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Summary

During new blood vessel formation, the cessation of angio-
genic sprouting is necessary for the generation of functional
vasculature. How sprouting is halted is not known, but it is
contemporaneous with the development of stable intercel-
lular junctions [1]. We report that VE-cadherin, which is
responsible for endothelial adherens junction organization
[2, 3], plays a crucial role in the cessation of sprouting. Abro-
gating VE-cadherin function in an organotypic angiogenesis
assay and in zebrafish embryos stimulates sprouting. We
show that VE-cadherin signals to Rho-kinase-dependent
myosin light-chain 2 phosphorylation, leading to actomyosin
contractility [4], which regulates the distribution of VE-cad-
herin at cell-cell junctions. VE-cadherin antagonizes VEGFR2
signaling, and consequently, inhibition of VE-cadherin, Rho-
kinase, or actomyosin contractility leads to VEGF-driven,
Rac1-dependent sprouting. These findings suggest a novel
mechanism by which cell-cell adhesion suppresses Rac1-
dependent migration and sprouting by increasing actomy-
osin contractility at cell junctions.

Results

VE-Cadherin Suppresses Sprouting in an Organotypic
Angiogenesis Assay and during Embryonic Development
in Zebrafish

To investigate whether VE-cadherin-mediated homophilic inter-
action suppresses angiogenic sprouting, we first used VE-cad-
herin-blocking antibodies [5] in an organotypic assay. In this
assay, capillary-like three-dimensional tubules arise from the
interaction of human umbilical vein endothelial cells (HUVEC)
with human dermal fibroblasts (HDF) [6, 7]. At 12-14 days, the
tubules are largely quiescent [7] and show extensive accumula-
tion of VE-cadherin at cell-cell junctions (Figure 1A). These
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tubules do not respond to VEGF stimulation by cell migration
and sprouting (Figure S1A available online), whereas VEGF
treatment in the earlier migratory phase increases angiogenesis
(Figure S1A). Treatment with blocking antibody Cad5 at 50 ng/ml
[5] resulted in rapid disassembly of established quiescent
tubules, rounding, and endothelial cell death (Figure 1B) [2, 3].
However, treatment with Cad5 at 5 or 10 pg/ml resulted in induc-
tion of cell protrusions and sprouting (Figure 1B and Movies S1,
S2, and S3; Figure S2A shows a schematic representation of
treatments). Sprouting in response to 5 ng/ml Cad5 continued
for ~36 hr (Figure 1B), followed by tubule disassembly, cell
rounding, and death at 48 hr (Figure S2B). Treatment with
10 pg/ml Cad>5 also resulted in protrusions and sprouting, but
disassembly occurred within 12 hr (Figure 1B and Movie S3).
Quantification of tubule formation following 5 ng/ml Cad5 treat-
ment for 30 hr showed significant increases in the number of
tubules, total tubule length, and branch points (Figure 1C). To
rule out nonspecific effects of Cad5, we used blocking antibody
BV9 that binds to a different part of the extracellular domain [5].
Treatment with 10 pg/ml BV9 resulted in increased tube forma-
tion (Figure S2C). VE-cadherin blockade delocalized VE-cad-
herin from cell junctions but did not affect its overall levels
(Figure S2D). To determine whether these effects were from
loss of VE-cadherin function or altered VE-cadherin signaling,
we employed VE-cadherin siRNAs. VE-cadherin knockdown in
HUVEC seeded on confluent fibroblasts [7] resulted inincreased
tubule formation, suggesting that it is loss of VE-cadherin that
leads to increased angiogenesis (Figure S2E). These blocking
antibody and siRNA experiments show that VE-cadherin-medi-
ated cell-cell interaction suppresses sprouting and that VE-cad-
herin is not required for initial tubule assembly but is required for
cell-cell adhesion and survival in established tubules.

