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Abstract

In a model of large distance modified gravity we compare the non-perturbative Schwarzschild solution of [G. Gabadadze, A. Iglesias, Ph
Rev. D 72 (2005) 084024, hep-th/0407049] to approximate solutions obtained previously. In the regions where there is a good qualitative agreer
between the two, the non-perturbative solution yields effects that could have observational significance. These effects reduce, by a factor of a
the predictions for the additional precession of the orbits in the Solar system, still rendering them in an observationally interesting range. The v
same effects lead to a mild anomalous scaling of the additional scale-invariant precession rate found by Lue and Starkman.

0 2005 Elsevier B.\MOpen access under CC BY license,

1. Introduction Above this scale gravity of a compact object deviates substan-
tially from the GR result. Note thad, is huge for typical astro-
The DGP model of large distance modified grajity has  physical objects. An isolated star of a solar mass would have
one adjustable parameter—the distance scal®istributions  r, ~ 100 pc. However, if we draw a sphere of a 100 pc radius
of matter and radiation which are homogeneous and isotropiwith the Sun in its center there will be many other starts en-
at scales> r. exhibit in this model the following properties: closed by that sphere. The matter enclosed by this sphere would
for distance/time scalex r. the solutions approximate Gen- have even larger,.. We could draw a bigger sphere, but it will
eral Relativity (GR) to a high accuracy, while for scajes.  enclose more matter which would yield yet larggiand so on.
they dramatically differ[1-4]. Postulating that ! ~ Ho ~  An isolated object which could be separated from a neighbor-
1042 GeV the deviations from GR could lead to interestinging one by a distance larger than its ownis a cluster of
observational consequences in late-time cosmology, see, e.galaxies. For typical clusters, ~ (few Mpo) is just somewhat
[3,5-11] larger than their size and is smaller than their average separa-
On the other hand, sources of matter and radiation withion. The above arguments suggest that interactions of isolated
typical inhomogeneity scale less thanhave somewhat differ-  clusters will be different in the DGP model. On the other hand,
ent properties. These are easier to discuss for a Schwarzschitiscales beneath a few Mpc or so, there will be agreement with
source—a spherically-symmetric distribution of matter of thethe GR results with potentially interesting small deviations. Be-
massM and radius, such thaty, <ro <L r. (ryy =2GyM low we discuss these issues in detail on an example of a single
is the Schwarzschild radius aiizly the Newton constant). For isolated Schwarzschild source. There exist in the literature two
such a source a new scale, that is a combinatioms afhdr,,, different solutions for the Schwarzschild problem in the DGP

emerges (the so-called Vainshtein sch[d): model. The first one is based on approximate expansions in the
13 r < ry andr > r, regions[1,4,13] (see alsq14,15)). We call
re=(rmr?) ™" (1) this set of results the perturbative Schwarzschild (PS) solution.

The second ongl6] is a solution that interpolates smoothly
" Comesponding author from r K ri tor > r. > ry, and is non-analytic in the either
E-mail address. ai372@nyu.edgA. Iglesias). paramete_rs used to obtam the PS soluthn. We _ca!l this the non-
1 A similar, but not exactly the same scale was discovered by Vainshtein if?€rturbative Sc_hwarzschnd (NPS) sqlutloq. It is important to
massive gravity12], hence the name. understand which of these two solutions, if any, is physically
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viable. Since neither of the two can be solved completely with-The sign of the curvature depends on a choice of the bound-
out numerical simulations, a first step to discriminate betweemry conditions in the bulk, since the latter determines the sign
them would be to look closely at the theoretical differences, asf K. There are two choices for this. The so-called conventional
well as predictions that could be tested observationally. This i$ranch corresponds to a negative (AdS like) curvature produced

the goal of the present note. by the Schwarzschild source, while the selfaccelerated branch
[2] corresponds to a positive (dS lik®) This is reflected in the
2. Qualitative discussions sign of the coefficient in (2) which takes a positive value on
the conventional branch and becomes negative on the selfaccel-
We will study separately two regimes& r, andr > r. erated branchy ~ +0.84. Therefore, there is an additional tiny

