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Abstract--ln this work, the general upper bound on the linear complexity given by Key is im- 
proved for certain families of nonlinear filter functions. Also, a new class of cyclotomic cosets whose 
degeneration is relatively easy to prove in several conditions is introduced and analysed. (~) 2000 
Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

A common type of keystream generator, the so-called nonlinear filter generator, consists of a 
nonlinear function applied to the stages of a linear feedback shift register (LFSR) of length L. 
To provide secure encryption, the key stream must be unpredictable. The linear complexity of a 
sequence is defined as the length of the shortest linear feedback shift register that  can be used 
to generate it. Since some algorithms make it possible to determine the linear recursion of a 
sequence having linear complexity l just from observing 21 consecutive bits of the sequence [1], 
the linear complexity of a sequence is a widely accepted measure of its unpredictability. 

Linear complexity has been studied by various authors [2-4]. Two remarkable works in the 
s tudy of the linear complexity of the resulting sequences are Key's paper [5] and Rueppel's root 
presence test for the product of distinct phases [6]. Although it does not appear explicitly in [5], 
the following result is generally known as Key's upper bound on the linear complexity. 

"The linear complexity of the sequences obtained by any kth-order filter function is upper 
bounded by ~-~=1 ( L ~ ,, l ]"  

On the other hand, Rueppel's root presence test for the product of distinct phases [6] al- 
lows the analysation of the contribution of every cyclotomic coset to the linear complexity of 
the sequences obtained by any kth-order filter function f with a single maximum order term 
Sn+toSn+ta . . .  Sn+tk_~. This test can be stated as follows. 

"Let ~ E GF(2  L) be a root of the minimal polynomial of the sequence produced by the LFSR 
of length L. Then ae = a2eo+2"~+..-+2 ~k-a ' 0 <_ e0 < et < . . .  < ek-1 < L is a root of the minimal 
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polynomial of the sequence generated by f if and only if the determinant 

A e  ~-  

oLtO2~° o~t12¢° . . . o / t k - 1 2  ~'° 

o/ to2Cl /~ t12  cl . . . O~tk-12~1 

oLtO2 c ~ - 1  O l Q 2  ' : k - 1  . . . o ~ t ~ - 1 2 ' : k - 1  

0." 

If the determinant Ae equals zero, then the corresponding cyclotomic coset is said to be de- 
generate for the function f .  The determinant Ae depends on three factors: the nonlinear filter 
function f ,  the minimal polynomial of the maximal-length LFSR, and the cyclotomic coset whose 
contribution is analysed. 

This work provides new upper bounds on the linear complexity of binary sequences produced 
by certain families of nonlinear filter functions with a single maximum order term. The bases of 
the presented results are the root presence test and a new broad collection of cyclotomic cosets 
that  are introduced and studied in Section 2. The degeneration of these new cosets is easily 
proved for certain families of nonlinear filter functions. That  fact, in Section 3, is used to obtain 
new upper bounds for the linear complexity of the resulting sequences that  improve upon Key's 
upper bound. The most remarkable contribution of the present work is that  the proved results 
provide a practical and simple recommendation for the design of secure filter generators. 

2.  R E G U L A R  C O S E T S  

In this section, we introduce and analyse a new class of cyclotomic cosets, the so-called regular 
cosets, which constitute the starting point of the work. Some fundamental notation and a few 
definitions are introduced before the results can be stated and proved. 

Since our concern is with binary sequences, most of the expressions discussed in this work will 
be over GF(2) ,  the finite field with two elements• 

Let (L, k)c denote the C t h  c o m m o n  divisor of L and k. 
It is well known [7] that  the integers in {1, 2 , . . . ,  2 L - 2} that  are relatively prime to 2 L - 1 

form a group under multiplication modulo 2 L - 1, and the subset {1,2, 22 , . . . ,  2 L- l}  forms a 
subgroup. This subgroup, when multiplied by any other element of the group, yields a so-called 
proper coset. In addition to these proper cosets, there are always one or more improper cosets 

that  result from multiplying all the elements of the subgroup by an integer which is not relatively 
prime to 2 L - 1. The set of all cosets (proper and improper) of the multiplier subgroup constitutes 
the so-called cyclotomic cosets modulo 2 L - 1. 

