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GEOMETRIC APPROACH TO DISCRETE 
SERIES OF UNIRREPS FOR VIR. 

By A. A. KIRILLOV 

ABSTRACT. - We want to realize the discrete series of unirreps for the Virasoro-Bott group Vir (= the central 
extension of Diff+ (St)) in the space of holomorphic functions on the infinite dimensional Kahler manifold 
A4 = Diff+ (St )/S1. The explicit formulae are given for the action of Vir in the space of polynomial functions 
in the natural complex coordinates on M. 0 Elsevier, Paris 

RBsuM~. - Nous voulons realiser la serie discrete d’unirreps (= representations unitaires irreductibles) pour le 
groupe de Virasoro-Bott Vir (l’extension centrale de Dif f+(Sr )) dans l’espace des fonctions holomorphes sur 
la variett klhlerienne de dimension infinie M = Diff+(S’)/S’. Les formules explicites sont donnees pour 
l’action de Vir dans l’espace des fonctions polyndmiales dans les coordonnees naturelles complexes sur n/r. 
0 Elsevier, Paris 

1. We recall the complex-analytic realization of the manifold M, described in [l]. Let 
D+ := {Z E C 1 ]z] < l} and let .F denote the space of all holomorphic functions f 
on D+, which are univalent ‘, smooth up to boundary and normalized by the conditions 
f(0) = 0, f’(0) = 1. 

So, if we write 

we can consider {en} as coordinates on F which provide an embedding of this infinite 
dimensional manifold into 63” *. 

In fact, a function f E F is uniquely defined by the simple smooth contour K = f(S’). 
The set K of all contours thus obtained can be considered as a geometric realization of 
.F. It consists of all contours K surrounding the origin such that the conformal radius of 
K w.r.t. the origin is equal to 1 3. 

Now we shall construct the bijection K: -+ A4 as follows. Let f~ E F be the unique 
function with maps S1 to K (hence, it maps conformally D+ to 02 := the domain 

1 would like to express my gratitude to Peter Michor and to all the staff of the Erwin Schrodinger Institute 
for the friendly and creative atmosphere which made my staying here very agreable. 

(‘) Univalent means that f(zt) # f(~) for rt # ~1. 
(‘) The famous De Branges’ Theorem (formerly the Bieberbach Conjecture) shows that the image lies in fact 

in the bounded domain Ic,, 1 < n + 1, for n 2 1. 
(3) The last requirement is simply a reformulation of the second normalization condition above. 
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736 A. A. KIRILLOV 

containing the origin and bounded by K) and .y~c be a function which maps conformally 
D- := {Z E P’(C) / 1~1 2 1) to D;~ := the exterior domain bounded by K. 

We normalize gK by the condition !/I;(K) = m. This leaves one parameter free and it 
is easy to see that gK is defined modulo the composition (from the right) with a rotation 
z + x . eirw. The space of all such functions g forms an infinite dimensional complex 
manifold G. A generic element g E G looks like 

and {al;}: L 5 1, are natural coordinates on G 
Let finally 

(1) yfi = f;l ogx. 

The right hand side of (1) is well defined only on S1. Due to the ambiguity in the 
definition of gK, it is an element of A4 = Diff+(S’)/S’. This is the promised map 
from Ic to M: 

(2) K H ?I< modS1. 

The fact that (2) is a bijection is proved in [ 11, where it is shown, that any diffeomorphism 
y E G = Diff+(S’) can be uniquely written in the form y = f;” o gr with 
.f, 6 3, .!Jr E (3. 

Consider the map 

Diff+(Sl) -+ 3 x G : Y ++ (f-i. S-f). 

Let r be the image of this map and denote by pl; p:! its projections to the first and second 
factor respectively. Then pl is surjective, but not injective (it coincides essentially with the 
natural projection of IJiff+ ( S1) on M N 3) while r)2 is injective, but not surjective (its 
image is a real hypersurface S1 E G which consists of g E ‘Z s.t. g(S1) E K4). 

2. Our next goal would be to describe the left action of the group G on 3 and the right 
action on G. These actions are defined by 

(3) Yl . f". := f&y, $7") . y2 := .Y",-fz. 

In fact, the second formula defines the action of G only on the hypersurface 41. But we 
extend this action to the whole G by real homogeneity which in this case implies complex 
homogeneity (since for any rotation T, we have eingy = r, og, = gl.-?, the multiplication 
by tin commutes with the right action of G on 4). 

(4) I do not know, how to express this property in terms of coordinates { uk }. 
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Unfortunately, it is rather difficult to write these actions explicitly because the 
construction uses the Riemann uniformization theorem which gives no explicit formula 5. 

