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Abstract

In a model of large distance modified gravity we compare the non-perturbative Schwarzschild solution of [G. Gabadadze, A. Igles
Rev. D 72 (2005) 084024, hep-th/0407049] to approximate solutions obtained previously. In the regions where there is a good qualitative
between the two, the non-perturbative solution yields effects that could have observational significance. These effects reduce, by a fac
the predictions for the additional precession of the orbits in the Solar system, still rendering them in an observationally interesting range
same effects lead to a mild anomalous scaling of the additional scale-invariant precession rate found by Lue and Starkman.
 2005 Elsevier B.V.Open access under CC BY license.
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1. Introduction

The DGP model of large distance modified gravity[1] has
one adjustable parameter—the distance scalerc. Distributions
of matter and radiation which are homogeneous and isotr
at scales� rc exhibit in this model the following properties
for distance/time scales� rc the solutions approximate Ge
eral Relativity (GR) to a high accuracy, while for scales� rc
they dramatically differ[1–4]. Postulating thatr−1

c ∼ H0 ∼
10−42 GeV the deviations from GR could lead to interest
observational consequences in late-time cosmology, see,
[3,5–11].

On the other hand, sources of matter and radiation w
typical inhomogeneity scale less thanrc have somewhat differ
ent properties. These are easier to discuss for a Schwarzs
source—a spherically-symmetric distribution of matter of
massM and radiusr0, such thatrM < r0 � rc (rM ≡ 2G MN

is the Schwarzschild radius andGN the Newton constant). Fo
such a source a new scale, that is a combinations ofrc andrM ,
emerges (the so-called Vainshtein scale)1 [4]:

(1)r∗ ≡ (
r rM

2
c

)1/3
.

* Corresponding author.
E-mail address: ai372@nyu.edu(A. Iglesias).

1 A similar, but not exactly the same scale was discovered by Vainshte
massive gravity[12], hence the name.
0370-2693 2005 Elsevier B.V.
doi:10.1016/j.physletb.2005.11.013

Open access under CC BY license.
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Above this scale gravity of a compact object deviates subs
tially from the GR result. Note thatr∗ is huge for typical astro
physical objects. An isolated star of a solar mass would h
r∗ ∼ 100 pc. However, if we draw a sphere of a 100 pc rad
with the Sun in its center there will be many other starts
closed by that sphere. The matter enclosed by this sphere w
have even largerr∗. We could draw a bigger sphere, but it w
enclose more matter which would yield yet largerr∗ and so on.
An isolated object which could be separated from a neigh
ing one by a distance larger than its ownr∗ is a cluster of
galaxies. For typical clusters,r∗ ∼ (few Mpc) is just somewha
larger than their size and is smaller than their average se
tion. The above arguments suggest that interactions of iso
clusters will be different in the DGP model. On the other ha
at scales beneath a few Mpc or so, there will be agreement
the GR results with potentially interesting small deviations.
low we discuss these issues in detail on an example of a s
isolated Schwarzschild source. There exist in the literature
different solutions for the Schwarzschild problem in the D
model. The first one is based on approximate expansions i
r � r∗ andr � r∗ regions[1,4,13] (see also[14,15]). We call
this set of results the perturbative Schwarzschild (PS) solu
The second one[16] is a solution that interpolates smooth
from r � r∗ to r � rc � r∗, and is non-analytic in the eithe
parameters used to obtain the PS solution. We call this the
perturbative Schwarzschild (NPS) solution. It is important
understand which of these two solutions, if any, is physic

https://core.ac.uk/display/82630016?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/physletb
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viable. Since neither of the two can be solved completely w
out numerical simulations, a first step to discriminate betw
them would be to look closely at the theoretical differences
well as predictions that could be tested observationally. Th
the goal of the present note.

2. Qualitative discussions

We will study separately two regimes,r � r∗ andr � r∗.

(I) r � r∗. In this regime the standardGN expansion break
down [4]. How could one proceed? One way is to perform
expansion in powers ofmc = r−1

c [4]. This expansion break
down abover ∼ r∗ but is well suited for ther � r∗ domain.
(Kaloper [17] recently used a different expansion. His p
posal could prove to be useful for a broad class of proble
A Schwarzschild metric in the smallmc expansion was cal
culated by Gruzinov[13] (see also[14]). It is instructive to
compare the result of[13] with the NPS solution of[16].