Let coset e denote the cyclotomic coset {e, e2, e22 , . . . ,  e2 L- l}  (modulo 2/` - 1) that  contains 
the integer e. Note that  in the corresponding binary representation, coset e consists of all the 
successive circular shifts of any of its L-bit strings. Throughout  this work, the decimal form of 
the cosets' elements 2 e° + 2 el + • • • + 2 e~-l, 0 _< e0 < el <: .." < ek-1 < L, or their binary 

representation as L-bit strings of Hamming weight k will be used indistinctly. 

DEFINITION. A cyclotomic coset modulo 2 L - 1 whose cardinality is less than L is called a regular 

coset. In other words, a regular coset e is a set of  the form (e, e2 , . . . ,  e2 ra- 1 } (mod 2 L - 1), where 
the smallest positive integer m such that e2 'n - e (mod2 L - 1) is smaller than L. 

The next result establishes a simple relation between regular and improper cosets. 

LEMMA 1. Every  regular coset is an improper coset. 

PROOF. Let us proceed by contradiction by assuming that  a regular coset e is a proper coset. 
Thus, since e would be relatively prime to 2 L - 1, then for all m < L, we have that  e(2 m - 1) ~i 0 
( m o d  2 L - 1), and the coset e would not be a regular coset. | 

The converse of Lemma 1 may not be true (see Example 1). 
One of the most important points of any regular coset is that  its elements can be represented 

as binary strings of length L containing k ones whose period is smaller than L. Regular cosets' 
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elements are called regular strings• This name is due to the regular distribution of the k ones in 
the corresponding binary representations• 

The next remark is useful for characterizing regular strings• 

REMARK 1. Note that  the period of the ones in any regular string strictly divides gcd (L, k). 
Concretely, every regular L-bit string of Hamming weight k is composed of (L, k)~ repetitions of 
the same nonregular L / ( ( L ,  k)~)-bit string of Hamming weight k / ( L ,  k)~, and belongs to a regular 
coset whose cardinality is L / ( L ,  k)c. Thus, if L and k are relatively prime, there does not exist 
any regular coset. On the other hand, if L and k have some factor in common, then each common 
divisor of L and k, (L, k)~, determines a different collection E c of regular strings e of the form 

e = 2  e ° + 2  e 1 + . . . + 2  e~-l, such t h a t 0 < _ e 0 < e l < . . - < e k _ l < L ,  

k 
for all i =O, 1 , . . . ,  ( L , k )  c 1, and for all j = l , 2 , . . . , ( L , k ) c - 1 ,  

L 
ei+j(k/(L,k),:) = ei + j (L, k)c" 

In particular, one of those strings, e c, is considered here the representative element of the 
collection E c, and verifies the following expression: 

e ~ = 2eo + 2 el + . . .  + 2 ~k-1, 

k 
for all i = 0 , 1 , . . . ,  (L,k)c 

such that  0 < e0 < el < . . .  < ek-1 < L, 

1, and for all j = 1 ,2 , . . . , (L ,k )~  - 1, 

L 
ei = i and ei+j(k/(L,k)~ ) = i + j (L, k)c | 

From the precedent remark, a simple characterization of e c can be derived• 

LEMMA 2. Let  L and k be integers. Then, the regular string e c can be expressed as the integer 

eC= (2k/(L,k),:-- l )  2L--1  

PROOF. From the previous remark, it is easily deduced that  the binary representation of e c is 
composed of (L, k)c repetitions of the same L / ( L ,  k)cbi t  string with k / ( L ,  k)~ consecutive ones. 
The trick of the proof is that  the contribution of the jth string (j = 1, 2 , . . . ,  (L, k)c) to the 
integer e ~ is given by (2 k/(L'k)~ - 1), 2 (j-1)(L/(L,k)`:), for all j = 1, 2 . . . .  , (L, k)c. Since 

