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Abstract

Iterative methods for the solution of linear systems of equations produce a sequence of approximate solutions. In many
applications it is desirable to be able to compute estimates of the norm of the error in the approximate solutions generated
and terminate the iterations when the estimates are su�ciently small. This paper presents a new iterative method based
on the Lanczos process for the solution of linear systems of equations with a symmetric matrix. The method is designed
to allow the computation of estimates of the Euclidean norm of the error in the computed approximate solutions. These
estimates are determined by evaluating certain Gauss, anti-Gauss, or Gauss–Radau quadrature rules. c© 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Large linear systems of equations

Ax= b; A ∈ Rn×n; x ∈ Rn; b ∈ Rn (1)

with a nonsingular symmetric matrix are frequently solved by iterative methods, such as the conjugate
gradient method and variations thereof; see, e.g., [12, Chapter 10] or [17, Chapter 6]. It is the purpose
of the present paper to describe a modi�cation of the conjugate gradient method that allows the
computation of bounds or estimates of the norm of the error in the computed approximate solutions.
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Assume for notational simplicity that the initial approximate solution of (1) is given by x0 = 0,
and let �k−1 denote the set of polynomials of degree at most k − 1. The iterative method of this
paper yields approximate solutions of (1) of the form

xk = qk−1(A)b; k = 1; 2; : : : ; (2)

where the iteration polynomials qk−1 ∈ �k−1 are determined by the method.
The residual error associated with xk is de�ned by

rk :=b− Axk (3)

and the error in xk is given by

ek :=A−1rk : (4)

Using (3) and (4), we obtain

eTk ek = r
T
k A

−2rk = bTA−2b− 2bTA−1xk + xTkxk : (5)

Thus, the Euclidean norm of ek can be evaluated by computing the terms on the right-hand side of
(5). The evaluation of the term xTkxk is straightforward. This paper discusses how to evaluate bounds
or estimates of the other terms on the right-hand side of (5). The evaluation is made possible by
requiring that the iteration polynomials satisfy

qk−1(0) = 0; k = 1; 2; : : : : (6)

Then bTA−1xk=bTA−1qk−1(A)b can be computed for every k without using A−1, and this makes easy
evaluation of the middle term on the right-hand side of (5) possible. The iterative method obtained
is closely related to the SYMMLQ method, see, e.g., [16] or [8, Section 6.5], and can be applied to
solve linear systems of equations (1) with a positive de�nite or inde�nite symmetric matrix. Details
of the method are presented in Section 2.
Section 3 discusses how bounds or estimates of the �rst term on the right-hand side of (5) can be

computed by evaluating certain quadrature rules of Gauss-type. Speci�cally, when the matrix A is
positive de�nite and we have evaluated xk , a lower bound of bTA−2b can be computed inexpensively
by evaluating a k-point Gauss quadrature rule. An estimate of an upper bound is obtained by
evaluating an associated k-point anti-Gauss rule. When A is inde�nite, an estimate of the Euclidean
norm of the error ek is obtained by evaluating a (k + 1)-point Gauss–Radau quadrature rule with a
�xed node at the origin. We also describe how the quadrature rules can be updated inexpensively
when k is increased. Section 4 presents a few computed examples, and Section 5 contains concluding
remarks.
The application of quadrature rules of Gauss-type to the computation of error bounds for approx-

imate solutions generated by an iterative method was �rst described by Dahlquist et al. [6], who
discussed the Jacobi iteration method. When the matrix A is symmetric and positive de�nite, the
linear system (1) can conveniently be solved by the conjugate gradient method. Dahlquist et al. [7],
and subsequently Golub and Meurant [10,14], describe methods for computing bounds in the A-norm
of approximate solutions determined by the conjugate gradient method. A new approach, based on
extrapolation, for computing estimates of the norm of the error in approximate solutions determined
by iterative methods has recently been proposed in [1].
Assume for the moment that the matrix A in (1) is symmetric and positive de�nite, and approx-

imate solutions xk of the linear system (1) are computed by the conjugate gradient method. The
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method of Golub and Meurant [10] for computing upper bounds for the A-norm of the error in the
approximate solutions requires that a lower positive bound for the smallest eigenvalue of the matrix
A is available, and so does the scheme in [14], based on two-point Gauss quadrature rules, for
computing upper bounds of the Euclidean norm of the error in the iterates. Estimates of the smallest
eigenvalue can be computed by using the connection between the conjugate gradient method and
the Lanczos method, see, e.g., [12, Chapter 10]; however, it is generally di�cult to determine posi-
tive lower bounds. The methods of the present paper for computing error estimates do not require
knowledge of any of the eigenvalues of the matrix A.
The performance of iterative methods is often enhanced by the use of preconditioners; see, e.g.,

[12, Chapter 10, 17, Chapters 9–10]. In the present paper, we assume that the linear system of
equations (1) represents the preconditioned system. Alternatively, one can let (1) represent the
unpreconditioned linear system and modify the iterative method to incorporate the preconditioner.
Meurant [15] shows how the computation of upper and lower bounds of the A-norm of the error
in approximate solutions determined by the conjugate gradient method can be carried out when this
approach is used. Analogous formulas can be derived for the iterative method of the present paper.

2. The iterative method

This section presents an iterative method for the solution of linear systems of equations (1) with
a nonsingular symmetric matrix A. The description is divided into two subsections, the �rst of which
discusses basic properties of the method. The second subsection derives updating formulas for the
approximate solutions xk computed. The method may be considered a modi�cation of the conjugate
gradient method or of the SYMMLQ method, described, e.g., in [8,16].
Our description uses the spectral factorization

A= Un�nU T
n ; Un ∈ Rn×n; U T

n Un = In;

�n = diag [�1; �2; : : : ; �n]; �16�26 · · ·6�n: (7)

Here and throughout this paper, Ij denotes the identity matrix of order j. Let b̂=[b̂1; b̂2; : : : ; b̂n]
T:=U T

n b
and express the matrix functional

F(A):=bTf(A)b; f(t):=1=t2; (8)

as a Stieltjes integral

F(A) = b̂
T
f(�n)b̂=

n∑
k=1

f(�k)b̂
2
k =

∫ ∞

−∞
f(t) d!(t): (9)

The measure ! is a nondecreasing step function with jump discontinuities at the eigenvalues �k of
A. We will use the notation

I(f):=
∫ ∞

−∞
f(t) d!(t): (10)
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2.1. Basic properties

Our method is based on the Lanczos process. Given the right-hand side vector b, k steps of the
Lanczos process yield the Lanczos decomposition

AVk = VkTk + fk ẽ
T
k ; (11)

where Vk = [C1; C2; : : : ; Ck] ∈ Rn×k and fk ∈ Rn satisfy V Tk Vk = Ik , V Tk fk = 0 and
C1 = b=||b||: (12)

Moreover, Tk ∈ Rk×k is symmetric and tridiagonal. Throughout this paper ẽj denotes the jth axis
vector and || · || the Euclidean vector norm. We may assume that Tk has nonvanishing subdiagonal
entries; otherwise the Lanczos process breaks down and the solution of (1) can be computed as a
linear combination of the columns Cj generated before break down.
Eq. (11) de�nes a recursion relation for the columns of Vk . This relation, combined with (12),

shows that

Cj = sj−1(A)b; 16j6k (13)

for certain polynomials sj−1 of degree j − 1. These polynomials are orthogonal with respect to the
following inner product induced by (10) for functions g and h de�ned on the spectrum of A,