attraction toward the source on the conventional branch and a
() r < ry. Inthis regime the standardy expansion breaks repulsion of the same magnitude on the selfaccelerated branch.
down [4]. How could one proceed? One way is to perform anThis change of sign was first found by Lue and Starkifizt)
expansion in powers ofi. = r1 [4]. This expansion breaks in the context of the PS solution.
down abover ~ r, but is well suited for the: « r, domain.
(Kaloper [17] recently used a different expansion. His pro-(Il) 7 > r.. In this regime the smalin. expansion breaks
posal could prove to be useful for a broad class of problemsgown. However, the conventionaly expansion can be read-
A Schwarzschild metric in the smaik. expansion was cal- ily used[1,4]. The results argl]:
culated by Gruzino\13] (see alsq14]). It is instructive to

compare the result ¢i.3] with the NPS solution of16]. (A) Forr > r, DGP gravity is a tensor-scalar theory, where
Let us start with the Newton potentiakr). The expansion the extra scalar couples to matter with the gravitational strength:
of the exact result df16] for r « r, leads: the vDVZ phenomenof22,23]
1 (B) The Newton potential scales agrlfor r, < r < r¢
2_ . . . 2 .
_2¢ = ™ am§r2<r_*) o ) which smoothly transitions into the/ &~ potential at- > r..
r r

) These properties of the PS solution were reconfirmed in de-
wherep = 3/2 — g(ﬁ —1) =004, anda is a number to be  ajled studies of Refs[13-15,24,25] Could the PS solution
discussed in detalllbelo.vv. The above resglt, but véite: 0, IS jnterpolate fromr < r. to r > r.? The above question is re-
what was first obtained in a smail. expansiorf13]. The NPS  |5ted to the following one: what is a gravitational mass that is
solution of[16] g_|ve_sﬂ =~ 0.04, it depends on irrational POWETS feit by an object separated from the source at a distanse., ?
of m, [16], and it differs by that from the smait. expansion  The ps solution implies that this is just the bare magf
results. _ _ ‘the original source. On the other hand, one may expect that the

Is the above difference important? As was demonstrated i yature created by the source in the domai& r, would
Refs.[14] and[lg], the modification of the Newton poten.tial also contribute to this effective mass (the ADM mads]. If
in (2), although tiny, could lead to a measurable precession ofg ynless there is a hidden non-trivial cancellation, a putative
orbits in the Solar system (see, RE9] for further studies).  gpserver at > r, would measure an effective mass different
The above works used the potentials obtained in the small  from 7. The above property is captured by the NPS solution of

expansion, e.g., use@) with g = 0. Although g is tiny, the  Ref. [16]. It has the following features:
ratio (r,/r) is typically huge in the cases of interest, therefore,

taking into account the effects of a non-zefccould lead to (A’) Forr>> r, itis a solution of a tensor-scalar gravity (as
appreciable differences in the predictions of the PS and NP, (a) apove):
solutions. We will study this issue in the next section. (B') The Newton potential scales ag2 for r > r, (differ-

Consequences of the modified poten{@icould be under- gt from (B)).
stood as well in terms of invariant curvatures. The Schwarz-
schild solution in GR has zero scalar curvature. In contrast with - A attractive feature of the NPS solution is that it smoothly
this, the solutior(2) generates a non-zero Ricci scalar that ex-jnterpolates from < r, to r > r.. However, a somewhat un-
tends tor ~ r, in the NPS solution (se¢16] and discussions 5ya| fact is that it does not recover the results of the
below). This can be seen by looking at the trace equation in thgypansion. This will be discussed in the reminder of this sec-