Hut instead we can give the formulae for the corresponding infinitesimal action. Thus, for 
any V E Vect S1 we shall compute the corresponding Lv E Vect 3 and Rv E Vect G. 
For this end we rewrite (1) in the form f o y = g and denote by fF, gE, yF the small 
variation of the initial quantities which still satisfy 

(4) fCO7F =QE. 

Let 
fe = f + 4J + O(E), 4 E II( 

QE = 9 + 4 + o(t), $ E H(r), 

YE = $1 + itx) + o(t), x E C”(S1). 

Here N(P) is the space of analytic functions on D+, smooth up to boundary and 
normalized by 4(O) = 4’(O) = 0; H(P) is the space of analytic functions on D- 
which have at most a simple pole at 00; C”(S1) is the space of real-valued smooth 
functions on 9. 

It is clear that these three spaces are just tangent spaces to the corresponding manifolds 
3’,4, G (in fact, H(D-) coincides with 4). 

Let us substitute the above expressions for fE, gE, yt in (4) and compare the terms of 
the first order in E. We get: 

Take now the right composition of both parts with g-l. Using (l), we obtain 

(5) ~of-l+f’of-l.f-l.xog-l=~og-l. 

We remark that the first term in the left hand side belongs to H(D&) and the right 
hand side belongs to H(D,) 6. 

The classical result from complex analysis claims that for any F E C”(K) the 
functions F* defined by 

(5) The only exception is the action of the rotation subgroup. As a direct corollary of the definition (3) we get 

(6) These two spaces are defined exactly as H(O*) , to which they specialize in the case K = S’. 
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738 A. A. KIRILLOV 

for I* E D$ satisfy ’ 

F* E H(D$) and F = F+ - F- on K. 

Applying this result to the second term of the left hand side of (51, we get the equality 

0 . . 4 f-l([) -2 f’ f’ f-W f-W x 0 0 s-‘(5) .4 = 
.K <*cc - 0 

In order to compute the field Llr we take for 7E the initial element y E G shifted from the 
left by an element close to the identity of the form exp{ --E u(ei’)-& +0(t)}. Then x will be 
equal to --2, o y. The corresponding infinitesimal shift on F will be 4 E Tf(F) = &r(f). 
We substitute x = --v o y in (6) and put 4 = f(z), c = f(t). Then we get 

(7) Lv(f)(z) = % iI ($f) 2 ,,,i,‘“:, )) . f- 
.z ’ 

3. It is convenient to extend (7) by complex linearity to the Lie algebra homomorphism 
of CVect (S1) to Vect F, given by the same formula. 

In the complex Lie algebra CVect (S1) there is a subalgebra of polynomial vector fields 
with the natural basis consisting of the fields 

(corresponding to the function uk(ei’) = -iei”‘) 

which satisfy the commutation relations [Vj, Vj] = (j - k) . V,+, . We shall write simply 
Lk instead of Lv,. It turns out, that Lk for k 2 1 have a rather simple expression. Namely, 
the integrand in (7) for w(t) = -it ‘, k 2 1, has the only simple pole at t = z. Taking 
the residue in it, we get 

(7 - k) L,#)(z) = 2”f’(z). 

It may appear that the vector field (7) on F for Ic 2 1 is induced by the natural action 
of Vk E CVect (C) on complex plane. But in fact the flow induced by Vk do not preserve 
neither D+ nor 7. Only the combinations 9 and z(v’:v-‘) are real vector fields 
on S1 and generate flows on 3. For instance (cf. (8-O) below and the footnote 5 above), 
to iv0 there corresponds the flow f I-+ T, o f o rcyi. 

The computation of Lk for k 5 0 is more difficult because now one has also the pole 
of order 1 - Ic at t = 0. However, one can show easily that the additional term has always 
the form ~~$+, asfS where the coefficients a, are polynomials in the coordinates {c,} 
introduced in the section 1. 

(‘) The more familiar form of this result: Q*((E*) = & J& ;“,“:‘:‘, for E% E Dfi satisfy 

a* E (<*)-” H(D;) and Q = @+ - Cp- on K. 
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In particular, we obtain: 

(7 - 0) -hLm) = Tf’(4 - f(Z)> 

(7 - 1) L- -l(m) = f’(4 - 1 - 2QfM 

(7 - 2) L-z(f)(Z) = z-y(z) - & - 3Cl + (cf - 4Cp)f(Z). 