(g; h):=I(gh): (14)

We have

(sj−1; s‘−1) =
∫ ∞

−∞
sj−1(t)s‘−1(t) d!(t) = bTUnsj−1(�n)s‘−1(�n)U T

n b

= bTsj−1(A)s‘−1(A)b

= CTj C‘ =
{
0; j 6= ‘;
1; j = ‘;

(15)

where we have applied manipulations analogous to those used in Eq. (9). The last equality of (15)
follows from the orthogonality of the columns Cj of Vk . Since the polynomial s‘ is of degree ‘, the
columns of Vk span the Krylov subspace

Kk(A; b):=span{b; Ab; : : : ; Ak−1b};
i.e.,

range (Vk) =Kk(A; b): (16)

We also will use the following form of the Lanczos decomposition:

AVk−1 = VkTk;k−1; (17)

where Tk;k−1 is the leading principal k × (k − 1) submatrix of Tk .
Introduce the QR-factorization of Tk , i.e., let

Tk = QkRk; Qk; Rk ∈ Rk×k ; QTk Qk = Ik ; (18)
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where Rk = [r
(k)
j‘ ]

k
j; ‘=1 is upper triangular. Also, de�ne

Tk;k−1 = Qk

[ �Rk−1
0

]
= Qk;k−1 �Rk−1; (19)

where �Rk−1 is the leading principal submatrix of order k−1 of Rk , and Qk;k−1 ∈ Rk×(k−1) consists of
the �rst k − 1 columns of Qk . For de�niteness, we assume that the diagonal entries in the triangular
factors in all QR-factorizations of this paper are nonnegative.
The following manipulations of the Lanczos decomposition (11) give an iterative method, whose

associated iteration polynomials satisfy (6). The manipulations are closely related to those re-
quired in the derivation of the implicitly restarted Lanczos method; see, e.g., [5]. Substituting the
QR-factorization (18) into the Lanczos decomposition (11) yields

AVk = VkQkRk + fk ẽ
T
k ; (20)

which after multiplication by Qk from the right gives

AṼ k = Ṽ k T̃ k + fk ẽ
T
k Qk ; Ṽ k :=VkQk; T̃ k :=RkQk: (21)

The matrix Ṽ k = [C̃ (k)1 ; C̃
(k)
2 ; : : : ; C̃

(k)
k ] has orthonormal columns and T̃ k is the symmetric tridiagonal

matrix obtained from Tk by applying one step of the QR-algorithm with shift zero.
A relation between the �rst columns C1 and C̃ (k)1 of Vk and Ṽ k , respectively, is easily shown.

Assume that k ¿ 1 and multiply (20) by ẽ1 from the right. We obtain

AVk ẽ1 = Ṽ kRk ẽ1 + fk ẽ
T
k ẽ1;

which simpli�es to

AC1 = r (k)11 C̃
(k)
1 ;

where we have used that Rk ẽ1 = r
(k)
11 ẽ1. Thus,

C̃ (k)1 = Ab=||Ab||:
Since Tk is tridiagonal, the orthogonal matrix Qk in the QR-factorization (18) is of upper

Hessenberg form. It follows that all but the last two components of the vector ẽTk Qk are guar-
anteed to vanish. Therefore, decomposition (21) di�ers from a Lanczos decomposition in that the
last two columns of the matrix fk ẽ

T
k Qk may be nonvanishing.

Let �Vk−1 be the matrix made up by the �rst k − 1 columns of Ṽ k . Note that
�Vk−1 = VkQk;k−1; (22)

where Qk;k−1 is de�ned by (19). Generally, �Vk−1 6= Ṽk−1; see Section 2.2 for details. Removing the
last column from each term in Eq. (21) yields the decomposition

A �Vk−1 = �Vk−1T̃ k−1 + �f k−1ẽ
T
k−1; (23)

where �V
T
k−1 �f k−1 = 0, �V

T
k−1 �Vk−1 = Ik−1 and T̃ k−1 is the leading principal submatrix of order k − 1 of

the matrix T̃ k . Thus, decomposition (23) is a Lanczos decomposition with initial vector C̃ (k)1 of �Vk−1
proportional to Ab. Analogously to (16), we have

range ( �Vk−1) =Kk−1(A; Ab): (24)
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We determine the iteration polynomials (2), and thereby the approximate solutions xk of (1), by
requiring that

xk = qk−1(A)b= �Vk−1zk−1 (25)

for some vector zk−1 ∈ Rk−1. It follows from (24) that any polynomial qk−1 determined by (25)
satis�es (6). We choose zk−1, and thereby qk−1 ∈ �k−1, so that the residual error (3) associated with
the approximate solution xk of (1) satis�es the Petrov–Galerkin equation

0= V Tk−1rk = V
T
k−1b− V Tk−1A �Vk−1zk−1; (26)

which, by using (12) and factorization (22), simpli�es to

||b||ẽ1 = (AVk−1)TVkQk;k−1zk−1: (27)

We remark that if the matrix �Vk−1 in (26) is replaced by Vk−1, then the standard SYMMLQ method
[16] is obtained. The iteration polynomial qk−1 associated with the standard SYMMLQ method, in
general, does not satisfy condition (6). The implementation of our method uses the QR-factorization
of the matrix Tk , similarly as the implementation of the SYMMLQ method described in [8, Section
6.5]. In contrast, the implementation of the SYMMLQ method presented in [16] is based on the
LQ-factorization of Tk .
It follows from (17) and (19) that

(AVk−1)TVkQk;k−1 = T Tk; k−1Qk;k−1 = �R
T
k−1: (28)

Substituting (28) into (27) yields

�R
T
k−1zk−1 = ||b||ẽ1: (29)

This de�nes the iterative method.
Recursion formulas for updating the approximate solutions xk inexpensively are derived in Section

2.2. In the remainder of this subsection, we discuss how to evaluate the right-hand side of (5). Eqs.
(24) and (25) show that xk ∈ Kk−1(A; Ab), and therefore there is a vector yk−1 ∈ Rk−1, such that

A−1xk = Vk−1yk−1: (30)

Thus, by (17),

xk = AVk−1yk−1 = VkTk;k−1yk−1; (31)

and, by (25) and (22), we have

xk = VkQk;k−1zk−1:

It follows that

Qk;k−1zk−1 = Tk;k−1yk−1: (32)

Multiplying this equation by QTk; k−1 yields, in view of (19), that

zk−1 = QTk; k−1Tk;k−1yk−1 = �Rk−1yk−1: (33)

Application of (30), (12), (33) and (29), in order, yields

bTA−1xk = bTVk−1yk−1 = ||b||ẽT1yk−1 = ||b||ẽT1 �R
−1
k−1zk−1 = z

T
k−1zk−1: (34)
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It follows from (25) that xTkxk = z
T
k−1zk−1. This observation and (34) show that Eq. (5) can be

written in the form

eTk ek = r
T
k A

−2rk = bTA−2b− zTk−1zk−1: (35)