Let us start with the Newton potentialφ(r). The expansion
of the exact result of[16] for r � r∗ leads:

(2)−2φ = rM

r
− αm2

cr
2
(

r∗
r

) 3
2−β

+ · · · ,

whereβ = 3/2 − 2(
√

3 − 1) � 0.04, andα is a number to be
discussed in detail below. The above result, but withβ = 0, is
what was first obtained in a smallmc expansion[13]. The NPS
solution of[16] givesβ � 0.04, it depends on irrational powe
of mc [16], and it differs by that from the smallmc expansion
results.

Is the above difference important? As was demonstrate
Refs.[14] and[18], the modification of the Newton potenti
in (2), although tiny, could lead to a measurable precessio
orbits in the Solar system (see, Ref.[19] for further studies).
The above works used the potentials obtained in the smamc

expansion, e.g., used(2) with β = 0. Althoughβ is tiny, the
ratio (r∗/r) is typically huge in the cases of interest, therefo
taking into account the effects of a non-zeroβ could lead to
appreciable differences in the predictions of the PS and
solutions. We will study this issue in the next section.

Consequences of the modified potential(2) could be under-
stood as well in terms of invariant curvatures. The Schw
schild solution in GR has zero scalar curvature. In contrast
this, the solution(2) generates a non-zero Ricci scalar that
tends tor ∼ r∗ in the NPS solution (see,[16] and discussion
below). This can be seen by looking at the trace equation in
DGP model:

(3)R − 3mcK = T ,

whereR is the 4D Ricci scalar,K is a trace of an extrinsic cur
vature andT is a trace of the stress-tensor times 8πGN (for the
ADM formalism in the DGP model see, e.g.,[20,21]). This has
to be compared with the trace equation in GR:R = T . The sec-
ond term on the LHS of(3) is not zero outside the source an
therefore, gives rise to non-zeroR. This curvature, althoug
tiny, extends to enormous scales of the order ofr ∼ r∗ [16].
-
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The sign of the curvature depends on a choice of the bo
ary conditions in the bulk, since the latter determines the
of K . There are two choices for this. The so-called conventio
branch corresponds to a negative (AdS like) curvature prod
by the Schwarzschild source, while the selfaccelerated br
[2] corresponds to a positive (dS like)R. This is reflected in the
sign of the coefficientα in (2) which takes a positive value o
the conventional branch and becomes negative on the selfa
erated branch:α � ±0.84. Therefore, there is an additional tin
attraction toward the source on the conventional branch a
repulsion of the same magnitude on the selfaccelerated br
This change of sign was first found by Lue and Starkman[14]
in the context of the PS solution.

(II) r � r∗. In this regime the smallmc expansion break
down. However, the conventionalGN expansion can be read
ily used[1,4]. The results are[1]:

(A) For r � r∗ DGP gravity is a tensor-scalar theory, whe
the extra scalar couples to matter with the gravitational stren
the vDVZ phenomenon[22,23].

(B) The Newton potential scales as 1/r for r∗ � r � rc
which smoothly transitions into the 1/r2 potential atr � rc.

These properties of the PS solution were reconfirmed in
tailed studies of Refs.[13–15,24,25]. Could the PS solution
interpolate fromr � r∗ to r � rc? The above question is re
lated to the following one: what is a gravitational mass tha
felt by an object separated from the source at a distancer � r∗?
The PS solution implies that this is just the bare massM of
the original source. On the other hand, one may expect tha
curvature created by the source in the domainr � r∗ would
also contribute to this effective mass (the ADM mass)[16]. If
so, unless there is a hidden non-trivial cancellation, a puta
observer atr � r∗ would measure an effective mass differe
from M . The above property is captured by the NPS solutio
Ref. [16]. It has the following features:

(A ′) For r � r∗ it is a solution of a tensor-scalar gravity (
in (A) above);

(B′) The Newton potential scales as 1/r2 for r � r∗ (differ-
ent from (B)).

An attractive feature of the NPS solution is that it smoot
interpolates fromr � r∗ to r � rc. However, a somewhat un
usual fact is that it does not recover the results of theGN

expansion. This will be discussed in the reminder of this s
tion (readers who are not interested in these somewhat tech
issues could directly go to the next section without loss of c
ity).

