is

estimated that only 50% of the yeast and 10% of the human

physical protein–protein interactions have been mapped [31].

This is partly due to the undersampling described in the previ-

ous paragraph, however is also due to technical aspects of the

methods used. For example the false negative rate (the propor-

tion of true interactions missed by the method) in yeast two-

hybrid datasets ranges from 75% in C. elegans to 90% in Dro-

sophila melanogaster, up to 85% of which are missed due to

systematic errors in the technique [32]. On top of this, many

of the interactions determined by these methods, although real,

have little or no functional impact on the organism. The inter-

actions determined by computational methods are conserved

and therefore should only contain functional interactions.
2. Computational methods for predicting interactions

Most computational methods for predicting interactions

from genomic sequence are based on the rationale that if genes
1 2 3 4
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Fig. 3. Computational methods for predicting protein interactions. (a) Ph
(d) sequence co-evolution.
functionally interact, then they are likely to have a shared evo-

lutionary history. This can be detected as correlations between

different aspects of their evolution in multiple lineages.

2.1. Phylogenetic profiles

Perhaps the simplest correlation that can be used is the cor-

relation between the phylogenetic distributions of two genes.

The justification for this method is that if two genes are func-

tionally related, they should tend to be co-inherited, as the loss

of either one of these genes would be detrimental to that par-

ticular function [33,34]. This pattern of inheritance can be de-

tected by creating a vector of the presence or absence of a

particular orthologous group across a set of species (Fig. 3a).

These vectors can then be clustered together to identify genes

that have similar inheritance profiles and are therefore likely

to be functionally related. In addition to the direct detection

of functional interactions between genes, phylogenetic profiles

can also be used to indirectly infer interactions between genes.

By looking for anti-correlated phylogenetic profiles, Morett

et al. could detect analogous proteins, functionally equivalent

but non-homologous, in different species [35]. As well as

detecting pairwise relationships between genes, phylogenetic

profiles can be used to detect higher-order relationships. By

comparing the profiles of three genes at a time, Bowers et al.

were able identify logic relationships behind the presence or

absence of genes across genomes [36]. For instance, the func-

tion of a certain gene might depend on the function of two

other genes, in which case that gene would only be seen in gen-

omes where both genes are present.

As the number of fully sequenced genomes increases this

method will become more powerful, however methods will

need to account for the phylogenetic biases in these genomes.

The whole genome sequences that are present in the public dat-
Y

X

ylogenetic profiles; (b) genomic neighbourhood; (c) gene fusion and
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abases are biased towards industrially and medically relevant

organisms. As a consequence many more genomes have been

sequenced from some parts of the tree of life (for example

the c-proteobacteria) than from others. This raises the problem

that the correlation detected in the presence/absence profile of

a pair of genes may be due to their shared ancestry rather than

any selective pressure. In other words not enough time has

elapsed since these species diverged for one or other or both

of these genes to be lost in a lineage. Therefore correlations be-

tween the profiles in closely related sequences are less informa-

tive than those from distantly related species. Perhaps the

strongest evidence that a pair of genes are functionally linked

is if the same pair of genes are lost (or gained by horizontal

gene transfer) together in several lineages independently [37].

By using a phylogenetic tree in combination with phylogenetic

profiles, the detection of functional links can be improved both

in terms of sensitivity and specificity [37]. As methods to con-

struct phylogenetic trees for large numbers of species improve

[38], the combination of phylogenetic trees and profiles are

likely to play a large role in the prediction of functional inter-

actions.

The type of interaction detected by this method are similar

to those detected in genetic interaction experiments, which

look at the phenotypic effects of double gene deletion mutants

relative to the effects of the single gene mutants [14]. The dif-

ference between the interactions detected is that genetic inter-

action experiments only assay the interactions for a specific

phenotype, for example growth rate, whereas those detected

by the phylogenetic profile method detect those responsible

for overall fitness. Phylogenetic profiles of genes can be also

coupled to phenotypic information of the species in which they

are found. Korbel et al. employed literature mining to connect

genes to certain phenotypic properties, many of which would

not have been revealed by profiling or genomic neighbourhood

methods [39].
2.2. Genomic neighbourhood

The genomic neighbourhood methods can be seen as an

extension to the phylogenetic profiles, in addition to looking

for a tendency for genes to be co-inherited they also look for

a tendency to cluster together on the genome (Fig. 3b). Simi-

larly the reasoning behind these methods is that there is a selec-

tive pressure to keep these genes close on the chromosome,

indicative of a functional relationship between the genes in a

cluster. Just what this selective pressure is and what it tells

us about the possible interactions will be discussed below,

but first we will describe the approaches used to detect such

clusters.