The term zTk−1zk−1 is straightforward to evaluate from (29). Section 3 describes how easily com-
putable upper and lower bounds, or estimates, of bTA−2b can be derived by using Gauss-type quadra-
ture rules. In this manner, we obtain easily computable upper and lower bounds, or estimates, of the
norm of ek . Details are described in Section 3.
Assume for the moment that n steps of the Lanczos process have been carried out to yield the

Lanczos decomposition AVn = VnTn, analogous to (11). Using the QR-factorization (18) of Tn and
the property (12) yields

bTA−2b= ||b||2ẽT1V Tn A−2Vnẽ1 = ||b||2ẽT1T−2
n ẽ1

= ||b||2ẽT1R−1
n R

−T
n ẽ1:

Substituting this expression into (35) and using (29) shows that

eTk ek = ||b||2ẽT1R−1
n R

−T
n ẽ1 − ||b||2ẽT1 �R

−1
k−1 �R

−T
k−1ẽ1: (36)

The right-hand side of (36) is analogous to expressions for the A-norm of the error ek discussed in
[10,11,14].

2.2. Updating formulas for the iterative method

We describe how the computation of the iterates xk de�ned by (25) can be organized so that
storage of only a few n-vectors is required.
Let the matrix Tk in (11) have the entries

Tk =




�1 �1 0
�1 �2 �2
�2 �3

. . .
. . . . . . �k−2
�k−2 �k−1 �k−1

0 �k−1 �k



∈ Rk×k ; (37)

where according to the discussion following equation (12) we may assume that the �j are nonvan-
ishing. This property of the �j secures that the eigenvalues of Tk are distinct. Introduce the spectral
factorization

Tk =Wk�kW T
k ; Wk ∈ Rk×k ; W T

k Wk = Ik ;

�k = diag[�
(k)
1 ; �

(k)
2 ; : : : ; �

(k)
k ]; � (k)1 ¡� (k)2 ¡ · · ·¡� (k)k : (38)
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The QR-factorization (18) of Tk is computed by applying k − 1 Givens rotations

G( j)k :=



Ij−1

cj sj
−sj cj

Ik−j−1


 ∈ Rk×k ; c2j + s

2
j = 1; sj¿0; (39)

to Tk , i.e.,

Rk :=G
(k−1)
k G(k−2)k · · ·G(1)k Tk ; Qk :=G

(1)T
k G(2)Tk · · ·G(k−1)Tk ; (40)

see, e.g., [12, Chapter 5] for a discussion on Givens rotations. In our iterative method the matrix
Qk is not explicitly formed; instead we use representation (40). Since Tk is tridiagonal, the upper
triangular matrix Rk has nonvanishing entries on the diagonal and the two adjacent superdiagonals
only.
The matrix Tk in (37) is determined by k steps of the Lanczos process. After an additional step,

we obtain the Lanczos decomposition

AVk+1 = Vk+1Tk+1 + fk+1ẽ
T
k+1; (41)

analogous to (11). For future reference, we remark that the last subdiagonal entry of the symmetric
tridiagonal matrix Tk+1 may be computed by

�k :=|| fk || (42)

already after completion of k Lanczos steps.
The matrix Tk+1 has the QR-factorization

Tk+1 = Qk+1Rk+1; (43)

whose factors can be computed from Qk and Rk in a straightforward manner. We have

Qk+1 =

[
Qk 0

0T 1

]
G(k)Tk+1 ∈ R(k+1)×(k+1);

Qk+1; k =

[
Qk 0

0T 1

]
G(k)Tk+1; k ∈ R(k+1)×k ; (44)

where G (k)
k+1 is de�ned by (39) and G

(k)
k+1; k ∈ R(k+1)×k is made up of the �rst k columns of G (k)

k+1.
We obtain updating formulas for computing the triangular matrix Rk+1 in (43) from the matrix Rk

in (40) by expressing these matrices in terms of their columns

Rk = [r
(k)
1 ; r

(k)
2 ; : : : ; r

(k)
k ]; Rk+1 = [r

(k+1)
1 ; r (k+1)2 ; : : : ; r (k+1)k ; r (k+1)k+1 ]:

Comparing (18) and (43) yields

r (k+1)j =

[
r (k)j

0

]
; 16j¡k (45)
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and

r (k+1)k = G (k)
k+1

[
r (k)k
�k

]
;

r (k+1)k+1 = G (k)
k+1G

(k−1)
k+1 Tk+1ẽk+1: (46)

Thus, the entries of all the matrices R1; R2; : : : ; Rk+1 can be computed in only O(k) arithmetic

oating-point operations.
The matrix �Rk = [�r

(k)
j‘ ]

k
j; ‘=1 de�ned by (19) is the leading principal submatrix of Rk+1 of order k

and agrees with Rk = [r
(k)
j‘ ]

k
j; ‘=1 except for the last diagonal entry. Eq. (46) and the fact that �k is

nonvanishing yield

�r (k)kk ¿ r (k)kk ¿0; (47)

and when Tk is nonsingular, we have r
(k)
kk ¿ 0.

We turn to the computation of the columns of

Ṽ k+1 = [C̃ (k+1)1 ; C̃ (k+1)2 ; : : : ; C̃ (k+1)k+1 ]:=Vk+1Qk+1 (48)

from those of the matrix Ṽ k , where Vk+1 is determined by the Lanczos decomposition (41) and Qk+1
is given by (44). Substituting (44) into the right-hand side of (48) yields

Ṽ k+1 = [Vk; Ck+1]Qk+1 = [Ṽ k ; Ck+1]G(k)Tk+1

= [ �Vk−1; ck C̃ (k)k + skCk+1;−sk C̃ (k)k + ckCk+1]: (49)

Thus, the �rst k − 1 columns of the matrix Ṽ k+1 are the columns of �Vk−1. The columns C̃ (k+1)k and
C̃ (k+1)k+1 of Ṽ k+1 are linear combinations of the last columns of Ṽ k and Vk+1.
Assume that the solution zk−1 of the linear system (29) is available. Since the matrix �Rk is upper

triangular and �Rk−1 is the leading principal submatrix of order k − 1 of �Rk , the computation of the
solution zk = [�1; �2; : : : ; �k]

T of

�R
T
k zk = ||b||ẽ1 (50)

is easy. We have

zk =

[
zk−1

�k

]
; �k =−( �r (k)k−2; k�k−2 + �r (k)k−1; k�k−1)= �r

(k)
kk : (51)

Hence, only the last column of the matrix �Rk is required.
We are now in a position to compute xk+1 from xk . Eqs. (25) and (49) yield

xk+1 = �V kzk = �Vk−1zk−1 + �k C̃ (k+1)k = xk + �k C̃ (k+1)k ;

where we have used that C̃ (k+1)k is the last column of �V k . Note that only the last few columns of Vk
and Ṽ k have to be stored in order to update the approximate solution xk .

3. Quadrature rules of Gauss-type for error estimation

This section describes how to bound or compute estimates of the matrix functional (8) by approx-
imating the Stieltjes integral representation (9) by quadrature rules of Gauss-type. A nice discussion
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on the application of Gauss quadrature rules to the evaluation of upper and lower bounds of certain
matrix functionals is presented in [9]. Related discussions can also be found in [2,4,11].