Why is that, that the NPS solution[16] does not agree
with the results of the perturbativeGN expansion, even in th
regimer � r∗, where the latter approximation is internally se
consistent? There could be a few different reasons for
Formally, one is solving non-linear partial differential equ
tions and these can have different solutions even with the s
boundary conditions. In our two cases, however, the boun
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conditions are somewhat different: the PS solution is supp
to describe the same massM at short and large distances, wh
the NPS solution matchesM at the short scales but asym
totes to a screened mass at the large scales.2 Then either the
PS and NPS solutions belong to different sectors and are
stable, or at least one of them should be unstable. In the
mer case, one should distinguish between them observatio
while in the latter case a relevant point would be that the AD
mass of the NPS solution is smaller[16]. In a very qualitative
way, this can be understood as follows. A deviation from
conventional metric atr � r∗ scales asmc

√
rMr (we ignore

smallβ here). This can give rise to a scaling of the scalar c
vaturemc

√
rMr−3/2. The curvature extends roughly tor ∼ r∗,

and the integrated curvature scales asmc
√

rMr
3/2∗ ∼ rM . Then,

the “effective mass” due to this curvature can be estimate
rMM2

P ∼ M , which is of the order of the mass itself.
On the other hand, it may well be that there is a certain “

continuity” between the linearized and full non-linear versio
of the DGP model in 5D. This could result from a differe
number of constraints one has to satisfy depending on whe
solutions are looked for in the linearized approximation o
the full non-linear theory. For instance, one of the bulk eq
tions can be combined with the junction condition in 4D
yield:

(4)3m2
cR = R2 − 3R2

µν.

On a flat background both terms on the RHS of(4) contain at
least quadratic terms in the fields. Therefore, according to(4),
R has to be zero in the linearized approximation. The la
condition happens to be a consequence of the other linea
equations of the theory as well; therefore,(4) is trivially satis-
fied as long as those other equations are fulfilled. This cha
at the non-linear level: Eq.(4) becomes an additional constra
that one has to satisfy on top of the other equations. Becau
this: (i) The solutions of the linearized theory may not be s
ported by the non-linear equations (the phenomenon know
“linearization instability” in gravity). (ii) New non-perturbativ
solutions that do not exist in the linearized theory may eme
One way to decide on the point (i), is to study solutions for ot
sources and see whether a similar phenomenon takes plac
NPS solution of[16] is an explicit example of the point (ii).

3. Explicit solution

We consider the action of the DGP model[1]:

(5)S = M3∗
∫

d5x
√−gR + M2

P

∫
d4x

√−g̃R̃.

Here, the(4 + 1) coordinates arexM = (xµ, y), µ = 0, . . . ,3
and g and R are the determinant and curvature of the
dimensional metricgMN , while g̃ and R̃ are the determinan
and curvatures of the 4-dimensional metricg̃µν = gµν(x

µ,

y = 0). The Gibbons–Hawking[26] surface term that guar
anties correct equations of motion is implied in the action(5).

2 The boundary conditions at the brane are also different, see footnote3.
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MP denotes the 4D Planck mass and is fixed by the New
constant. On the other hand, the scaleM∗ is traded for the pa
rameterrc ≡ M2

P /2M3∗ discussed in the previous section.
The NPS solution studied in[16] is found by considering a

static metric with spherical symmetry on the brane and withZ2
symmetric line element:

(6)ds2 = −e−λ dt2 + eλ dr2 + r2 dΩ2 + γ dr dy + eσ dy2,

whereλ, γ , σ are functions ofr = √
xµgµνxν andy. TheZ2

symmetry across the brane implies thatγ is an odd function
of y while the rest are even. The brane is chosen to be stra
in the above coordinate system.3

The exact solution fory → 0+ is given implicitly as follows:

(7)e−λ = 1− P(r)

r
,

whereP is obtained from

(8)P(r) = −3

2
m2

c

∫
dr r2U(r),

in which U can have two different behaviors corresponding
the solution of the following two equations (giving rise to
conventional and selfaccelerated branch respectively):

(9)(k1r)
8 = − (1+ 3U + f )

U2(3+ 3U + √
3f )2

√
3(−5− 3U + f )

,

(10)(k2r)
8 = − (−5− 3U + f )(−3− 3U − √

3f )2
√

3

(U + 2)2(1+ 3U + f )
,

wheref = √
1+ 6U + 3U2 andk is an integration constant.