In terms of coordinates our computations give: 

(7 - k’) Lk = dk + c (n + l)kdk+n for k > 1, 
?l>l 

739 

(7 - 0’) Lo = C nc,& , 
Ql 

(7 - 1’) L-1 = c ((n + 2)c,+1 - 2ClC,)d,. 
n_>l 

4. We compute now the right action of the Lie algebra Vect S1 on the manifold 8. This 
can be done by the same method with the only difference that now we are interested in 
the right hand side of (5) and consider the perturbation yc of y E G by a small right shift: 

x(t) = ~(t. e’ ZE v’“‘) = y(t) + icy’(t) . tw(t) + O(E). 

Hence, the function x has the form 

X(t) = y’(t) . t .-dt) dbs-Y 
y(t) 

= - . v(t) 
dlogt 

and we get 

(8) &(g)(w) = -F f (3)‘. ‘u(s) ds .- 
1 S’ (g(s) - g(w)) s ’ 

which shows that Rv is an analytic vector field in the coordinates {Q}. 
In particular, 

(8 - k) &(S)(4 = w ‘+lg’(w) for k 2 0, 

(8 - 1.) &(g)(w) = w2g’(w) - $ 

It is very interesting but very hard problem to express {uk} in terms of {ck} and vice 
versa. One special case will be studied below. 
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5. There is another interesting geometric structure on F: the countable set of G-invariant 
foliations by complex discs. To construct them we again consider the small right shift of 
y E G and compute the corresponding variation C$ = Sf of .f?. The function x has the form 

X(t) = -Y’(t) . t. 4t1 d log x 
y(t) 

= - . u(t) 
dlogt 

and we get 

Assume now that v(t) = t’“. The complex vector field l/(t) tg on S1 is an eigenvector 
w.r.t. rotations. 

Hence, the corresponding SJ E Tf(.?) generate a G-invariant l-dimensional distribution 
on FT. In fact, S,f vanishes for n 5 0 - the integrand in (9) has no singularities in D-. 
So we get non-trivial distributions N, only for n, E /V. For n, = 1 the formula (9) gives 

(10 - 1) ~~1C.f) = c . f2. 

which has the simple geometric meaning. Namely, the functions f1 and f2 lie on the same 
leaf iff k - i = const. In other words, the map z H 2-l sends the contours PC1 and 
K2, corresponding to functions from the same leaf, to contours which are obtained one 
from another by a parallel transport). 

For general TX the distribution N,(f) has the form 

(10 - n) Nn(f) = c. m-l(f). 

where Pk is a polynom of degree k in f whose coefficients are polynomials of weight 
0 in al,no,u-l,~.~. E.g., 

(10 - 2) K(f) = c. .f2(f - 3no). 

6. Our next subject is the machinery of geometric quantization (see, e.g. [3]) for the 
group Vir, acting on M N F. We recall that the group Vir = G K Iw is the central 
extension of G, defined by the rule 

(11) (71, al) . (Y2! a2) = (71 0 723 a1 + a2 + q-y,; y2)) 

where B is the Bott cocycle: 

J 
log(yl o -a)‘d log 7;. 

S’ 
The infinitesimal version of (11) is 

where 

(12’) 
1 

b(v1, v2) = - J r S’ 
v; dv; 
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is the Gelfand-Fuchs-Virasoro cocycle. In fact, following the most physical papers, we 
shall use another cocycle b: 

(12”) 

This cocycle 6 is characterized by the property that it is the only cocycle from the same 
cohomology class with b satisfying: 1) 6 is invariant under the adjoint action of the rotation 
subgroup; 2) 6 vanishes on the subalgebra generated by Li, Lo, L-i. 

Remark. - It is a good exercise to find the formula for the corresponding group cocycle 
6’ which differs from B by a coboundary. 

The action of Vir on 3 comes through the natural projection of Vir to G . This 
action being holomorphic, we can consider the Klihler polarization on 3 and dejine a 
representation of Vir in the space of analytic functions on 3 by: 

(13) (T(r, 4Nf) = AC(r) 4, .WW1. f). 

Here 4h,4,f) ’ f is or each (y, n) E Vir a nowhere vanishing analytic function on 3, 
satisfying the cocycle equation 

Nr~,~l)~ ha2)J) = A((rl;~~1).f)A((~~,f~~),~1~. .f). 

From this equation one can easily derive that 

A((r,o), f) = @ ‘“a(r, f) 

for some constant ,Ss and that the function a(y, f) satisfies 

The infinitesimal version of the representation T looks like 

where @(u; f) is linear in 71 E Ca(S1), analytic in f E 3 and satisfies 

We shall assume now that we deal with the highest weight module V,, h over the Lie 
algebra vir which by definition possesses the vector 50 with the properties: 

(17) L~ZO = 0 for Ic > 0, Lox0 = h, . .x0; c 3:o = c.20. 