3.1. Gauss quadrature rules

Let f be a 2k times continuously di�erentiable function de�ned on the interval [�1; �n], which
contains the support of the measure !. The k-point Gauss quadrature rule associated with ! for the
computation of an approximation of the integral (10) is given by

Gk(f):=
k∑
j=1

f(� (k)j )!
(k)
j ; ! (k)

j :=||b||2(ẽT1Wk ẽj)2; (52)

where the � (k)j and Wk are de�ned by (38). The nodes and weights of the Gauss rule are uniquely
determined by the requirement

Gk(p) =I(p); ∀p ∈ �2k−1; (53)

where I is de�ned by (10). We also will use the representation

Gk(f) = ||b||2ẽT1f(Tk)ẽ1: (54)

The equivalence of (52) and (54) is shown in [9] and follows by substituting the spectral factorization
(38) into (54). The integration error

Ek(f):=I(f)− Gk(f)

can be expressed as

Ek(f) =
f(2k)(�̃

(k)
)

(2k)!

∫ ∞

−∞

k∏
‘=1

(t − � (k)‘ )2 d!(t) (55)

for some �̃
(k)
in the interval [�1; �n], where f(2k) denotes the derivative of order 2k of the function

f; see, e.g., [9] or [18, Section 3.6] for details.
In the remainder of this section, we will assume that f is given by (8) and that the matrix A

is positive de�nite. Then f(2k)(t)¿ 0 for t ¿ 0, and the constant �̃
(k)
in (55) is positive. It follows

from (55) that Ek(f)¿ 0, and therefore

Gk(f)¡I(f) = F(A) = bTA−2b; (56)

where F(A) is de�ned by (8).
Representation (54) of the Gauss quadrature rule can be simpli�ed by using the QR-factorization

(18) of Tk when f is given by (8),

Gk(f) = ||b||2ẽT1T−2
k ẽ1 = ||b||2ẽT1R−1

k R
−T
k ẽ1 = ||b||2||R−T

k ẽ1||2: (57)

It is easy to evaluate the right-hand side of (57) when the solution zk−1 of (29) is available. Let
z̃k ∈ Rk satisfy

RTk z̃k = ||b||ẽ1: (58)

Then

Gk(f) = z̃
T
k z̃k : (59)



D. Calvetti et al. / Journal of Computational and Applied Mathematics 127 (2001) 93–119 103

Since all entries r (k)j‘ of Rk and �r
(k)
j‘ of �Rk are the same, except for r

(k)
kk 6= �r (k)kk , the solution of (58)

is given by

z̃k =

[
zk−1

�̃k

]
; �̃k =−( �r (k)k−2; k�k−2 + �r (k)k−1; k�k−1)=r

(k)
kk : (60)

Substituting inequality (56) into (35) (with k replaced by k+1) and using representation (59) yields

eTk+1ek+1 ¿ z̃Tk z̃k − zTk zk = �̃
2

k − �2k ; (61)

where the equality follows from (51) and (60). A comparison of (51) and (60) yields, in view of
inequality (47), that |�̃k |¿|�k |, and therefore the right-hand side of (61) is nonnegative. Moreover,
if �̃k 6= 0, then |�̃k |¿ |�k |, and we obtain

||ek+1||¿
√
�̃
2

k − �2k ¿ 0: (62)

Thus, Gauss quadrature rules give easily computable lower bounds for the error in the approximate
solutions generated by the iterative method when applied to linear systems of equations with a
symmetric positive-de�nite matrix.

3.2. Anti-Gauss quadrature rules

Let the matrix A be symmetric and positive de�nite. If the smallest eigenvalue �1 of A were
explicitly known, then an upper bound of (56) could be computed by a (k + 1)-point Gauss–Radau
quadrature rule with a �xed node between �1 and the origin; see [9,10] for details. The computed
bound typically improves the further away from the origin we can allocate the �xed node. However,
accurate lower bounds for �1 are, in general, not available. We therefore propose to use anti-Gauss
quadrature rules to compute estimates of the error that generally are of opposite sign as Ek(f).
Anti-Gauss rules were introduced in [13], and their application to the evaluation of matrix func-

tionals was explored in [4]. Let f be a smooth function. Analogously to representation (54) of the
k-point Gauss rule, the (k+1)-point anti-Gauss quadrature rule associated with ! for the computation
of an approximation of integral (10) is given by

�Gk+1(f):=||b||2ẽT1f( �Tk+1)ẽ1; (63)

where

�Tk+1 =




�1 �1 0
�1 �2 �2
�2 �3

. . .
. . . . . . �k−1
�k−1 �k

√
2�k

0
√
2�k �k+1



∈ R(k+1)×(k+1): (64)

Thus, �Tk+1 is obtained from Tk+1 by multiplying the last o�-diagonal entries by
√
2. We note that

the determination of �Tk+1 requires application of k + 1 steps of the Lanczos process; cf. (11).
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The (k + 1)-point anti-Gauss rule is characterized by the requirement that the integration error

�Ek+1(f):=I(f)− �Gk+1(f)

satis�es

�Ek+1(p) =−Ek(p); ∀p ∈ �2k+1;

which can be written in the equivalent form

�Gk+1(p) = (2I − Gk)(p); ∀p ∈ �2k+1: (65)

Assume for the moment that we can carry out n steps of the Lanczos process without break down.
This yields an orthonormal basis {Cj}nj=1 of Rn and an associated sequence of polynomials {sj}n−1j=0

de�ned by (13) that satisfy (15). Expanding the function f on the spectrum of A, denoted by �(A),
in terms of the polynomials sj yields

f(t) =
∑n−1

j=0
�jsj(t); t ∈ �(A); (66)

where �j = (f; sj), with the inner product de�ned by (14).
In view of I(sj) = 0 for j¿ 0 and (53), it follows from (66) that

I(f) = �0I(s0) = �0Gk(s0): (67)

Therefore, applying the Gauss rule Gk and anti-Gauss rule �Gk+1 to (66), using (53), (65) and (67),
yields for n¿2k + 2 that

Gk(f) =I(f) +
n−1∑
j=2k

�jGk(sj); (68)

�Gk+1(f) =
n−1∑
j=0

�j �Gk+1(sj) =
2k+1∑
j=0

�j(2I − Gk)(sj) +
n−1∑

j=2k+2

�j �Gk+1(sj)

=
2k+1∑
j=0

�j2I(sj)−
2k+1∑
j=0

�jGk(sj) +
n−1∑

j=2k+2

�j �Gk+1(sj)

=I(f)− �2kGk(s2k)− �2k+1Gk(s2k+1) +
n−1∑

j=2k+2

�j �Gk+1(sj): (69)

Assume that the coe�cients �j converge rapidly to zero with increasing index. Then the leading
terms in expansions (68) and (69) dominate the error, i.e.,

Ek(f) = (I − Gk)(f) ≈ −�2kGk(s2k)− �2k+1Gk(s2k+1);
�Ek+1(f) = (I − �Gk+1)(f) ≈ �2kGk(s2k) + �2k+1Gk(s2k+1); (70)

where ≈ stands for “approximately equal to”. This leads us to expect that, in general, the errors
Ek(f) and �Ek+1(f) are of opposite sign and of roughly the same magnitude.
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In the remainder of this subsection, we let f be de�ned by (8) and discuss the evaluation of
anti-Gauss rules for this particular integrand. Introduce the QR-factorization