To determine whether VE-cadherin suppresses sprouting
in vivo, we used morpholino oligonucleotide-mediated knock-
down of VE-cadherin expression in zebrafish embryos [8].
Figure 1D shows lateral views of the trunk region of embryos
injected with VE-cadherin or control mismatch morpholino
oligonucleotides at 30 hr postfertilization (hpf). Strikingly, the
primary vascular network forms at the right place in VE-cad-
herin morphants; however, intersegmental vessels show
increased sprouting (Figure 1D). Time lapse videos show that
intersegmental vessels in control embryos get stabilized
upon contact at the dorsal regions, whereas in VE-cadherin
morphants, the vessels fail to connect and keep forming
sprouts up to 46 hr hpf (Movies S4, S5, and S6). These data
from in vivo and organotypic culture systems show that
VE-cadherin-mediated adhesion suppresses sprouting during
new vessel establishment. However, because recent work
shows that VE-cadherin regulates junctional molecules such
as claudin 5 [9], it is possible that other junctional components
also contribute to suppression of sprouting.

VE-Cadherin Signals to Activate Rho-Kinase-Dependent
MLC2 Phosphorylation at Intercellular Junctions

Sprouting in the migratory phase of cocultures requires down-
regulation of Rho-kinase-dependent MLC2 phosphorylation
[7]. Because sprouting is inhibited in the established phase,
we investigated whether MLC2 phosphorylation is elevated.
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Figure 1. Partial VE-Cadherin Blockade in Organotypic Culture and VE-Cadherin Knockdown in Zebrafish Stimulate Sprouting

(A) VE-cadherin accumulation at junctions in established tubules. HUVEC-EGFP cocultured with HDF were fixed 7 days (migratory) or 12 days (established)
after coculture and stained for VE-cadherin. Middle panels show magnifications of insets in left panels. Note the continuous distribution of VE-cadherin in
established tubules. Scale bar represents 50 um.

(B) Partial VE-cadherin blockade induces sprouting. Established tubules were treated with Cad5 (5 pg/ml, 10 ug/ml, or 50 ng) or control IgG and followed by
time lapse microscopy. Video stills are at 12 hr intervals over 48 hr. Closed arrows show sprouting points; open arrows show areas of disassembly. Scale bar
represents 50 um.

(C) Partial VE-cadherin blockade increases tube formation. Established tubules treated with Cad5 (5 j1g/ml) or control IgG for 30 hr were visualized by CD31
staining 3 days after the end of treatment. Number of tubules, total length, and number of branch points are represented as mean + SEM (n = 9 microscopic
fields from triplicate wells). Scale bar represents 100 pm.

(D) Increased sprouting of intersegmental vessels in zebrafish embryos with VE-cadherin knockdown. Shown is a lateral view of the trunk region of a repre-
sentative control morpholino-injected transgenic fli1:EGFP zebrafish embryo (Cont-MO) or embryo injected with VE-cadherin morpholino oligonucleotide
(VE-cad MO2) at 30 hpf. Upper panels show bright-field images of whole embryos showing normal development of VE-cad MO embryos. Middle panels
show magnifications of top panel insets showing the notochord (nc) and somites (s). Lower panels show fluorescent images of trunk vasculature with three
intersegmental vessels. Note the persistent sprouting (arrows) of intersegmental vessels (ISV) in VE-cadherin morphants. DA, dorsal aorta; PCV, posterior

cardinal vein. Scale bar represents 50 pm. Histogram shows quantification of branching of ISVs.

Figure 2A shows that MLC2 phosphorylation is undetectable in
sprouting tubules but is upregulated by Rho-kinase in the
established tubules.

We investigated whether VE-cadherin signals to MLC2 phos-
phorylation. When HUVEC are cultured on matrigel, junctional
accumulation of VE-cadherin can be seen at 48 hr and colocal-
izes with phosphorylated MLC2 (Figure 2B). A similar colocali-
zation is seen in the established phase in the cocultures
(Figure S4B). Treatment with 5 or 10 ug/ml Cad>5 disrupted the
organization of VE-cadherin and downregulated the phosphor-
ylation of MLC2 at cell junctions without apparent effects on the
level or localization of total MLC2 (Figures 2B and S3F;
Figure S3A shows schematic representation of treatments).
Immunoblotting confirmed that VE-cadherin blockade reduced
phospho-MLC2 levels (Figures 2B and 2C). MLC2 phosphoryla-
tion was reduced by 42.0% and 45.2% with treatment with Cad5
at 10 pg/ml for 30 min and 60 min, respectively. With Cad5 at