Note that in this parametrization the gravitational potentiaφ

in weak field approximation is easily obtained, namely

(11)φ ≡ −P(r)

2r
.

The off-diagonal metric component,γ , is determined from

(12)
2r2Pr

Prr

= (r4γ e−λ)r

(rγ e−λ)r
,

and theyy component from

(13)eσ = m2
c

[
(r4γ e−λ)r

2r2Pr

]2

+ e−λγ 2.

The profileλy for y → 0+ can be computed as well:

(14)λy = e−λγr .

The two integration constants,k and the one produced in th
integration(8), are determined by imposing appropriate bou
ary conditions at the source (namely,P(r → 0+) → rM ) and at
large distances, (namely,λ ∼ r̃2

M/r2 in the conventional branc
or λ ∼ m2

cr
2 + r̃2

M/r2 in the selfaccelerated branch and no 1/r

term).

3 One could transform(6) to the coordinate system where the metric is di

onal ds2 = −A(r, z)dt2 +B(r, z)dρ2 +C(r, z)dΩ2 + dz2, andA 
= B. In this
system our brane will be bent.
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3.1. Conventional branch

The conventional branch is obtained from the solut
of (9). As shown in[16] the boundary conditions (P(0) = rM ,
P(+∞) = 0) determine the exact relation betweenk1 andr∗,
namely

(15)2(r∗k)3 = c,

wherec is the following integral:

c =
∞∫

0

[
− (1+ 3U + f )

U2(3+ 3U + √
3f )2

√
3(−5− 3U + f )

]3/8

dU

(16)≈ 0.43.

The solution has the following asymptotic behavior. At la
distances,r � r∗ (U → 0+), we obtain

(17)
P(r)

r
= r̃2

M1

r2
+ · · · ,

where,

(18)r̃2
M1

= 3
√

2

4(3+ √
3)

√
3

m2
c

k4
1

≈ 0.56rMr∗,

while at short distances,r � r∗ (U → +∞), we get

(19)
P(r)

r
= rM

r
− α1m

2
cr

2
(

r∗
r

)2(
√

3−1)

+ · · · ,
where

α1 = 6(
√

3−1)/2 1+ √
3

4(3
√

3− 1)

(
3+ √

3

3− √
3

)(
√

3−1)/4

(k1r∗)2(1−√
3)

(20)≈ 0.84.

As we see, a short distance observer atrM � r � r∗ would
measure the gravitational massM with a small corrections to
Newton’s potential, while the large distance observer atr � r∗
would measure an effective gravitational mass∼ M(rM/rc)

1/3

[16]. The latter includes the effects of the 4D curvature.

3.2. Selfaccelerated branch

The solution on the selfaccelerated branch is obta
from (10). The relation betweenk1 and r∗ is obtained, as
in the conventional case, by imposing boundary conditi
(P(0) = rM , P(r) − m2

cr
3 → 0 for larger). This gives

2(r∗k2)
3

= −
−2∫

−∞
(U + 2)

d

dU

[
− (1+3U+f )

U2(3+3U+√
3f )2

√
3(−5−3U+f )

]3/8
dU

(21)= 63
√

3/4c ≈ 4.41.

The second line in(21), that is generated by a change of va
ables in the integral (̃U = −U − 2) while using(15), also gives
a relation betweenk1 andk2,

(22)k2 = 6
√

3/4k1.
d

s

The solution has the following asymptotic behavior. At la
distances,r � r∗ (U → −2−), we derive

(23)
P(r)

r
= − r̃2

M2

r2
+ m2

cr
2 + · · · ,

where,

(24)r̃2
M2

= 3

(3− √
3)2

√
3

m2
c

k4
2

≈ 0.45rMr∗,

while at short distances,r � r∗ (U → −∞), we get

(25)
P(r)

r
= rM

r
− α2m

2
cr

2
(

r∗
r

)2(
√

3−1)

+ · · · ,

whereα2 = −α1 ≈ −0.84 is, in absolute value, the same co
stant appearing in the conventional branch short distance
pansion(19). Note, however, that the sign of the correction
the 4D behavior is opposite in the two branches.