�Tk+1 = �Qk+1 �Rk+1; �Qk+1; �Rk+1 ∈ R(k+1)×(k+1); �Q
T

k+1
�Qk+1 = Ik+1; (71)

where �Rk+1 = [ �r
(k+1)
j‘ ]k+1j; ‘=1 is upper triangular. Using representation (63), we obtain, analogously to

(57), that

�Gk+1(f) = ||b||2ẽT1 �T
−2
k+1ẽ1 = ||b||2ẽT1 �R

−1
k+1
�R
−T
k+1ẽ1 = ||b||2|| �R−T

k+1ẽ1||2: (72)

Since by (56) we have Ek(f)¿ 0, Eq. (70) suggests that, typically, �Ek+1(f)¡ 0. Thus, we expect
that for many symmetric positive-de�nite matrices A, right-hand side vectors b and values of k, the
inequality

�Gk+1(f)¿I(f) = F(A) = bTA−2b (73)

holds, where f and F are given by (8).
Let �zk+1 satisfy

�R
T
k+1 �zk+1 = ||b||ẽ1: (74)

Then it follows from (72) that

�Gk+1(f) = �zTk+1 �zk+1: (75)

The matrix �Rk+1 can be determined when k +1 Lanczos steps have been completed, and so can the
approximate solution xk+1 of (1). Substituting (73) into (35) (with k replaced by k + 1) and using
representation (75) suggests that the inequality

eTk+1ek+1¡ �zTk+1 �zk+1 − zTk zk (76)

holds for many symmetric positive-de�nite matrices A, right-hand side vectors b and values of k.
We evaluate the right-hand side of (76) by using the close relation between the upper triangular

matrices �Rk+1 and �Rk . Assume that �Rk is nonsingular and that �k+1 6= 0. It is easy to see that the k×k
leading principal submatrix of �Rk+1 agrees with �Rk except for its last diagonal entry. A comparison
of (74) with (29) (with k − 1 replaced by k) shows that

�zk+1 =



zk−1

��
(k+1)

k

��
(k+1)

k+1


 ;

where

��
(k+1)

k =−( �r (k)k−2; k�k−2 + �r (k)k−1; k�k−1)= �r
(k+1)
kk ;

��
(k+1)

k+1 =−( �r (k+1)k−1; k+1�k−1 + �r (k+1)k; k+1
��
(k+1)

k )= �r (k+1)k+1; k+1

and the �j are entries of zk−1. Thus,

�zTk+1 �zk+1 − zTk zk = ( ��
(k+1)

k+1 )
2 + ( ��

(k+1)

k )2 − �2k :
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Substitution of this identity into (76) yields

||ek+1||¡
√
( ��
(k+1)

k+1 )2 + ( ��
(k+1)

k )2 − �2k : (77)

According to the above discussion, we expect the argument of the square root to be positive and
the inequality to hold for many symmetric positive-de�nite matrices A, right-hand side vectors b and
values of k. We refer to the right-hand side of (77) as an upper estimate of the norm of the error
ek+1. However, we point out that inequality (77) might be violated for some values of k. This is
illustrated in the numerical examples of Section 4.

3.3. Gauss–Radau quadrature rules

Throughout this section we assume that the matrix A is nonsingular and inde�nite. Thus, there is
an index m such that eigenvalues (7) of A satisfy

�16�26 · · ·6�m¡ 0¡�m+16 · · ·6�n: (78)

The application of Gauss quadrature rules (52) to estimate the norm of the error in approximate
solutions xk might not be possible for all values of k when A is inde�nite, because for some k ¿ 0
one of the nodes � (k)j of the Gauss rule (52) may be at the origin, and the integrand f given by (8)
is not de�ned there. In fact, numerical di�culties may arise also when one of the nodes � (k)j is very
close to the origin. We circumvent this problem by modifying the integrand and estimating the norm
of the error in the computed approximate solutions by Gauss–Radau quadrature rules associated with
the measure ! and with a �xed node at the origin. Note that since the matrix A is inde�nite, the
origin is inside the smallest interval containing the spectrum of A. Some of the desired Gauss–Radau
rules therefore might not exist. We will return to this issue below.
Let f be a smooth function on a su�ciently large interval that contains �(A) in its interior. We

may, for instance, think of f as analytic. The (k +1)-point Gauss–Radau quadrature rule associated
with the measure ! and with a �xed node �̂1 at the origin for the integration of f is of the form

Ĝk+1(f):=
k+1∑
j=1

f(�̂
(k+1)

j )!̂ (k+1)
j : (79)

It is characterized by the requirements that

Ĝk+1(p) =I(p); ∀p ∈ �2k and �̂
(k+1)

1 = 0:

The nodes and weights in (79) are given by formulas analogous to those for the nodes and weights
of standard Gauss rules (52). Introduce the symmetric tridiagonal matrix

T̂ k+1 =




�1 �1 0
�1 �2 �2
�2 �3

. . .
. . . . . . �k−1
�k−1 �k �k

0 �k �̂k+1



∈ R(k+1)×(k+1); (80)
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where

�̂k+1:=�2k ẽ
T
k T

−1
k ẽk

and Tk is given by (37). In view of the discussion on the computation of �k , see (42), all entries
of the matrix T̂ k+1 can be computed after k Lanczos steps have been completed, provided that the
matrix Tk is invertible. Since A is inde�nite, we cannot exclude that Tk is singular. However, because
of the interlacing property of the eigenvalues of the matrices Tk and Tk+1, it follows that if Tk is
singular, then Tk+1 is not. Thus, the desired (k +1)-point Gauss–Radau rules can be determined for
at least every other value of k.
De�ne the spectral factorization

T̂ k+1 = Ŵ k+1�̂k+1Ŵ
T
k+1; Ŵ k+1 ∈ R(k+1)×(k+1); Ŵ

T
k+1Ŵ k+1 = Ik+1;

�̂k+1 = diag [�̂
(k+1)

1 ; �̂
(k+1)

2 ; : : : ; �̂
(k+1)

k+1 ]; 0 = �̂
(k+1)

1 ¡ |�̂ (k+1)2 |6 · · ·6|�̂ (k+1)k+1 |:

The eigenvalues �̂
(k+1)

j are distinct and may be positive or negative. The nodes in the Gauss–Radau

quadrature rule (79) are the eigenvalues �̂
(k+1)

j and the weights are given by

!̂ (k+1)
j :=||b||2(ẽT1Ŵ k+1ẽj)2;

see [9] for details. Analogously to (54), the quadrature rule (79) also can be represented by

Ĝk+1(f) = ||b||2ẽT1f(T̂ k+1)ẽ1: (81)

Let for the moment f be a function that is analytic on an interval that contains all eigenvalues

of A and all Gauss–Radau nodes �̂
(k+1)

j , and satis�es

f(t):=


 1=t

2; t ∈ �(A) ∪ {�̂ (k+1)j }k+1j=2 ;

0; t = 0:
(82)

Then

I(f) = bTA−2b= bT(A†)2b

and representations (79) and (81) yield

Ĝk+1(f) =
k+1∑
j=2

(�̂
(k+1)

j )−2!̂ (k+1)
j = ||b||2ẽT1 (T̂

†
k+1)

2ẽ1 = ||b||2||T̂ †
k+1ẽ1||2; (83)

where M † denotes the Moore–Penrose pseudoinverse of the matrix M .