5 ng/ml, there was 53.7% and 44.0% reduction in MLC2 phos-
phorylation at 4 hr and 24 hr, respectively. Treatment with BV9
also resulted in reduced MLC2 phosphorylation (Figure S3C).
MLC2 phosphorylation is Rho-kinase-dependent, given that
treatment with Rho-kinase inhibitor Y27632 [10] for 30 min
and 60 min reduced phosphorylation by 91.6% and 84.3%,
respectively, whereas treatment for 4 hr and 24 hr resulted in
92.1% and 73.3% reduction, respectively. Because Rho-kinase
inhibition leads to increased cord formation in matrigel ([7] and
Figure S3B), we investigated whether VE-cadherin blockade
leads to increased cord formation. Treatment with Cad5 (5 pg/
ml) increased cord formation (Figure 2C). Similarly, VE-cadherin
knockdown by siRNA reduced MLC2 phosphorylation and
increased cord formation (Figures 2D-2F and S3G).

Figure 2E shows that siRNAs against ROCKI and ROCKII
reduced MLC2 phosphorylation and increased cord formation,
confirming that the effects of Y27632 are through ROCKI and
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Figure 2. VE-Cadherin Regulates MLC2 Phosphorylation at Intercellular Junctions

(A) MLC2 phosphorylation is upregulated in established tubules. HUVEC-EGFP cocultured with HDF were fixed in migratory (7 days) or established (12 days)
phases and stained for phospho-MLC2 (S19). Y27632 (10 uM) was applied for 5 hr before fixation. Scale bar represents 50 um.

(B) VE-cadherin blockade delocalizes VE-cadherin and downregulates phosphorylated MLC2 at junctions. At 48 hr after plating on matrigel, HUVEC were
treated with Cad5 (10 ng/ml) or control IgG for 15 min and stained for VE-cadherin and phospho-MLC2 (S19). Arrows show areas of concomitant VE-cadherin
and phospho-MLC2 downregulation. Scale bar represents 50 um. Western blot shows monophosphorylated (S19) and diphosphorylated (T18S19) MLC2
after Cad5 treatment (10 ug/ml) for 30 min.

(C) Partial VE-cadherin blockade increases cord formation. At 24 hr after plating on matrigel, HUVEC were treated with Cad5 (5 j1g/ml) or control IgG for 24 hr.
Loops counted at the end of treatment are represented as mean = SEM (n = 9 microscopic fields). Scale bar represents 100 um. Western blot shows levels of
phospho-MLC2 (T18S19) after Cad5 treatment (5 ug/ml) for 4 hr.

(D-E) Knockdown of VE-cadherin or Rho-kinase | and Rho-kinase Il downregulates MLC2 phosphorylation and increases cord formation in matrigel. HUVEC
were transfected with siRNAs targeting VE-cadherin (D), Rho-kinase | and Rho-kinase Il (E), or scrambled control. Loops counted 24 hr after plating on ma-
trigel are represented as in (C). Scale bar represents 100 um. Western blots show levels of phospho-MLC2 (T18S19) 24 hr after plating on matrigel.

(F) VE-cadherin or RhoC knockdown blocks stress fiber formation. HUVEC transfected with VE-cadherin, RhoC, or scrambled siRNAs in matrigel were
stained for F-actin 48 hr after transfection. Nuclei were visualized by DAPI staining (blue). Scale bar represents 50 um. Western blots show levels of phos-
pho-MLC2 (T18S19).
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ROCKII inhibition. Additionally, knockdown of p120 catenin
resulted in decreased MLC2 phosphorylation and increased
cord formation (Figure S3D); p120 catenin has been shown
to regulate the levels of expression of VE-cadherin [11].
Because MLC2 phosphorylation controls actomyosin contrac-
tility, we tested whether direct inhibition of actomyosin
contractility would increase cord formation. Treatment with
blebbistatin [12] at concentrations that do not induce cell
collapse [13] increased cord formation (Figures 2G and S3E).
Overall, these data show that VE-cadherin signals via Rho-
kinase activity to upregulate MLC2 phosphorylation and acto-
myosin contractility at endothelial cell junctions.