(‘) The quantity c  = 124 is the so called central charge of the representation; it should be real for unitary 
representations. 
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742 A. A. KIRILLOV 

We can also assume that in the realisation of r/;., f1 in H(F) the vector xi0 is represented 
by the functional F,,(f) = 1 9. Then for Gk(f) := cP(~k, f) we should have 

i 
0; 

(ak(f)= P,(C~:...:C,), 
for k > 0 
for k: = --7~ 5 0, 

where P, is a polynomial of weight n in the variables {ck} (the weight of ck being equal 
to /G) which depends on parameter c. 

The equations (16) allows us to compute recurrently all these polynomials starting with 
PO = const = h. The result we formulate in terms of the generating function P for 
the series {P,}. 

THEOREM. - We can write 

where S(f) = F - s(c)’ IS the so called Schwarzian derivative oj’ ,f. 

Proof. - From (16), taking into account cz = 12p, we derive the system of linear 
differential equations for P,, : 

LkPn = (rb + k)P,-k + hk,, ’ Tc 

which can be solved consequentively using the initial condition PO = h. E.g., we have: 
PO = h, PI = 2hq, P2 = (4/b++*-(h+$) CT, P3 = (6h+2c)c3-(2h+4c)clcn+2c& 
P4 = (8h + 5) c4 - (2h + 10c)clcs - 6cc; + (17~ - 2h)& + (h - SC)& P:, = 
(10h + lOc)c:, - (2h + 20c)c1c4 -I- (2h - 26~)~~~s + (36~ - 4h)cfcs + (8h - 58c)c;cz + 
(42~ - 6h)cic; + (16~ - 2h)c;. 

Since our system has the unique solution with given initial condition PO = h, it remains 
only to verify that the polynomials defined by the generating function in the Theorem 
satisfy (16’). We consider separately two cases: h = 1, c = 0 and h = 0. c = 1. In the 
first case the generating function has the form 

?f’(4 2 %(z) = f(z) . ( ) 
We start with the square root of this expression and write 

where A, are again the polynomials of weight 7~ in {ck}. 

LEMMA. - The action of LI, on A, looks like 

LkA, = njA,2--k, 

where we assume that A,, = 0 for n. < 0. 

(9) Otherwise one can pass to an equivalent representation. 
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Proqf. - Consider the decomposition 

logf(z) = log2 + p,Zn. 
n>l 

The effect of the action of Lk on the coefficients {B,} in this decomposition reduces 
to the infinitesimal shift t ---f ~(1 + G?). From that one derives 

(n - k)B,,-k for /G < n 
LkB, = 1 for Ic = n 

0 for 7c > n. 

Since A, = nB,, the Lemma follows. 
Now the proof of the Theorem in the first case we deduce from the obvious relation 

P, = c AkAj 
i+j=n 

Indeed, 
LkPn = c (iA;-kAj + jA,Aj+) 

i+j=n 

= c ( p + q f 2k)A,A, = (n + ~)P+-Ic. 
pfq=n-k 

In the second case we have to consider the sequence of polynomials {Pn} defined by 
the generating function 

We use the following characteristic property of S(f) (see, e.g. [I]): 

(l-8) w 0 L-7) = W) 0 9 . w2 + S(g). 

Let Mik’ be the flow lo on C defined by 

One easily checks that the generator of M,(“) is the vector field vk = zkf’&. So we get: 

c 
LkP n zn = -%(f o M(k))lt=o. 

dt t 
n 

Our statement now follows from (18) and 

(19) ;S(M;k))(,=o = 7 , 

which can be established by the direct computation. The Theorem is proved. 

(lo) In fact, this is only formal flow, which defines for every t E a3 an analytic map of some neighborhood of 
the origin (depending on t). 
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7. We recall some notions from the Kahler geometry. Let (&f: ~1) be a complex manifold 
with an Hermitian form UJ which in local coordinates looks like w,,,dz”d,~~‘. The pair 
(M, ~1) is called a Kahler manifold if two real forms g = SR tu, ic! = 53 ~1 define on M 
respectively the Riemannian metric and the symplectic structure. In this case there exists 
locally a real-valued function K s.t. way.)7 = B,8oK. This function is called the Kahler 
potential of mu and is defined modulo the addition of the real part of an analytic function. 

Example. - 1. M = c: w = c(dz)‘: K = ~1~1’. 
2. M = D+, c(dz)’ 

w = 02)L 1 K = -clog(l - \zI’). 