At intermediate distances,r∗ � r � rc, the potential con-
tains a 5D gravitational term that isrepulsive, r̃2

M/r2. This
looks like a 5D negative mass. However, this is not an asy
totic value of the mass since one can only cover the solu
in the above coordinate system tillr ∼ rc where the dS like
horizon is encountered. Moreover, in the intermediate reg
r∗ � r � rc, the de Sitter termm2

cr
2 in the potential always

dominates over thẽr2
M/r2 term suggesting that the effects d

to the Schwarzschild source are strongly suppressed.

3.3. Perihelion precession

The deviation from 4D gravity(2) gives rise to the additiona
perihelion precession of circular orbits[14,18](see also[19] for
comprehensive studies of these and related issues). In a sim
approximation this effect is quantified by a fraction of the de
ation of the potential from its Newtonian form

(26)ε ≡ �φ

φ
.

This can be used to evaluate an additional perihelion prece
of orbits in the Solar system[14,18].4 As we discussed in Sec
tion 1, theε ratio is somewhat different for the non-perturbat
solution (NPS solution) as compared to the approximate
lution (the PS solution) used in Refs.[14,18]. We can easily
calculate this difference:

(27)
εNPS

εPS
� |α|√

2

(
r

r∗

)β

� 0.59

(
r

r∗

)0.04

.

The perihelion precession per orbit is

(28)�ϕ = 2π + 3πrM

r
∓ 3π |α|

4

(
r

r∗

)3/2(
r

r∗

)0.04

.

4 Note that in the leading order of the relativistic expansion the answ
given by the correction to the Newtonian potential, while the correction to
rr component of the metric is not important.
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The second term on the RHS is the Einstein precession, an
last term arises due to modification of gravity. For the PS s
tion this was first calculated in Refs.[14,18]; the solution(28)
is written for the NPS solution and is somewhat different.

For the Earth–Moon systemr = 3.84×1010 cm andrEarth∗ �
6.59 × 1012 cm; as a result the ratio in(27) is approxi-
mately 0.48. Therefore, the predictions of the NPS solut
for the additional perihelion precession of the Moon is a fac
of two smaller than the predictions of the approximate solut
The result of(28) for the additional precession (the last term
the RHS) is∓0.7× 10−12 (the plus sign for the selfaccelerat
branch). This is below the current accuracy of 2.4×10−11 [27],
but could potentially be probed in the near future[28].5

A similar calculations can be performed for the anomal
Martian precession[14,18]. For the Sun–Mars system we ge

(29)
εNPS

εPS
� 0.59

(
rSun–Mars

rSun∗

)0.04

� 0.30,

where we usedrSun–Mars = 2.28× 1013 cm andrSun∗ = 4.9 ×
1020 cm. Therefore, we see that the suppression in the
result for the precession of the Martian orbit is stronger. The
ditional precession of the Mars orbit is∼ ∓1.3× 10−11, which
should be contrasted with a potential accuracy of the Pathfi
mission∼ 9× 10−11.

Last but not least, Lue and Starkman (LS)[14], found that
the PS solution gives rise to a correction to the precessionrate
(additional precession per unit time),

(30)ΓLS = ∓ 3

8rc
,

that is universal, i.e., is independent of the source. The N
solution, predicts a weak anomalous violation of the unive
Lue–Starkman scaling due to the RHS of(27). The results is

(31)Γ = ΓLS × |α|√
2

(
r

r∗

)0.04

.

This rate depends mildly on the source mass and a separ
from it. The rate is a slowly increasing function orr , as opposed
to the rate due to the second term on the RHS of(28), which is

decreasing with growingr asΓEinstein=
√

9r3
M/8r5.

4. Outlook

In this note we compared the PS[1,4,13–15]and NPS[16]
solutions in the DGP model. We emphasized different, but
teresting predictions that these two solutions make in the ob
vationally accessible domain ofr � r∗. These predictions ar
testable.