VE-cadherin signaling can activate RhoA [14]; however, we
found that knockdown of RhoA does not affect tube formation
or cord formation, and there was no reduction in RhoA activa-
tion when VE-cadherin was blocked (data not shown). However,
silencing RhoC reduced MLC2 phosphorylation and stress fiber
formation (Figure 2F), suggesting that VE-cadherin signals
via RhoC to regulate Rho-kinase, MLC2 phosphorylation, and
actomyosin contractility during tube formation. In support of
this hypothesis, overexpression of RhoC reversed the increase
in cord formation following VE-cadherin blockade (Figure 2H).
RhoC overexpression alone decreased cord formation, and
this could be reversed by Rho-kinase inhibitor Y27632.

Endothelial Cell Sprouting Requires Rac1 Activation

To determine whether MLC2 phosphorylation and actomyosin
contractility in the established phase suppress sprouting, we
used two structurally unrelated Rho-kinase inhibitors, Y27632
[10] and H1152 [15], or blebbistatin [12]. These treatments
resulted ininduction of sprouting (Figure 3A and Movies S7, S8,
and S9; Figure S4A shows a schematic representation of treat-
ments) and increased tube formation (Figures 3B and S4C). In
contrast, HUVEC modified to overexpress MLC2 [16] showed
decreased tube formation (41.5%; p < 0.0005). Together, these
data show that VE-cadherin signaling to Rho-kinase and MLC2
phosphorylation suppresses sprouting.

Protrusive activity [17] has been associated with the activity of
Rac1; therefore, we investigated whether partial VE-cadherin
blockade leads to Rac1 activation. VE-cadherin blockade
resulted in an increase of Rac1-GTP by 41% = 10.0% (n = 3)
(Figure S5A). Similarly, there was a 75.7% = 18.4% (n = 3)
increase in Rac1-GTP following Y27632 treatment (Figure S5B).
Therefore, we asked whether Rac1 inhibition would inhibit
sprouting. Treatment with NSC23766, an inhibitor of Rac1 acti-
vation [18], blocked the induction of sprouting in response to
partial VE-cadherin blockade (Figure 3C and Movies S10 and
S11) and the increase in tube formation (Figure 3D). Similarly,
induction of sprouting and increased tube formation following
inhibition of Rho-kinase or actomyosin contractility were
blocked by inhibition of Rac1 activation (Figure 3E and Movies
S12, S13, and S14). Whereas NSC23766 reduced Cdc42 activa-
tion at early time points, blockade of sprouting was seen at
later time points when only Rac1 activation was reduced
(Figure S5D). To confirm that the effects of NSC23766 were
dueto Rac1 inhibition in endothelial cells, we used siRNA knock-
down of Racl in HUVEC prior to seeding on confluent

fibroblasts. Figure 3F shows that Rac1 knockdown blocked
the increase in tube formation in response to Rho-kinase
inhibition.

Signaling from VE-Cadherin to MLC2 Phosphorylation
Suppresses VEGF Receptor 2-Dependent Sprouting
Established tubules do not respond to VEGF (Figure S1);
however, because VEGF receptor 2 (VEGFR2) signaling stimu-
lates endothelial cell migration and activates Rac1 [19], we
investigated whether VEGFR2 drives sprouting when VE-cad-
herin or Rho-kinase are inhibited. Increased angiogenesis in
response to Rho-kinase inhibition or VE-cadherin blockade
(Figure 3G) was reversed by blocking VEGF with Avastin [20]
or by VEGFR2 inhibition with the selective inhibitor SU1498
[19] or BAY 43-9006 [21] (data not shown), as was the increase
in Rac1-GTP in response to Rho-kinase inhibition (Figure S5B).
Rho-kinase inhibition led to increased VEGFR2 phosphoryla-
tion (Figure S5C), arguing that suppression of sprouting by
VE-cadherin signaling results from blocking VEGFR2 activa-
tion. Interestingly, we found that sprouting in Cad5-treated
cocultures was not increased by adding VEGF (Figure S5E
and Movies S15 and S16), suggesting that the VEGF produced
by the fibroblasts in cocultures [7] is sufficient to fully activate
the system.