3. M = C c P’(C), c(h)’ UJ = (1+/2’)L. K = clog(1 + 1~1”). 

PROPOSITION. - If in the local coordinate system the potential has the form K(z) = 
K(O) + Id2 - ~Ra,&J L???z~z~ + o([zI”), then R,,d,,,n are components of the curvature 
tensor. 

E.g., in the examples above one can check that the curvature is 0. --c and +c respectively. 
If some group G acts on M preserving %II and if the Kahler potential K is defined 

globally ’ ’ , then we have 

K(.+ z) = K(z) - 2sfz B(g. 2). 

where B(g, z) is for any 9 E G an analytic function on M and the following cocycle 
equation holds: 

82 B(g1g2. 2) = 8 B(g1, z) +sR B(g2: g$z). 

We conclude, that 

(20) N91g2, z> - &71, 2) - qgz: g;14 = ic(gl,g2)) 

where C(gi, 92) is a real valued 2-cocycle on the group G. 
Indeed, the left hand side of (20) is an analytic function in z with vanishing real part, 

hence a pure imaginary constant. 

It follows that the formula 

(21) (T(.9).f)(4 = &!7. 4f(,g-1. 2) 

defines a projective representation of G in the space H(M) of holomorphic functions on 
M. Of course, we can consider it as an ordinary representation of the central extension 
G = G D< R, defined by the cocycle C(gi) g2). Moreover, if p denotes a G-invariant 
measure on M, this representation is unitary w.r.t. the inner product 

(22) (fl, f2) = .LI e-"'"'fl(~)f2(~)d,~(~). 

One can check that in the first of above examples one obtains the projective representation 
of the Abelian group W2 of translations (which is equivalent to the ordinary representation 

(‘I) Otherwise we have to consider instead of functions on M the sections of some holomorphic line bundle 
L over M. 
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of the Heisenberg group); in the second example one obtains the projective representation 
of the group SU(1, 1) N PSL(2, R); in the third we get the representation of SW(a), 
but only for c E N “. 

The analogy between (21) and (13) is evident as well as the analogy between (20) 
and (14). 

The manifold F possesses the two-parametric family of G-invariant Kahler structures. 
In [I] these structures were computed-at the initial point fo E F’, 
in the standard coordinates {ck} looks like 

(23) w,,,(O) = c (a4 + pk”)dckdC~. 
k>l 

This form is positive non-degenerate for cy > 0, ,S > 0. Being G-invariant, w,, 0 is 

fu( 2) E Z. The result 

uniquely defined by its value (23) at fa, but the explicit formula is known only for /Y = 0. 
In physical papers usually another parameters are chosen: 

a+P h=- 
2 ) 

c = 12/X 

The Taylor decomposition at fs of the corresponding Kahler potential K,. h was 
computed in [2] up to the terms of fourth order. This is equivalent to the calculation 
of the Riemann curvature tensor due to the Proposition above. 

8. Recall now some known fact from the representation theory of the algebra 711;~ (see 
141, [51, 161). 

Let V,. h be the irreducible highest weight module over &r. It is called unitarizable if 
one can define an inner product on it s.t. Lz = L-, and the vacuum vector z. has the 
length 1. Such a product is unique and exists in the following cases: 

a) c 2 1, h > 0; 
b) c = 1 - 6 m(m+l) ’ 

h = hp,q,m, = (mp’~~;~~~2-1, 

where m = 2,3,4,..., O<qlp<m,. 
In the first case L,, h coincides with the Verma module V,, h while in the second case it 

is the quotient of V,, h by a non-trivial submodule consisting of vectors of zero length. This 
submodule is generated by the so-called singular vectors annihilated by all Lk, t? > 0, 
and different from the vacuum vector. The first singular vector is on the pq-th level. 

The simplest (and trivial) example is m = 2 where p = q = 1, c = h = 0 and Lo,0 is 
a trivial one dimensional module. It is realized in the one dimensional space of constant 
functions on F. 

Consider in more details the first non-trivial case m = 3. Here c = 3, h = 0, i: or & 
and the singular vectors are respectively on the first, second and forth levels. 

For h = 0 the singular vector is just L-lzo. Moreover, the basis in V+,o consists of 
vectors of the form 

(24) L-k1 L-k, . ’ . L-k,.XO, kf > 2. 

(“) This is the condition for the existing of the line bundle L over P’ (C), see e.g. [3]. 
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746 A. A. KIRILLOV 

The geometric realization of this space has the simple description: it consists exactly of 
functions on F which are constant along the leaves of the first G-invariant foliation (see 
section 5). 

The very interesting open problem is to find the analogous description for the remaining 
representations of the discrete series. 
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