DGP model: tion (readers who are not interested in these somewhat technical
R—3mK =T, 3) :fys)ues could directly go to the next section without loss of clar-
whereR is the 4D Ricci scalark is a trace of an extrinsic cur- Why is that, that the NPS solutiofl6] does not agree

vature andr is a trace of the stress-tensor times@y (for the  with the results of the perturbativ&y expansion, even in the
ADM formalism in the DGP model see, e.§20,21). This has  regimer > r,, where the latter approximation is internally self-

to be compared with the trace equation in GR=T. The sec- consistent? There could be a few different reasons for this.
ond term on the LHS of3) is not zero outside the source and, Formally, one is solving non-linear partial differential equa-
therefore, gives rise to non-zem®. This curvature, although tions and these can have different solutions even with the same
tiny, extends to enormous scales of the order of r, [16]. boundary conditions. In our two cases, however, the boundary
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conditions are somewhat different: the PS solution is supposetfp denotes the 4D Planck mass and is fixed by the Newton
to describe the same makkat short and large distances, while constant. On the other hand, the scadg is traded for the pa-
the NPS solution matche¥ at the short scales but asymp- rameter. = M,Z,/ZMf discussed in the previous section.

totes to a screened mass at the large séalgsen either the The NPS solution studied if16] is found by considering a
PS and NPS solutions belong to different sectors and are bostatic metric with spherical symmetry on the brane and &ith
stable, or at least one of them should be unstable. In the fosymmetric line element:

mer case, one should distinguish between them observationally, i 5 2o )

while in the latter case a relevant point would be that the ADMds” = —€~" dr“ + e dr?+r2dR% +ydrdy + € dy?,  (6)

mass of the NPS solution is small@6]. In a very qualitative \heres. y, o are functions of- = ,/x¥g,,x" andy. TheZ
way, this can be understood as follows. A deviation from thesymmetry across the brane implies thats an odd function

conventional met_ric at < r _scales asnc/rur (we ignore ¢ y while the rest are even. The brane is chosen to be straight
small 8 here). This can give rise to a scaling of the scalar curi, the above coordinate systém.

vaturem/ryr~*/?. The curvature extends roughly to~ r, The exact solution fop — 0+ is given implicitly as follows:
and the integrated curvature Sca|e%er/2 ~rpy. Then,

the “effective mass” due to this curvature can be estimated ag* — 1 — @ (7)
rMM}% ~ M, which is of the order of the mass itself. r

On the other hand, it may well be that there is a certain “diswhereP is obtained from
continuity” between the linearized and full non-linear versions 3
of the DGP model in 5D. This could result from a different P(r) = —EmE/dr r2U(r), (8)
number of constraints one has to satisfy depending on whether
solutions are looked for in the linearized approximation or inin Which U can have two different behaviors corresponding to
the full non-linear theory. For instance, one of the bulk equathe solution of the following two equations (giving rise to a
tions can be combined with the junction condition in 4D to conventional and selfaccelerated branch respectively):

yield: 1

(ar)® = — a+3v+ /) o ©
3m?R = R? — 3R?,. (4) U2(3+3U +/3£)2V3(—5-3U + f)
On a flat background both terms on the RH4ycontain at .8 _ _ (—=5—3U + f)(~3—3U — /3/)?V3 (10)
least quadratic terms in the fields. Therefore, according}o (U +22(1+3U + f) '

R has to be zero in the linearized approximation. The latter
condition happens to be a consequence of the other lineariz
equations of the theory as well; therefo(4) is trivially satis-
fied as long as those other equations are fulfilled. This chang
at the non-linear level: E¢4) becomes an additional constraint P(r)
that one has to satisfy on top of the other equations. Because 6= T o
this: (i) The solutiorjs of the Iin_earized theory may not be SUP-The off-diagonal metric component, is determined from
ported by the non-linear equations (the phenomenon known as
“linearization instability” in gravity). (i) New non-perturbative 2-2p,  (r4ye?),

eref =+/1+6U + 3U? andk is an integration constant.
Note that in this parametrization the gravitational potential
ég weak field approximation is easily obtained, namely