Rho-Kinase-Dependent Actomyosin Contractility

Regulates the Distribution of VE-Cadherin

at Intercellular Junctions

Prolonged Rho-kinase inhibition deregulates VE-cadherin and
enhances the permeability of endothelial monolayers [22].
Given our findings, we asked whether Rho-kinase and actomy-
osin contractility regulates VE-cadherin localization during
tube formation. Figure 4A shows that Rho-kinase inhibition
for 16 hr resulted in loss of the continuous distribution of
VE-cadherin at intercellular junctions characteristic of quies-
cent tubules in the cocultures (Figure 1A). This altered distribu-
tion did not appear to reflect internalization of VE-cadherin into
EEA1-positive vesicles [23] (data not shown). Total levels of
VE-cadherin were unaffected when HUVEC were treated in
matrigel with Y27632 (Figure S2D). Inhibition of actomyosin
contractility with blebbistatin for 16 hr had a similar effect to
Rho-kinase inhibition (Figure 4A). Less marked effects were
observed within 4 hr of treatment (data not shown). These
data show that, during establishment of newly formed vessels,
VE-cadherin signaling through Rho-kinase and actomyosin
contractility is required to maintain its uniform distribution
along the endothelial adherens junction (Figures 1A and 4A).

Discussion

VE-cadherin is a major component of endothelial adherens
junctions necessary for blood vessel integrity and endothelial
cell survival [2, 3]. Our results show that VE-cadherin also
suppresses Rac1-dependent vessel sprouting. The require-
ment for Rac1 in endothelial cell sprouting is consistent with
the requirement of Rac1 for the generation of small branching
vessels during vascular development [24]. Because sprouting
is associated with increased vascular permeability, failure to

(G) Inhibition of actomyosin contractility increases cord formation. At 24 hr after plating on matrigel, HUVEC were treated with blebbistatin (50 M) for 24 hr.

Histogram shows number of loops as in (C). Scale bar represents 100 um.

(H) RhoC expression rescues the effects of VE-cadherin blockade on cord formation. HUVEC transfected with pEF-RhoC or empty vector (EV) were plated on
matrigel, and the cultures were treated with Cad5 (5 ug/ml) or control IgG for 24 hr. Histogram shows the number of loops asin (C). Scale bar represents 100 um.
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Figure 3. Inhibition of VE-Cadherin Signaling to MLC2 Phosphorylation Induces VEGFR2-Rac1-Dependent Sprouting

(A) Inhibition of Rho-kinase or actomyosin contractility stimulates sprouting. Established tubules treated with Y27632 (10 pm) or blebbistatin (5 um) were
followed by time lapse microscopy. Video stills are at 12 hr intervals over 48 hr. Arrows show sprouting points. Scale bar represents 50 um.

(B) Inhibition of Rho-kinase or actomyosin contractility increases tubule formation. Established tubules treated with Y27632 (10 uM), H1152 (5 um), or bleb-
bistatin (5 pm) for 48 hr were visualized by CD31 staining 3 days after the end of treatment. The number of tubules and total tubule length are represented as
mean += SEM (n = 9 microscopic fields from triplicate wells). Scale bar represents 100 um.
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Figure 4. Rho-Kinase Inhibition Delocalizes VE-Cadherin from Intercellular Junctions

(A) Established tubules were treated with blebbistatin (5 M) or Y27632 (10 M) for 16 hr, fixed, and stained for VE-cadherin. In enlarged panels, note the loss
of uniform distribution of VE-cadherin at cell junctions with inhibition of Rho-kinase or actomyosin contractility. Scale bar represents 50 pm.

(B) Model of interplay between VE-cadherin, Rho-kinase, phospho-MLC2, and actomyosin contractility acting to suppress the VEGFR2-Rac1-dependent

sprouting.

suppress sprouting may contribute to the vascular
remodelling defects and hemorrhages seen in VE-cadherin
null embryos [3].

We show that, following tube formation in culture, VE-cad-
herin signals to increase actomyosin contractility via Rho-
kinase. Signaling is likely to be via RhoC because knockdown
of RhoC, but not RhoA, reduces MLC2 phosphorylation and
stress fiber formation. This signaling pathway antagonizes
VEGFR2 signaling to Rac1-dependent sprouting. Under condi-
tions of homophilic adhesion, complexes between VE-cadherin
and VEGFR2 have been shown to inhibit VEGFR2 phosphoryla-
tion and signaling to MAPK-ERK to suppress VEGF-driven
proliferation [25]. Similarly, VE-cadherin may suppress VEGFR2
signaling to Rac1 to inhibit sprouting. Previously, endothelial
cells from VE-cadherin null embryos were shown to have low
levels of active Rac1 resulting from reduced junctional localiza-
tion of the Rac1 exchange factor Tiam1 [26]. However, these
studies were carried out in the absence of VEGF and would
not have revealed activation of Rac1 through VEGFR2.