Proposition 3.1. Let the index m be determined by (78). Then the nonvanishing eigenvalues �̂
(k+1)

j

of the Gauss–Radau matrix T̂ k+1 satisfy

�̂
(k+1)

j 6�m or �̂
(k+1)

j ¿�m+1; 26j6k + 1:

Proof. The result follows by combining Lemmas 5:2 and 5:3 of [3].
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The proposition secures that none of the nonvanishing Gauss–Radau nodes is closer to the origin
than the eigenvalue of A of smallest magnitude. This property does not hold for nodes in Gauss rules
(52). Therefore, the symmetric tridiagonal matrices (37) associated with Gauss rules may be nearly
singular, even when A is well conditioned. Near singularity of the tridiagonal matrices (37) makes
the computed error estimates sensitive to propagated round-o� errors, and may cause the computed
estimates to be of poor quality. This is illustrated in Examples 3 and 4 of Section 4.
The error (I−Ĝk+1)(f) can be expressed by a formula similar to (55). However, the derivatives of

the integrand f change sign on the interval [�1; �n] and the sign of the error cannot be determined
from this formula. The Gauss–Radau rule only provides estimates of the error in the computed
approximate solutions. The computed examples of Section 4 show these estimates to be close to the
norm of the error in the computed approximate solutions. This is typical for our experience from a
large number of computed examples.
We turn to the evaluation of Gauss–Radau rules (83). De�ne the QR-factorization

T̂ k+1 = Qk+1R̂k+1; Qk+1; R̂k+1 ∈ R(k+1)×(k+1); QTk+1Qk+1 = Ik+1; (84)

where R̂k+1=[r̂
(k+1)
j‘ ]k+1j; ‘=1 is upper triangular. Since T̂ k+1 is singular, the entry r̂

(k+1)
k+1; k+1 vanishes. Note

that the matrix Qk+1 in (84) is the same as in (43). Moreover, the leading k× k principal submatrix
of R̂k+1 is given by the matrix �Rk in (50).
Let q (k+1)k+1 denote the last column of Qk+1. Then

q(k+1)Tk+1 T̂ k+1 = q
(k+1)T
k+1 Qk+1R̂k+1 = ẽ

T
k+1R̂k+1 = 0

T:

By symmetry of T̂ k+1 it follows that

T̂ k+1q
(k+1)
k+1 = 0;

i.e., q (k+1)k+1 spans the null space of T̂ k+1 and is orthogonal to the range of T̂ k+1. In particular,
Ik+1 − q (k+1)k+1 q

(k+1)T
k+1 is the orthogonal projector onto the range of T̂ k+1.

We evaluate the right-hand side of (83) by using the QR-factorization (84) as follows. The vector
||b||T̂ †

k+1ẽ1 is the solution of minimal norm of the least-squares problem

min
yk+1∈Rk+1

||T̂ k+1yk+1 − ||b||ẽ1||: (85)

We may replace the vector ||b||ẽ1 in (85) by its orthogonal projection onto the range of T̂ k+1 without
changing the solution of the least-squares problem. Thus, ||b||T̂ †

k+1ẽ1 also is the solution of minimal
norm of the least-squares problem

min
yk+1∈Rk+1

||T̂ k+1yk+1 − (Ik+1 − q (k+1)k+1 q
(k+1)T
k+1 )||b||ẽ1||: (86)

Substituting T̂ k+1 = T̂
T
k+1 = R̂

T
k+1Q

T
k+1 into (86) and letting ŷk+1 =Q

T
k+1yk+1 yields the consistent linear

system of equations

R̂
T
k+1ŷk+1 = (Ik+1 − q (k+1)k+1 q

(k+1)T
k+1 )||b||ẽ1: (87)

Let ŷk+1 denote the minimal norm solution of (87). Then ŷk+1 = ||b||QTk+1T̂
†
k+1ẽ1 and therefore

||ŷk+1||= ||b||||T̂ †
k+1ẽ1||: (88)
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Since r̂ (k+1)k+1; k+1 = 0 and r̂
(k+1)
jj ¿ 0 for 16j6k, the minimal norm solution of (87) is of the form

ŷk+1 =

[
�yk

0

]
; �yk ∈ Rk :

The vector �yk satis�es the linear system of equations obtained by removing the last row and column
of the matrix and the last entry of the right-hand side in (87), i.e.,

�R
T
k �yk = ||b||ẽ1 − ||b|| �qkq(k+1)Tk+1 ẽ1;

where �qk ∈ Rk consists of the �rst k entries of q (k+1)k+1 . Thus,

�yk = zk + �zk ; (89)

where zk solves (50) and �zk satis�es

�R
T
k �zk =−||b|| �qkq(k+1)Tk+1 ẽ1: (90)

A recursion formula for the vector q (k+1)k+1 can be derived easily. It follows from representation (44)
of the matrix Qk+1 that

q (k+1)k+1 = Qk+1ẽk+1 =

[
Qk 0

0T 1

]
G(k)Tk+1 ẽk+1 =

[−skq (k)k
ck

]
; (91)

where q (k)k denotes the last column of Qk . Repeated application of Eq. (91) for increasing values of
k makes it possible to compute the vectors q(2)2 ; q

(3)
3 ; : : : ; q

(k+1)
k+1 in about k2=2 arithmetic 
oating-point

operations.
The solutions of the linear systems (90) can be evaluated by a recursion formula based on (91)

for increasing values of k as follows. Eq. (91) yields that

q(k+1)Tk+1 ẽ1 =−skq(k)Tk ẽ1;

�qk =−skq (k)k (92)

and

�qk+1 =−sk+1
[
�qk

ck

]
; (93)

where the vector �qk+1 consists of the k + 1 �rst entries of q
(k+2)
k+2 , the last column of Qk+2. As-

sume that the solution �zk of (90) is available. We would like to compute the vector �zk+1 =
[ ��
(k+1)

1 ; ��
(k+1)

2 ; : : : ; ��
(k+1)

k+1 ]
T that satis�es

�R
T
k+1 �zk+1 =−||b|| �qk+1q(k+2)Tk+2 ẽ1: (94)

Substituting (92) and (93) into (94) yields

�R
T
k+1 �zk+1 =−||b||s2k+1

[
�qk

ck

]
q(k+1)Tk+1 ẽ1;
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which shows that

�zk+1 =


 s2k+1 �zk
��
(k+1)

k+1


 ;

��
(k+1)

k+1 =−(||b||s2k+1ckq(k+1)Tk+1 ẽ1 + �r (k+1)k−1; k+1 ��
(k+1)

k−1 + �r (k+1)k; k+1
��
(k+1)

k )= �r (k+1)k+1; k+1:

Thus, assuming that the matrix �Rk+1 is available, all the vectors �z1; �z2; : : : ; �zk+1 can be computed in
O(k2) arithmetic 
oating-point operations.
Having computed the solutions of (50) and (90), the above development, and in particular Eqs.