The goal of genomic neighbourhood methods is to detect

clusters of genes that recur across multiple genomes. This is

more difficult than it may seem at first glance due to the fact

that the order of genes within a cluster is not necessarily

important for its function and therefore there can potentially

be disrupted by shuffling within the cluster [40,41]. Therefore,

assuming that you have a starting set of clusters which you

think might be conserved, to look for the conservation of these

clusters in the genome of another organism one would have to

look for each permutation of the genes within these clusters.

With the number of whole genome sequences currently avail-

able, this task would be very computationally intensive. How-

ever, if we do not have a starting set of clusters the task
becomes virtually impossible. Therefore, methods have been

employed to reduce the computational complexity of the prob-

lem. The first methods defined gene clusters for each genome

individually and then looked for pairs of orthologs that were

seen in the same cluster in different genomes [42]. This method

uses some of the properties of operons, the most common type

of conserved gene clusters, to define the starting set of clusters.

The intergenic distance between a pair of genes within an op-

eron is on average much shorter than at the boundary of an

operon [43], therefore the starting sets of genomic neighbour-

hoods were defined as set of genes on the same strand, uninter-

rupted by genes on the opposite strand, where the maximum

intergenic distance between a pair of genes was 300 nucleotides

[42]. Another way of avoiding the computational cost of con-

sidering all permutations is to only consider pairs of genes at a

time, either direct neighbours [44,45] or allowing for a small

number of intervening genes [46,47]. This has the added advan-

tage of removing the requirement that the genes are on the

same strand, allowing the detection of conserved genomic

neighbourhoods other than operons. Korbel et al. found that

pairs of genes on opposite strands can be conserved together

over long evolutionary timescales and are likely to form regu-

latory circuits, where one gene is a transcription factor that

auto-regulates its own synthesis and also regulates its con-

served partner [46].

It has been shown that recently formed operons are much

less likely to contain functionally related genes than more an-

cient ones [48] and therefore, similar to the methods based on

phylogenetic profiles, it is important to be able to distinguish

between gene clusters that recur due to shared ancestry and

those that are maintained by selection [33]. One way to distin-

guish between these scenarios is to remove closely related spe-

cies from the comparison, thus ensuring that a sufficient

number of recombination events have occurred to disrupt a

non-functional cluster [45,47]. For metagenomic data, where

the exact taxonomic origin of the sequence is unknown, this

method is impossible. Therefore a method was developed that

downweights evidence from closely related clusters relative to

those that occur over longer distances, thus permitting the pre-

diction of thousands of novel interaction [44].

As an extension of the phylogenetic profiles method, geno-

mic neighbourhood methods also predict functional relation-

ships between proteins. The exact nature of this functional

relationship can be inferred from the selective pressure acting

to maintain the cluster [41,48]. Under Fisher�s model of gene

clustering, the increased proximity of functionally related

genes reduces the chance that recombination will break apart

a pair of co-adapted alleles [33,49]. In this case, the conserva-

tion of a cluster merely tells us that the genes function to-

gether, but gives no hint as to the nature of this interaction.

A more specific prediction is derived from the theory that gene

clusters are maintained by the need to coordinately regulate

the expression of the genes within. There are several mecha-

nisms by which this can be achieved. In prokaryotes and some

eukaryotes it takes the form of operons, where a promoter

drives expression of a single transcript containing several

genes. In eukaryotes coordinate regulation of gene clusters

may be achieved through the remodelling of local chromatin

structure [50], or bi-directional promoters [51]. Co-regulation

of expression allows sets of genes to be activated simul-

taneously, a requirement for many functional interactions.

For instance, the lac operon is activated by the presence of
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allolactose, activating proteins involved in the uptake and

metabolism of lactose [1]. In addition to being on the same bio-

chemical pathway, some operons, especially the more con-

served ones, contain members of the same protein complex

[45]. It is thought that translation from a single transcript aids

complex formation by reducing stochastic differences in pro-

tein levels [52] and increasing local protein concentrations

[45]. However, it should be noted that the functional interac-

tion implied by co-expression is not always be so clear cut.

For instance, some conserved operons contain a mixture of

ribosomal proteins and enzymes of central metabolism, the

link being that expression levels of these genes correlate with

growth rate [47].