Studies in other systems show that VE-cadherin engage-
ment at intercellular junctions signals to RhoA and Rac1
(reviewed in [27]). Inactivation of Rac1 in tissue culture results
in defective endothelial cell migration, adhesion to substratum,
and organization of intercellular junctions [24], suggesting that
Rac1 has roles in both the angiogenic and quiescent states of
the vasculature. Consistent with this notion, VE-cadherin

signaling to Rac1 via Tiam1 stabilizes junctions [26]; indeed,
we find in our system that blocking Rac1 activity destabilizes
junctions (data not shown). However, activation of Rac1 by
VEGF in endothelial monolayers can destabilize junctions by
promoting internalization of VE-cadherin [23]. This indicates
that the level and localization of Rac1 activation must be tightly
regulated and suggests that there may be separate pools of
activated Rac1 with different functions.

We show that following initial endothelial cell-cell assembly,
VE-cadherin signaling to actomyosin contractility is necessary
for the uniform distribution of VE-cadherin at cell junctions in
the established quiescent state. Cavey and coworkers have
shown that actomyosin contractility is required for even distri-
bution of E-cadherin at epithelial cell junctions, arguing that
contractility restricts the lateral mobility of junctional cadher-
ins [28]. Interestingly, our data suggest that VE-cadherin,
Rho-kinase, and actomyosin contractility act in a positive
feedback loop because VE-cadherin signals to actomyosin
contractility (Figure 4B). Such a positive feedback loop may
be an advantageous mechanism for ensuring stable cell-cell
junctions. Disruption of the loop at any point induces sprouting
through reversing the suppression of VEGFR2 signaling to
Rac1. Sprouting may also be suppressed at other points in
the signaling network; for example, Rho-kinase could
suppress Rac1 activation through activation of a Rac1 GTPase
activating protein (GAP) [29].

(C) Established tubules treated with Cad5 (5 ng/ml) or control IgG in the presence or absence of Rac1 inhibitor NSC23766 (100 M) were followed by time
lapse microscopy. Video stills are at 12 hr intervals over 36 hr. Arrows show sprouting points.

(D) Increased tubule formation with partial VE-cadherin blockade is Rac1 dependent. Established tubules treated with 5 1g/ml Cad5 or control IgG for 30 hrin
the presence or absence of the Rac1 inhibitor NSC23766 (100 M) were visualized by CD31 staining 3 days after the end of treatment. Branch points are
represented as in (B). Scale bar represents 100 um. Western blot shows Rac1-GTP after Rac1 inhibitor treatment in matrigel. Quantification shows levels
as percentage of Rac1-GTP compared to untreated controls after normalization for total Rac1.

(E) Increased tubule formation following inhibition of Rho-kinase or actomyosin contractility is Rac1 dependent. Established tubules treated with Y27632
(10 uM) or blebbistatin (5 M) for 48 hr in the presence or absence of the Rac1 inhibitor NSC23766 (100 M) were visualized by CD31 staining 3 days after
end of treatment. Branch points are represented as in (B). Scale bar represents 100 um.

(F) Increased tubule formation with Rho-kinase inhibition is reversed by Rac1 siRNA. HUVEC transfected with Rac1 siRNAs were plated on confluent fibro-
blasts. Tubule formation was visualized by CD31 staining after 5 days, and branch points are represented as in (B). Scale bar represents 100 um. Western
blot shows Rac1 expression levels.

(G) Increased branching with partial VE-cadherin blockade or Rho-kinase inhibition is reversed by VEGFR2 inhibition. Established tubules treated with Cad5
or Y27632 alone as in (D) and (E) or in combination with SU1498 (2.5 uM) or Avastin (5 pg/ml) were visualized by CD31 staining. Histograms show fold increase
in branch points compared to controls.
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