2 L/(L,k)c (2 L-L/(L,k),: - 1) 

1 + 2 L/(L,k)¢~ - 1 

is the sum of the (L, k)c first terms of a geometric progression with ratio 2 L/(L'k)~, then 

eC =_ (2k/(L,k)c _ l )  2L--1  | 

From the particular structure of regular strings, it may be easily deduced that  there exists a 
1-1 correspondence between each regular L-bit string of Hamming weight k determined by (L,k)c 
and each nonregular L / ( L ,  k)c-bit string of Hamming weight k / ( L ,  k)~. This idea leads us to next 
proposition that  provides the total number of distinct regular strings related to a common divisor 
of L and k. 
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PROPOSITION 1. The number of distinct regular L-bit strings of Hamming weight k belonging 
to the collection E c is given by the recursive expression 

L 

(L,k)~ 

where D = {d : (L, k)d > (L, k)c such that (L, k)c { (L, k)d}, and if (L, k)c = gcd(L, k), then 

L 

k ' 
gcd(L, k) 

In the expression of this last result, for every common divisor (L, k)c, the total number of 
regular strings related to each common divisor that is a multiple of (L, k)c is subtracted to 
obtain the number of regular strings belonging to the collection E c. The recursive formula of 
Proposition 1 may be easily expressed in a nonrecursive way by means of the prime factorization 
of the greatest common divisor of L and k. 

PROPOSITION 2. Let gcd(L,k) m ~,. = l- ' [ r=l  Pr be the prime factorization of the greatest common 
divisor of L and k. Then, the total number of distinct regular L-bit strings of Hamming weight k 
is given by 

Pj 
E (--l){J{+l 

JC(1,2  ..... m} 

3~g pj 

PROOF. The total number of distinct regular L-bit strings of Hamming weight k is given by 
= l-[r=1 Pr , then every common divisor of L and k is a product of ~-~c[EC[. Since gcd(L,k) m e~ 

powers of prime numbers pr. Then, by Proposition 1, we have that 

c ~=I ~ .  {e:(L,k),,=l-ij~. ' It Pj , 
IJl=2,fj<_ej} 

{d:(~ k),,=l-ITL p~", 
f,.<e,.} 

= ~  + 

r--1 'P--rr 

+ . . . +  

Pj 

z 
JC_{1,2 ..... m} 

IJl=2 3HjPJ 

~__rllPr [1- ( r ) +  + 
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Thus, since 1 - (~) + (~) . . . .  + ( -  1)~-1 ( ~  1) = ( -1 ) r -  1, the number of regular strings is given 

/ r~-I JC_(1,2 ..... m} 
Pr [Jl=2 3~jp j 

by 

+ . . . + ( - 1 )  m-1 

r~----1 Pr 

Finally, certain values of L and k allow us to obtain an extremely simple expression of the total 
number of regular strings, that  will be useful in the next section to establish a tight and suitable 
upper bound on the linear complexity of certain sequences. 

COROLLARY 1. / f  the greatest common divisor of L and k is the power of a prime number p, then 
the total number of distinct regular L-bit strings of }lamming weight k is given by the binomial 
coefficient 

L !). 
The previous results are used in the next section to provide upper bounds on the linear com- 

plexity of sequences produced by certain nonlinear filter generators. This section ends with an 
example. 

EXAMPLE 1. Consider the case L = 12, k = 6. First, note that  not all the improper cosets are 
regular cosets. A counterexample of this could be the cyclotomic coset {63, 126, 252, 504, 1008, 
2016, 4032, 3969, 3843, 3591, 3087, 2079}, that  is improper because 63 is not relatively prime to 
212 - 1, but that  is not regular because the coset's cardinality is 12. 

The numbers 12 and 6 have three common divisors; they are (12, 6)1 = 2, (12, 6)2 = 3, and 
(12, 6)3 -- 6, so there are three different collections of regular strings, represented, respectively, 
by the elements e 1 = 20 + 21 + 22 ~- 26 + 27 -b 28 = 455, e 2 = 20 q- 21 q- 24 + 25 + 28 + 29 = 819, and 
e 3 = 20 q- 22 -b 24 q- 26 + 28 q- 210 = 1365. From Proposition 1, the number of distinct regular 
strings in each collection is given, respectively, by 

and 

These collections are composed of the following regular cosets. There are three regular cosets 
in El ;  they are {455,910, 1820, 3640, 3185, 2275}-~{000111000111, 001110001110, . . . ,  100011100 
011}, {715, 1430, 2860, 1625, 3250, 2405} ~_ {001011001011, 010110010110, . . . ,  100101100101}, 
and {1235, 2470, 845, 1690, 3380, 2665} ~- {010011010011, 100110100110, . . . ,  101001101001}. 