(88) and (89), show that we can evaluate the (k + 1)-point Gauss–Radau rule (83) with integrand
(82) according to

Ĝk+1(f) = ||zk + �zk ||2:
Substituting this approximation of bTA−2b into (35) yields

eTk ek = |bTA−2b− zTk−1zk−1|
≈ |||zk + �zk ||2 − zTk−1zk−1|
= | �zTk (2zk + �zk) + �2k |;

where the last equality follows from (51). This suggests the approximation

||ek || ≈ | �zTk (2zk + �zk) + �2k |1=2: (95)

We note that the approximate solution xk of (1) and the right-hand side of (95) can be evaluated
after k Lanczos steps have been carried out and the last subdiagonal entry of the Gauss–Radau
matrix (80) has been determined by (42). Computed examples in the following section indicate that
approximation (95) typically gives accurate estimates of the norm of the error.

4. Computed examples

We describe four examples that illustrate the performance of the iterative method, the error bound
and the error estimates. All computations were carried out on an XP1000 Alpha workstation in
Matlab with about 16 signi�cant digits. In all examples we chose the initial approximate solution
x0 = 0 and terminated the iterations as soon as

||ek ||¡� (96)

with �:=1 · 10−10 or 1 · 10−11. These values of � are likely to be smaller than values of interest in
many application. Our choices of � demonstrates the possibility of computing accurate solutions and
error estimates. In fact, the error bounds and estimates perform well also for values of � smaller
than 1 · 10−11.
We determined the matrices in the linear systems in Examples 1–3 in the following fashion. Let

A:=Un�nU T
n ; �n = diag [�1; �2; : : : ; �n]; Un ∈ Rn×n; U T

n Un = In; (97)

where the eigenvector matrix Un either is the n×n identity matrix In or a random orthogonal matrix
determined by orthogonalizing the columns of an n× n real matrix with random entries. The matrix
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A is diagonal when Un = In and dense when Un is a random orthogonal matrix. We remark that
the matrices Tk and Vk in the Lanczos decomposition (11) depend on the choice of Un. Moreover,
propagated round-o� errors, due to round-o�s introduced during matrix–vector product evaluations
with the matrix A, may depend on the matrix Un.

Example 1. Let n:=1000 and assume that the diagonal entries of the matrix �n in (97) are given by
�j = 5j. We �rst let Un be a random orthogonal matrix. Then the matrix A de�ned by (97) is sym-
metric positive de�nite and dense. The right-hand side vector b is chosen so that x= 1

10 [1; 1; : : : ; 1]
T

solves (1). We terminate the iterations as soon as (96) is satis�ed with �= 1 · 10−11.
Fig. 1 (a) shows the 10-logarithm of ||ek || (solid curve), the 10-logarithm of the lower bound of

||ek || computed by Gauss quadrature (62) (dash–dotted curve), and the 10-logarithm of the upper
estimate of ||ek || computed by anti-Gauss quadrature (77) (dashed curve) as functions of the number
of iterations k. After the �rst 50 iterations, the computed lower bounds and upper estimates can be
seen to be quite close to the norm of the error in the computed approximate solutions.
The closeness between the lower bound (62), upper estimate (77), and the norm of the error

of the computed approximate solutions is also illustrated in Figs. 1(b) and (c). The former �gure

displays (�̃
2

k − �2k)1=2− ||ek || (solid curve) and (( �� (k)k )2 + ( ��
(k)

k−1)
2− �2k−1)1=2− ||ek || (dash–dotted curve)

as functions of k. These quantities are seen to converge to zero as k increases. To shed some light

on the rate of convergence, Fig. 1(c) shows the relative di�erences ((�̃
2

k − �2k)1=2 − ||ek ||)=||ek || and
((( ��

(k)

k )
2 + ( ��

(k)

k−1)
2 − �2k−1)1=2 − ||ek ||)=||ek ||, both of which converge to zero as k increases.

Fig. 1(a) also shows the 10-logarithm of the norm of the residual error (3) as a function of k
(dotted curve). The norm of the residual error is about a factor 1 · 103 larger than the norm of
the error in the corresponding approximate solution. If we would like to stop the iterations when
the error in the computed approximate solution is below a certain tolerance, then we can terminate
the computations much sooner if we base the stopping criterion on formulas (62) and (77) than
on the norm of the residual error.
We now replace the random orthogonal matrix Un in de�nition (97) of the matrix A by In. The

matrix A obtained is diagonal and has the same spectrum as the matrix used for the computations
shown in Fig. 1. The right-hand side vector b is chosen so that x= 1

10 [1; 1; : : : ; 1]
T solves (1). The

performance of the iterative method applied to this linear system is displayed by Fig. 2, which is
analogous to Fig. 1.
Figs. 1 and 2 show the Gauss and anti-Gauss rules to give good lower bounds and upper estimates

of the norm of the error in the computed approximate solutions, with the lower bounds and upper
estimates being closer to the norm of the error when Un = In than when Un was chosen to be a
random orthogonal matrix. This example illustrates that the quality of the computed error bounds
and estimates may depend on the eigenvector matrix of A.

Example 2. Let the matrix A ∈ R48×48 in the linear system (1) be of the form (97) with U48 a
random orthogonal matrix and �48 de�ned by

�i:=c +
i − 1
47

(d− c)�48−i ; i = 1; 2; : : : ; 48:
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Fig. 1. Example 1: Symmetric positive-de�nite dense matrix. (a) shows the 10-logarithm of the norm of the error (solid
curve), of the Gauss bound (62) (dash–dotted curve), of the anti-Gauss upper estimate (77) (dashed curve) and of the
norm of the residual error (dotted curve). (b) displays the error in the Gauss bound (solid curve) and anti-Gauss upper
estimate (dash–dotted curve). (c) shows the relative error in the Gauss bound (solid curve) and anti-Gauss upper estimate
(dash–dotted curve).

Here c:=0:1; d:=100 and �:=0:875. Thus, A is symmetric, positive de�nite and dense. The right-hand
side vector b is chosen so that x= [1; 1; : : : ; 1]T solves the linear system (1). We terminate the iter-
ations as soon as (96) is satis�ed with �= 1 · 10−10.
Fig. 3 is analogous to Fig. 1 and shows the performance of the iterative method, of the lower

error bound (62) and of the upper error estimate (77). The error bound (62) and error estimate (77)
are seen to be close to the norm of the error in the computed approximate solutions. The “spikes” in
Figs. 3(b) and (c) correspond to anti-Gauss rules associated with ill-conditioned tridiagonal matrices
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Fig. 2. Example 1: Symmetric positive-de�nite dense matrix. (a) shows the 10-logarithm of the norm of the error (solid
curve), of the Gauss bound (62) (dash–dotted curve), of the anti-Gauss upper estimate (77) (dashed curve) and of the
norm of the residual error (dotted curve). (b) displays the error in the Gauss bound (solid curve) and anti-Gauss upper
estimate (dash–dotted curve). (c) shows the relative error in the Gauss bound (solid curve) and anti-Gauss upper estimate
(dash–dotted curve).