As we have also mentioned, there will be important diff
ences in the predictions atr � r∗. These need further detaile
studies, especially in the context of the structure formation.
would expect that both the linear as well as non-linear regi
of the structure formation will be affected. If the NPS soluti

5 An interesting possibility that similar effects could leed to seemingly
servable increase of the astronomical unit was recently discussed in[29].
he
-

r
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S
-

er
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-
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e
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is the right one, then even at very large scales non-perturb
techniques should be used. Moreover, the non-linear regim
the structure formation could be sensitive to, and be able to
criminate between, the PS and NPS solutions.

The same issue of non-linear interactions arises in
context of strong coupling behavior in the 5D DGP mo
[4,30–33]. This is related to the problem of the UV compl
tion of the quantum theory[30,31] for which seemingly two
different proposals were put forward in Refs.[32] and[33]. It
would be interesting to pursue these studies further. The s
theory realizations of brane induced gravity of Refs.[34–36]
can be taken as a guideline. It would also be interesting to
derstand the NPS solution in terms of the approach of Refs.[30,
33].

We have not touched upon the issue whether the small
tuations on the selfaccelerated branch contain a negative
state[30,33], or not (see also[37]), and when these fluctuation
are relevant. Additional investigations on this issue are be
conducted.

It would also be interesting to look at the Schwarzsch
solutions in models of large distance modified gravity wh
non-linear interactions do not exhibit the strong coupling
havior. This is the case[38] in a certain models of brane induce
gravity in more than five dimensions[38,39], as well as in the
“dielectric regularization” of the 5D DGP model[40]. Finally
we would also point out the constrained approach to the
DGP model[41–43]in which case strong interactions also se
to be absent. All the above deserves further detailed inves
tions.

Acknowledgements

We would like to thank C. Deffayet, G. Dvali, A. Gruzino
N. Kaloper, A. Lue, R. Scoccimarro, and G. Starkman
discussions, we also thank Dr. L. Iorio for useful corresp
dence. The work was supported in part by NASA Gr
NNGG05GH34G, and in part by NSF Grant PHY-0403005.

References

[1] G. Dvali, G. Gabadadze, M. Porrati, Phys. Lett. B 485 (2000) 208, h
th/0005016.

[2] C. Deffayet, Phys. Lett. B 502 (2001) 199, hep-th/0010186.
[3] C. Deffayet, G.R. Dvali, G. Gabadadze, Phys. Rev. D 65 (2002) 044

astro-ph/0105068.
[4] C. Deffayet, G.R. Dvali, G. Gabadadze, A.I. Vainshtein, Phys. Rev. D

(2002) 044026, hep-th/0106001.
[5] C. Deffayet, S.J. Landau, J. Raux, M. Zaldarriaga, P. Astier, Phys.

D 66 (2002) 024019, astro-ph/0201164.
[6] A. Lue, R. Scoccimarro, G. Starkman, Phys. Rev. D 69 (2004) 044

astro-ph/0307034;
A. Lue, R. Scoccimarro, G. Starkman, Phys. Rev. D 69 (2004) 124
astro-ph/0401515.

[7] A. Lue, G.D. Starkman, Phys. Rev. D 70 (2004) 101501, astro
0408246.

[8] D. Jain, A. Dev, J.S. Alcaniz, Phys. Rev. D 66 (2002) 083511, as
ph/0206224;
J.S. Alcaniz, D. Jain, A. Dev, Phys. Rev. D 66 (2002) 067301, as
ph/0206448.

[9] E.V. Linder, astro-ph/0507263.



622 G. Gabadadze, A. Iglesias / Physics Letters B 632 (2006) 617–622

083

p-th

12,

;
p-th

0;
of
ar

Co.,

gle,
int
na-

-th/

-th/

ep-

p-th/

18,

20.
[10] L. Knox, Y.S. Song, J.A. Tyson, astro-ph/0503644;
Y.S. Song, Phys. Rev. D 71 (2005) 024026, astro-ph/0407489.