Belonging, respectively, to E 2 and E 3 are the regular cosets {819, 1638, 3276,2457} ~ {0011001 
10011, 011001100110, 110011001100, 100110011001} and {1365, 2730} _~ {010101010101, 1010101 
01010}. 

Thus, by Proposition 2, it is known that  the total number of regular 12-bit strings of Hamming 
weight 6 is (63) + (4) _ (21) = 24. | 
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3.  U P P E R  B O U N D S  

In this section, the root presence test is applied to regular cosets introduced in the last section, 
establishing some conditions under which the corresponding determinants are equal to zero. In 
this way, the last results on the numbers of regular cosets allow us to derive new upper bounds 
on the linear complexity of different families of nonlinear filter functions with a single maximum 
order term. 

The next result provides a slight improvement of Key's upper bound for a large range of 
nonlinear functions. 

THEOREM 1. Let f be a nonlinear filter function whose single maximum order term is the 
product Sn+toSn-btl . . .  8n+t~,_ I and a E GF(2 L) be a root of the minimal polynomial of  the 
sequence produced by the LFSR of length L. I f  k[L and there exist two different integers i , j  E 
( 0 , 1 , . . .  ,k - 1} such that a t ' , a  q E GF(2L/k),  then the linear complexity of the sequences 
produced by f satisfies the upper bound 

PROOF. According to the hypothesis, at~,aq E GF(2L/k),  so we have that  a t~ =_- a t~21"/k =_ 
a t i 2  2 L / k  . a t i 2  ( k - l ) L / k  ~ . ---- • • -- in GF(2 L) and a tj - o~ tj2~/k = aq  22L/k . . .  - at~ 2(~-~)L/k in 

GF(2L).  Consequently, if the root presence test is applied to the regular coset e, where e is of the 
form e = 20 + 2 L/k + 22L/k 4-.. .  4:-2 (k-1)L/k, then the particular determinant Ae equals zero since 

it has two columns linearly dependent over GF(2L). This fact implies that  the regular coset e 
does not contribute to the linear complexity of f and the Key's upper bound may be diminished 
in its cardinality, that  is L/k .  | 

EXAMPLE 2. Now consider L = 8, k = 4, the product sn sn+17 Sn+lS Sn+Sh, and a E GF(2  s) a 
root of the minimal polynomial of a sequence produced by the LFSR of length 8. Since 418 and 
a °, a s5 E GF(22),  then the regular coset corresponding to the common divisor 4, {85, 170} is 

degenerate for f .  | 

Now, by using Proposition 2, the upper bound of Theorem 1 can be improved for a family of 
filter functions that  satisfy stronger restrictions. 

THEOREM 2. (MAIN THEOREM). Let f be a nonlinear filter function whose single maximum 

order term is the product s~+to sn+t~ . . .  sn+tk_ ~ , a E GF(  2 L) be a root of the minimal polynomial 
of the sequence produced by the LFSR of length L, and gcd(L, k) m e = I-I~=1P~' be the prime 
factorization of  the greatest common divisor of L and k. I f  for every r E {1, 2 , . . .  ,m} ,  there 
exist k/p~ + 1 different values of i E {0, 1 . . . . .  k - 1} such that a t' E GF(2L/v" ), then the linear 
complexity of the sequences produced by f satisfies the upper bound 

k 

t=l JOB,2 ..... m} 

L ) J~k pj . 