(64). Ill-conditioning of the tridiagonal matrices (64) can cause loss of accuracy in the computed
error estimates.
Now replace the random orthogonal matrix U48 in de�nition (97) of the matrix A by the identity

matrix I48. The matrix A so de�ned is diagonal and has the same spectrum as the matrix used for
the computations shown in Fig. 3. The right-hand side vector b is chosen so that x = [1; 1; : : : ; 1]T

solves (1). This linear system has previously been used in computed examples in [10,11,14] with
a stopping criterion, based on the A-norm instead of the Euclidean norm, with � = 1 · 10−10. We
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Fig. 3. Example 2: Symmetric positive-de�nite dense matrix. (a) shows the 10-logarithm of the norm of the error (solid
curve), of the Gauss bound (62) (dash–dotted curve), of the anti-Gauss upper estimate (77) (dashed curve) and of the
norm of the residual error (dotted curve). (b) displays the error in the Gauss bound (solid curve) and anti-Gauss upper
estimate (dash–dotted curve). (c) shows the relative error in the Gauss bound (solid curve) and anti-Gauss upper estimate
(dash–dotted curve).

therefore use the same value of � in the present example. The performance of the iterative method,
as well as of the error bounds and estimates, are shown in Fig. 4.
Figs. 3 and 4 display that the lower bounds and upper estimates of the norm of the error in the

computed approximate solutions are closer to the norm of the error when U48 = I48 than when U48
was chosen to be a random orthogonal matrix. Thus, similarly as in Example 1, the quality of the
error bounds and estimates depends on the eigenvector matrix of A.
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Fig. 4. Example 2: Symmetric positive-de�nite diagonal matrix. (a) shows the 10-logarithm of the norm of the error (solid
curve), of the Gauss bound (62) (dash–dotted curve), of the anti-Gauss upper estimate (77) (dashed curve) and of the
norm of the residual error (dotted curve). (b) displays the error in the Gauss bound (solid curve) and anti-Gauss upper
estimate (dash–dotted curve). (c) shows the relative error in the Gauss bound (solid curve) and anti-Gauss upper estimate
(dash–dotted curve).

The following two examples are concerned with linear systems of equations with symmetric
inde�nite matrices. For such matrices, the convex hull of the spectrum contains the origin, and some
Gauss rules (52) may have a node in the interval between the largest negative and the smallest
positive eigenvalues, where the matrix has no eigenvalues. The presence of a node close to the
origin can give inaccurate estimates of the norm of the error in the computed approximate solution.
This is illustrated by Figs. 5 and 6. This di�culty is circumvented by Gauss–Radau quadrature rules,
cf. Proposition 3.1.
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Fig. 5. Example 3: Symmetric inde�nite dense matrix. (a) shows the 10-logarithm of the norm of the error (solid curve),
of the Gauss–Radau estimate (95) (dashed curve) and of the norm of the residual error (dotted curve). (b) displays the
10-logarithm of the norm of the error (solid curve), of the Gauss estimate (62) (dashed curve) and of the norm of the
residual error (dotted curve). (c) shows the error in the Gauss–Radau estimate (solid curve) and Gauss estimate (dotted
curve). (d) displays the relative error in the Gauss–Radau estimate (solid curve) and Gauss estimate (dotted curve).

Example 3. Let the matrix A in (1) be of order 491 and of the form (97), where U491 is a random
orthogonal matrix and the entries of the diagonal matrix �491 are given by

�i =

{−150 + (i − 1); i = 1; : : : ; 141;

i − 141; i = 142; : : : ; 491:

Then A is a dense matrix with eigenvalues in the interval [−150; 350]. We determine the right-hand
side vector b so that x= [1; 1; : : : ; 1]T solves the linear system (1). The iterations are terminated as
soon as (96) is satis�ed with �= 1 · 10−11.
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Fig. 6. Example 4: Symmetric inde�nite banded matrix. (a) shows the 10-logarithm of the norm of the error (solid curve),
of the Gauss–Radau estimate (95) (dashed curve) and of the norm of the residual error (dotted curve). (b) displays the
10-logarithm of the norm of the error (solid curve), of the Gauss estimate (62) (dashed curve) and of the norm of the
residual error (dotted curve). (c) shows the error in the Gauss–Radau estimate (solid curve) and Gauss estimate (dotted
curve). (d) displays the relative error in the Gauss–Radau estimate (solid curve) and Gauss estimate (dotted curve).

Fig. 5(a) shows the 10-logarithm of the error in the computed approximate solutions (solid curve),
the 10-logarithm of the error estimate determined by Gauss–Radau quadrature (95) (dashed curve),
and the 10-logarithm of the norm of the residual error (dotted curve). The error estimates computed
by Gauss–Radau quadrature can be seen to be quite close to the norm of the error in the computed
approximate solutions.
Fig. 5(b) is obtained from Fig. 5(a) by replacing the curve for the Gauss–Radau estimates (95)

with a curve that displays error estimates computed by Gauss quadrature (62). Thus, the dashed
curve of Fig. 5(b) displays the 10-logarithm of the right-hand side of (62). Note that since A is
inde�nite, formula (55) for the integration error does not reveal the sign of the error and inequality
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(56) is not guaranteed to hold. The Gauss rules only give estimates of the norm of the error in the
computed approximate solutions. The “spikes” of the dashed curve are caused by nodes of Gauss
rules being very close to the origin.
Fig. 5(c) is analogous to Fig. 3(b). The solid curve displays the error in the Gauss–Radau estimates

| �zTk (2zk + �zk) + �2k |1=2 − ||ek ||, cf. (95), and the dashed curve shows the error in the Gauss estimates
(�̃
2

k − �2k)1=2 − ||ek ||. Fig. 5(d) displays the corresponding relative errors, i.e., (| �zTk (2zk + �zk) + �2k |1=2 –
||ek ||)=||ek || (solid curve) and ((�̃2k − �2k)1=2−||ek ||)=||ek || (dashed curve). The Gauss–Radau estimates
are seen to be more reliable than the Gauss estimates.

Example 4. Let A ∈ R200×200 be de�ned by A:=B2 − �I200, where B is the standard 3-point dis-
cretization of the one-dimensional Laplacian and �:=

√
3. Thus, B2 is a pentadiagonal matrix; a

typical row has the nonvanishing entries {1;−4; 6;−4; 1}. Then A has 77 negative eigenvalues and
condition number 3:9 · 103. The right-hand side vector b is chosen so that x = [1; 1; : : : ; 1]T solves
the linear system (1). We terminate the iterations as soon as the stopping criterion (96) is satis�ed
with �= 1 · 10−11.
Figs. 6(a)–(d) are analogous to Figs. 5(a)–(d). The error estimates obtained by Gauss–Radau

rules are quite accurate, while the estimates determined by Gauss rules oscillate widely during the
�rst 77 iterations. After these initial iterations both Gauss–Radau and Gauss rules provide accurate
error estimates.

5. Conclusion

This paper describes an iterative method for the solution of linear systems of equations with a
symmetric nonsingular matrix. The iterative method is designed to allow the computation of bounds
or estimates of the error in the computed approximate solutions. Computed examples show that
the computed bounds and estimates are close to the norm of the actual errors in the computed
approximate solutions.
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