(11)

solutions that do not exist in the linearized theory may emerge. p = =~ " e %), (12)
One way to decide on the point (i), is to study solutions for other dth ;
sources and see whether a similar phenomenon takes place. THad theyy component from
NPS solution 0f16] is an explicit example of the point (ii). 4,671y 72
& = mz[%] +e*y2, (13)
3. Explicit solution o
The profilex, for y — 04- can be computed as well:
We consider the action of the DGP modi&]: _
Ay =€ )‘y,. (14)
S= Mf/d5x V=8R+ M3 f d'x vV-3R. (5)  The two integration constants,and the one produced in the

integration(8), are determined by imposing appropriate bound-
Here, the(4 + 1) coordinates are™ = (x#,y), »=0,....3  ary conditions at the source (namefy(r — 0+) — ry,) and at
and g and R are the determinant and curvature of the 5-jarge distances, (namely,~ #2,/r2 in the conventional branch
dimensional metrigzy v, while ¢ and R are the determinant or ; ~ 2,2 + 72 /12 in the selfaccelerated branch and e 1
and curvatures of the 4-dimensional metgig, = g, (x*,  term).
y =0). The Gibbons—Hawking26] surface term that guar-

anties correct equations of motion is implied in the ac{d)) ————
3 One could transforn@6) to the coordinate system where the metric is diag-

- onal &2 = —A(r, 2) dt2 + B(r, z) dp? + C(r, z) d22 + dz2, andA # B. In this
2 The boundary conditions at the brane are also different, see fo&note system our brane will be bent.
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3.1. Conventional branch The solution has the following asymptotic behavior. At large
distancesy > r, (U — —27), we derive
The conventional branch is obtained from the solution

of (9). As shown in[16] the boundary conditionsA(0) = ry,, P(r) _;2& w24 (23)
P(+00) = 0) determine the exact relation betweanandr,, g2 e
namely where,
2(rk)*=c, (15) 3 m2
~2 c
. o ' P =~ 045 yr,, (24)
wherec is the following integral: M (3— /3)2V3 kg *
7[ (143U + f) T/S U while at short distances, < r, (U — —o0), we get
Cc = —
U2(343U ++/3f)2V3(—-5-3U + f) 21
0 P(r) ™™ 2 of T« o5
~0.43 @) —, = —eamrt| o (25)
The solution has the following asymptotic behavior. At IargewhereO[2 — a1 ~ —0.84 is, in absolute value, the same con-
distancesy > r. (U — 07), we obtain stant appearing in the conventional branch short distance ex-
P(r) ;}%4 pansion(19). Note, however, that the sign of the correction to
= —21 +---, (17)  the 4D behavior is opposite in the two branches.
r r At intermediate distances, < r < r., the potential con-
where, tains a 5D gravitational term that iepulsive, 72,/r2. This
KNZ m2 looks like a 5D negative mass. However, this is not an asymp-
P = —— = ¢ ~056r (18) i i -
"My 434 /33 K DM totic value of the mass since one can only cover the solution
_ S ) 1 in the above coordinate system till~ r. where the dS like
while at short distances, < r« (U — +00), we get horizon is encountered. Moreover, in the intermediate regime
o 2(V3-1) re K r < re, the de Sitter termmZr? in the potential always
_™ _ almgﬂ(ﬁ) +oen, (19) dominates over thfe]%l/rz term suggesting that the effects due
r r r to the Schwarzschild source are strongly suppressed.
where
(V3-1)/4 3.3. Perihelion precession
0y = G(ﬁ_l)/z 1+4/3 (3 + \/§> (klr*)z(l_\/é)
4B3V3-1)\3-V3 The deviation from 4D gravit{2) gives rise to the additional

~ 0.84. (20)  perihelion precession of circular orbftst, 18] (see als¢19] for
As we see, a short distance observergt< r < r, would comprehensive studies of these and related issues). In a simplest
measure the gravitational maas with a small corrections to @PProximation this effect is quantified by a fraction of the devi-
Newton’s potential, while the large distance observeratr,  ation of the potential from its Newtonian form

would measure an effective gravitational massf (ry /r.)Y/3 Ao
[16]. The latter includes the effects of the 4D curvature. €= 7 (26)
3.2. Sefaccelerated branch This can be used to evaluate an additional perihelion precession

of orbits in the Solar systeifi4,18}* As we discussed in Sec-
The solution on the selfaccelerated branch is obtainetion 1, thee ratio is somewhat different for the non-perturbative
from (10). The relation betweert; and r, is obtained, as solution (NPS solution) as compared to the approximate so-
in the conventional case, by imposing boundary conditiondution (the PS solution) used in Refd4,18] We can easily