[11] M. Ishak, A. Upadhye, D.N. Spergel, astro-ph/0507184.
[12] A.I. Vainshtein, Phys. Lett. B 39 (1972) 393.
[13] A. Gruzinov, astro-ph/0112246.
[14] A. Lue, G. Starkman, Phys. Rev. D 67 (2003) 064002, astro-ph/0212
[15] M. Porrati, Phys. Lett. B 534 (2002) 209, hep-th/0203014.
[16] G. Gabadadze, A. Iglesias, Phys. Rev. D 72 (2005) 084024, he

0407049.
[17] N. Kaloper, Phys. Rev. Lett. 94 (2005) 181601, hep-th/0501028;

N. Kaloper, Phys. Rev. Lett. 95 (2005) 059901, Erratum;
N. Kaloper, Phys. Rev. D 71 (2005) 086003, hep-th/0502035;
N. Kaloper, Phys. Rev. D 71 (2005) 129905, Erratum.

[18] G. Dvali, A. Gruzinov, M. Zaldarriaga, Phys. Rev. D 68 (2003) 0240
hep-ph/0212069.

[19] L. Iorio, gr-qc/0504053.
[20] R. Dick, Class. Quantum Grav. 18 (2001) R1, hep-th/0105320.
[21] C. Deffayet, J. Mourad, Phys. Lett. B 589 (2004) 48, hep-th/0311124

C. Deffayet, J. Mourad, Class. Quantum Grav. 21 (2004) 1833, he
0311125.

[22] H. van Dam, M.J. Veltman, Nucl. Phys. B 22 (1970) 397.
[23] V.I. Zakharov, JETP Lett. 12 (1970) 312.
[24] C. Middleton, G. Siopsis, hep-th/0311070.
[25] T. Tanaka, Phys. Rev. D 69 (2004) 024001, gr-qc/0305031.
[26] G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15 (1977) 2738.
[27] J.G. Williams, X.X. Newhall, J.O. Dickey, Phys. Rev. D 53 (1996) 673

J.G. Williams, D.H. Boggs, J.O. Dickey, W.M. Folkner, Lunar tests
gravitational physics, in: R. Jantzen (Ed.), Proceedings of the Ninth M
.

/

/

-

cel Grossman Meeting, Rome, Italy, June 2000, World Scientific
2001.

[28] T.W. Murphy, Jr., J.D. Strasburg, C.W. Stubbs, E.G. Adelberger, J. An
K. Nordtvedt, J.G. Williams, J.O. Dickey, B. Gillespie, The Apace Po
Observatory Lunar Laser-ranging Operation (APOLLO), in: 12th Inter
tional Lunar Laser Ranging Workshop, Matera, Italy, 2000.

[29] L. Iorio, JCAP 0509 (2005) 006, gr-qc/0508047.
[30] M.A. Luty, M. Porrati, R. Rattazzi, JHEP 0309 (2003) 029, hep

0303116.
[31] V.A. Rubakov, hep-th/0303125.
[32] G. Dvali, hep-th/0402130.
[33] A. Nicolis, R. Rattazzi, JHEP 0406 (2004) 059, hep-th/0404159.
[34] E. Kiritsis, N. Tetradis, T.N. Tomaras, JHEP 0108 (2001) 012, hep

0106050.
[35] I. Antoniadis, R. Minasian, P. Vanhove, Nucl. Phys. B 648 (2003) 69, h

th/0209030.
[36] E. Kohlprath, Nucl. Phys. B 697 (2004) 243, hep-th/0311251;

E. Kohlprath, P. Vanhove, hep-th/0409197.
[37] K. Koyama, hep-th/0503191.
[38] G. Gabadadze, M. Shifman, hep-th/0312289.
[39] G.R. Dvali, G. Gabadadze, Phys. Rev. D 63 (2001) 065007, he

0008054.
[40] M. Porrati, J.W. Rombouts, hep-th/0401211;

M. Kolanovic, M. Porrati, J.W. Rombouts, Phys. Rev. D 68 (2003) 0640
hep-th/0304148.

[41] G. Gabadadze, Phys. Rev. D 70 (2004) 064005, hep-th/0403161.
[42] C. Middleton, G. Siopsis, Phys. Lett. B 613 (2005) 189, hep-th/05020
[43] M.N. Smolyakov, hep-th/0506020.


	Short distance non-perturbative effects of large distance modified gravity
	Introduction
	Qualitative discussions
	(I) r «r*.
	(II) r»r*.

	Explicit solution
	Conventional branch
	Selfaccelerated branch
	Perihelion precession

	Outlook
	Acknowledgements
	References