2.3. Gene fusion

An extreme case of gene clustering occurs when a pair of

genes becomes fused into a single open reading frame

(Fig. 3c) [53,54]. Early examples of such genes came from

the comparison of bacterial and fungal genomes. For instance

the alpha and beta polypeptides of tryptophan synthetase in

E. coli are observed as a single gene in S. cerevisiae [55]. In

addition to permitting the tight co-regulation of expression,

gene fusion is thought to increase the efficiency of biochemical

and signalling pathways by coupling together successive steps

[54]. As a result the interactions predicted by gene fusion meth-

ods are somewhat more specific than those predicted by most

methods. For instance, rather than merely predicting that two

genes are likely to be on the same pathway, gene fusion meth-

ods predict that the genes are likely to carry out successive

steps along a pathway [56]. Moreover, some gene fusion events

have occurred independently in multiple lineages, an indicator

of positive selection [56].

2.4. Sequence co-evolution

The methods described so far have examined the existence

and genomic location of genes to detect the co-evolution of

functionally related genes. Another collection of methods go

into more detail to look at the level of sequence to detect cor-

relations between sequence changes in different genes [57,58].

These methods are based on the observation that the phyloge-

netic trees of proteins that physically interact are more similar

to each other than expected [59]. This pattern is thought to be

caused by the process whereby mutations in a gene that are

detrimental to an interaction can be compensated for by muta-

tions in its interacting partner, implying a relatively tight func-

tional linkage. Alternatively this pattern may be caused by a

more general trend, whereby functionally related proteins

evolve at more similar rates than unrelated ones, in which case

the functional linkage may be more loose [60].

The methods used to detect this pattern all take the same

general approach to quantifying the similarity of phylogenetic

trees (Fig. 3d). Firstly a multiple sequence alignment is con-

structed for each gene family under consideration, from which

an evolutionary distance matrix is derived. These matrices are

then compared to each other, the similarity between matrices

quantified by Pearson�s correlation coefficient, and those with

high coefficients are likely to contain interacting proteins

[57,58]. As it is described this method only works reliably on

single-copy orthologs, however given that the divergence of

binding specificities among duplicate genes is an important

source of functional complexity, it is also important to be able
to deal with families that contain paralogs [61]. In order to do

so, an additional step has to be carried out where the distance

matrix family of one family is aligned to the other [61].

As with all the methods examined so far these methods have

to account for correlations that arise due to shared ancestry

rather than selection [62–64]. One approach to this has been

to construct a distance matrix containing the speciation signal,

for example from a tree built using 16S rRNA sequences,

which can then be subtracted from each of the distance matri-

ces, improving the quality of the predictions [63].
3. Integrating computational predictions and experimental data

While these methods are important in that they permit us to

predict functional interactions using genomic sequence alone,

in reality they provide a relatively low-resolution picture of

biological networks. In order to increase the resolution and

provide more detailed representations of biological networks

they must be combined with each other and with other datasets

of experimentally derived interactions [19,65–69].

The first advantage of combining datasets is that it can im-

prove the accuracy of the network. For instance, an interaction

with a low confidence score in any one dataset may be up-

graded if seen in another dataset, thus reducing the false neg-

ative rate. For this reason it has been suggested that the raw

data from interaction experiments are reported rather than just

the ones above a confidence threshold [31]. Similarly the false

positive rate of a method may be reduced by using the net-

works derived by other methods to filter out spurious interac-

tions. This approach was recently used to derive a network of

protein kinases and their targets [70]. Thousands of protein

phosphorylation sites have been identified by high-throughput

in vitro experiments, allowing the construction of consensus

motifs for many of the known kinases. However, not all pro-

teins containing such a motif are true targets of a kinase, as

the contextual factors such as protein localisation, coexpres-

sion and structure can all determine whether a motif is a true

target. By using the STRING network [69] to filter out the

interactions that were unlikely to be functional, thus implicitly

incorporating this contextual information, Linding et al.

achieved a 2.5-fold increase in the accuracy of the phosphory-

lation network.

As well as creating more accurate representations of net-

works, the integration of data will allow us to create richer rep-

resentation of biological networks, approaching the level of

detail created by classical approaches. For instance by inte-

grating the predictions derived from the methods described

in this chapter we can infer the likely nature of a functional

interaction between genes (and vice versa infer which experi-

mentally derived interactions are indeed functional). More-

over, for some of the experimentally derived networks, such

as genetic interaction, phosphorylation and transcription fac-

tor networks, the edges are directed which allow them to be or-

dered into pathways [19]. A complete representation of

biological networks also requires that they are expanded be-

yond genes and their products to include small molecules [71].

As these richer network representations are integrated with

temporal and spatial information we will achieve a better

quantitative understanding of biological systems, approaching

the level of the classically defined pathways [29,72]. However,
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in order to fully exploit these data we have to develop compar-

ative methods that go beyond the genome sequence to com-

pare networks between species.
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