3~J pj 

PROOF. Consider all the corresponding regular cosets related to each common divisor of L and k. 
By Remark 1, we know that  for every regular coset e corresponding to a prime number Pr or one of 
its multiples, for all i = 0, 1 . . . .  , k / p r -  1, and for all j = 1, 2 , . . . ,  Pr - 1, ei+j(k/p,) = ei + j ( L / p r )  • 
On the other hand, by hypothesis, we have that  for every r E {1, 2 , . . . ,  m}, there exist k/pr + 1 
different values of i E (0, 1 , . . . ,  k - 1} such that  a t` E GF(2L/p"), so the determinant Ae can be 
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computed by expanding it along k - k/pr - 1 columns. In this way, A e may be written as a linear 
combination of adjuncts of order k/pr + 1, every one with two identical rows. Consequently, 
every Ae equals zero and no regular coset contributes to the linear complexity of the sequences 
produced by f .  | 

When the relation between L and k is of a particular form, the hypothesis of the previous 
theorem can be easily relaxed to involve a broader family of nonlinear functions. This is stated 
in the following result that makes use of Corollary 1. 

COROLLARY 2. Let f be a nonlinear filter function whose single maximum order term is the 
product sn+to s,~+tl ... sn+t~_~, a E GF(2 L) be a root of the minimal polynomial of the sequence 
produced by the LFSR of length L, and L and k such that their greatest common divisor is the 
power of a prime number p. If for every i = 0, 1 , . . . ,  k/p, the power a t~ E GF(2 L/p) , then the 
linear complexity of the sequences produced by f satisfies the upper bound 

By using simple tools of combinatorial calculus, it is easy to prove that the number of functions 
under the conditions of Theorem 2 is very large. 

PROPOSITION 3. The number of products under the conditions of Theorem 2 is 

m k 
2 L - - 2  - ~ - -  

r= l  Pr 

k _ l _ f i  k 
r=l Pr 

2 L / p "  - -  2 . 

EXAMPLE 3. Let L = 8, k = 4, a be a primitive element of GF(2S), GF(24)= {0, 1, a 17, O~ 34, OL 6s, 
C~136, C~85 C~170, dkl02, O~204, O~153, OL51, c~lST, ~119, O~238, d~221} and f be any nonlinear filter func- 

tion whose single maximum order term is one of the (135) (2~2) = 114.660 products of the set 

{{snsn+17 sn+34 sn+t3/t3 ~ {0, 17, 34}, . . . ,  {Sn+n9S,~+23s sn+221 sn+t3/t3 q~ {119,238,221}}. 
Then, by Corollary 2, the linear complexity of the sequences produced by f is guaranteed to be 
at most 

REMARK 2. From the above results, we may conclude that using nonlinear filter generators whose 
values of L (length of the LFSR) and k (order of the filter function) are not relatively prime could 
be indeed dangerous, because in that case, regular cosets described in this work could produce 
a great decrease in the linear complexity of the resulting sequences. This decrease implies not 
only the nonoptimality of generators under the hypothesis of the theorems, but also of other 
generators with the same LFSRs and similar nonlinear filter functions because the difference 
between sequences produced by both types of generators may be in only one position of a period, 
whereas the difference in their linear complexities may be high. Thus, many filter generators with 
values of L and k not relatively prime could have bad linear-complexity stability [8]. Table 1 
shows some values of L and k, and the approximate decrease of Key's upper bound derived from 
the degeneration of all the regular cosets. Note that for practical values such as L = 128 and 
k = 64, this approximate decrease is large, 10 is. Furthermore, decreases described here could be 
added to any other decrease produced by the degeneration of other kinds of cyclotomic cosets. | 

Table 1. Decrease of Key's upper bound. 

L 24 60 84 126 128 140 210 420 
k 12 30 42 42 64 70 70 210 

Decrease 988 i08 1011 1016 1018 1020 1027 1061 
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4. C O N C L U S I O N S  

This paper gives some specific conditions under which Key's upper bound on the linear com- 
plexity of nonlinear filter generators cannot be reached. The main result is based on the proved 

degeneration of a new broad collection of cyclotomic cosets introduced in this work. A slight 

improvement of Key's upper bound is presented and its effectiveness is suggested by a simple 

recommendation for the choice of the length of the LFSR and the order of the filter function 

that  is proposed as a design principle for filter generators. The problem of finding other kinds 

of cyclotomic cosets whose degeneration could be proved for the same families of nonlinear filter 

functions described here is a part of a work in progress. 
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