PO) =ry, P(r) —mér>— 0 for larger). This gives calculate this difference:
(0)] r) 2r3 - 0forl This gi lcul his diff
2(ryk2)® ’ 004
(rk2) . enes 1l (1 \" o5 I ) (27)
eps 2\ r« Is
- [w+2d [- (43U +1) ]3/8
- dU L U2@+3U++3f)2V3(—5-3U+f) The perihelion precession per orbit is
—0oQ
s 3 3 3/2 0.04
— 63 n 441 (1) pgp—2q 4 M 3Tl <L> <L> - (28)
r 4 1 Fy

The second line irf21), that is generated by a change of vari-
ables in the integrall{ = —U — 2) while using(15), also gives
arelation betweek; andky, 4 Note that in the leading order of the relativistic expansion the answer is

given by the correction to the Newtonian potential, while the correction to the
ko = 6\/§/4k1. (22)  rr component of the metric is not important.
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The second term on the RHS is the Einstein precession, and tligethe right one, then even at very large scales non-perturbative
last term arises due to modification of gravity. For the PS solutechniques should be used. Moreover, the non-linear regime of
tion this was first calculated in Refil4,18] the solution(28)  the structure formation could be sensitive to, and be able to dis-
is written for the NPS solution and is somewhat different. criminate between, the PS and NPS solutions.

For the Earth—-Moon system= 3.84x 10'° cm andrEath ~ The same issue of non-linear interactions arises in the
6.59 x 10*2 cm; as a result the ratio iif27) is approxi-  context of strong coupling behavior in the 5D DGP model
mately 048. Therefore, the predictions of the NPS solution[4,30-33] This is related to the problem of the UV comple-
for the additional perihelion precession of the Moon is a factottion of the quantum theorj30,31] for which seemingly two
of two smaller than the predictions of the approximate solutiondifferent proposals were put forward in Ref32] and[33]. It
The result 0f28) for the additional precession (the last term onwould be interesting to pursue these studies further. The string
the RHS) isF0.7 x 10~12 (the plus sign for the selfaccelerated theory realizations of brane induced gravity of Ré8—36]
branch). This is below the current accuracy gfR 10-11[27], can be taken as a guideline. It would also be interesting to un-

but could potentially be probed in the near fut{28].° derstand the NPS solution in terms of the approach of Rzfds.
A similar calculations can be performed for the anomalous33].
Martian precessiofil4,18] For the Sun—Mars system we get: We have not touched upon the issue whether the small fluc-
0.04 tuations on the selfaccelerated branch contain a negative norm
ENPS 0.59< ! SU”S‘L':’r']afS) ~0.30, (29)  state[30,33] or not (see als{87]), and when these fluctuations
€ps T are relevant. Additional investigations on this issue are being

where we Usedsunvars = 2.28 x 1013 cm andrSin— 4.9 x ~ conducted. _ , .

10%° cm. Therefore, we see that the suppression in the NPS It would also be interesting to look at the Schwarzschild
result for the precession of the Martian orbit is stronger. The ad§olut|.ons n modells of large d|stapge modified gravity where
ditional precession of the Mars orbitis +1.3 x 10-1%, which non-linear interactions do not exhibit the strong coupling be-

should be contrasted with a potential accuracy of the Pathfinddl2Vior- This is the cag@8] in a certain models of brane induced
mission~ 9 x 10-11. gravity in more than five dimensiorf88,39] as well as in the

Last but not least, Lue and Starkman (L$¥], found that “dielectric regulari_zation” of the 5D D.GP mod@t0]. Finally
the PS solution gives rise to a correction to the precegsiten we would also point out the constrained approach to the 5D
(additional precession per unit time) DGP mode[41-43]in which case strong interactions also seem

to be absent. All the above deserves further detailed investiga-

3 .
FLS =5, (30) tions.
8r,
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