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Altered neurological function will generally be behaviourally apparent. Many of the behavioural models
pioneered in mammalian models are portable to zebrafish. Tests are available to capture alterations in basic
motor function, changes associated with exteroceptive and interoceptive sensory cues, and alterations in
learning and memory performance. Excepting some endpoints involving learning, behavioural tests can be
carried out at 4 days post fertilization. Given larvae can be reared quickly and in large numbers, and that
software solutions are readily available from multiple vendors to automatically test behavioural responses in
96 larvae simultaneously, zebrafish are a potent and rapid model for screening neurological impairments.
Coupling current and emerging behavioural endpoints with molecular techniques will permit and accelerate
the determination of the mechanisms behind neurotoxicity and degeneration, as well as provide numerous
means to test remedial drugs and other therapies. The emphasis of this review is to highlight unexplored/
underutilized behavioural assays for future studies. This article is part of a Special Issue entitled Zebrafish
Models of Neurological Diseases.
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1. Introduction

1.1. The importance of behavioural endpoints

In animals, and arguably all life throughout the biological
kingdoms, behaviours are ways to integrate into the biotic and abiotic
environment. Behaviours are the actions and reactions taken to
internal and external cues that are intended to place organisms in a
preferable position with respect to fitness. Conditions and situations
that cause deviant or impaired behaviours therefore have clear
survival implications. The inclusion of a behavioural assessment endpoint
in studies of disease and neurotoxin exposure, especially those involving
non-lethal impairments, will help address whether sub-organismal
changes will affect survival. However, there is another reason to include
behavioural endpoints—they can be used to rapidly and effectively detect
changes of molecular to system level origins.

In vertebrates, all behaviours are achieved through nervous
control. However, not all behavioural modifications are of neurolog-
ical origin. Non-neurological alterations can also affect behaviour—
some musculoskeletal issues, for example, such as those arising
through injury and developmental abnormalities, can cause altered
behaviours. Malformed limbs or other morphologically-based condi-
tions may be associated with behaviours not apparent in normal
individuals. There are also a suite of developmental issues that are
related to neurological function, however, they are not related to
neurotoxins or neurodegeneration. Cerebral palsy, for instance, can
affect gross and/or fine motor control and have very apparent
behavioural abnormalities [1]. Additionally, in healthy animals,
internal, physiological processes can also modify neuron function
and these can result in behaviour phenotypes. For the purposes of this
review, only behavioural alterations arising though neurological
pathways and directly involving neurotoxin exposure or progressive
neurological pathologies will be given consideration.

Behavioural alterations arising from neurotoxin exposure and
neurodegeneration come about through very different means, even
though the behavioural “phenotype” (observable manifestation) may
appear similar in some instances. Neurotoxic agents affect the
functionality of “normal” neurons and may be reversible and of
limited duration. In contrast, neurodegeneration collectively refers to
a group of typically irreversible processes that work at the genetic to
system level, all of which result in the loss of neurons and/or their
functionality. Mechanistically, neurotoxic agents act in one of two
ways: in general, non-specific ways (e.g. polar or non-polar narcosis
[2]); or through affecting genetic and/or protein receptors. Either
mode of action can cause changes at molecular, cellular, system and
levels beyond. It must be noted that the first mode of action could
include disruption of cells in addition to neurons. With neurodegen-
eration, mechanisms of action include protein misfolding and
conformational disorders (proteopathies) and/or astrogliosis, i.e. an
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Fig. 1. Behavioural responses can be evoked by internal and external signals and/or be
altered by impaired neurological condition. With zebrafish, assessment methodologies
exist to test neurological performance in absence of signals through to the ability of the
brain to retain and integrate sensory signals of diverse origins, which makes zebrafish a
powerful model for testing compounds that affect neurons over brief to life-spanning
timeframes. CPP=conditioned place preference.
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increase in astrocytes due to neuron death. For each mechanism of
neuron (or neural tissue) impairment, it should be possible to isolate
an individual behavioural phenotype for screening purposes.

All behaviours involvemotion, and so given the appropriatemethods,
all are quantifiable. The evolution of software solutions in the last decade
or so, including solutions from EthoVision (www.noldus.com), LocoScan
(www.cleversysinc.com), Loligo (www.loligosystems.com), and Video-
Track (www.viewpoint.fr) has greatly facilitated the accurate assessment
of subtle and directed movements. However, unlike the movement of
mammalian models, fish move in three dimensions. In studies of fish
motion, movement in the vertical plane is typically ignored orminimized
(i.e. by keeping the tank water shallow) [3–5], however, in at least one
case, a proprietary protocol was developed to include it [6]. Nevertheless,
with a model such as a zebrafish, the best solution may be to minimize
water depth, to perhaps twice body length. This depth does not appear to
result in overt stress andmostfish settle down (acclimate)within 30 min
(personal observation). Current technology permits the rapid, and
potentially repeated, non-lethal testing of numerous fish (e.g. 4+ adults
to 96 larvae) [7,8]. Additionally, a method has been constructed to
calculate very subtle differences in the swimmingmechanics of individual
fish [4]. Caveats exist in behavioural assessments. Organisms are designed
with systems that provide resilience and can act to retain higher level
responses [9]. Also, factors that affect responses at lower organisational
levels, e.g. protein level, may not necessarily have an obvious behavioural
phenotype. Behavioural studies clearly need a mechanistically-based
rationale for including a motion-based endpoint.

1.2. The relevance of zebrafish models

Ten years ago, zebrafish were identified as an up and coming model
for genetic disorders and developmental biology in humans [10]. Since
this time, the zebrafish genome has been fully sequenced and many
genes of high mammalian homology have been identified. Five years
ago, zebrafish were proposed as an untapped behaviour-genetic model
organism [11]. There are now high-throughput behavioural zebrafish-
based screens able to detect specific neurological alterations/patholo-
gies, some of which take advantage of protocols similar in function and
purpose to those used on rodents (e.g. olfactory-based endpoints).
Furthermore, zebrafish are more amenable to manipulation and
behavioural testing during early development. Their transparent larvae
facilitate localization of proteins and the use of morpholino manipula-
tion. For these reasons, and given that rodents are more expensive and
require greater growth periods than zebrafish, the adoption of zebrafish
models continues in typically rodent dominated fields. This review is
intended to communicate the current use of behavioural endpoints in
zebrafish, and how protocols used with other animals may be adapted.
Numerous behavioural assessment avenues remain unexplored.

2. Types of behavioural endpoints

As with most animals, fishes exhibit intricate behaviours that
depend on locomotion and may be the result of complex decisions
[12]. Behavioural responsesmust be viewed in a three-part hierarchical
manner: (1) basic motor responses, which underlie (2) sensorimotor
responses, that facilitate and/or integratewith (3) learning andmemory
(Fig. 1). Although thefirst “behavioural level,” arguably does not involve
true behaviour since it does not necessarily include sensory responses,
many studies have included locomotory (activity) changes as a
behavioural endpoint [13–15]. While this endpoint may appear
simplistic, it does not mean it is not meaningful, in fact, quite the
opposite: all behaviours are predicated on the ability to move.
Furthermore, in tests of higher-level behaviours, such as those involving
learning, it may be difficult to rule out potential neurological issues of
the lower founding “levels.” For example, if feeding response decreased
in fish exposed to a dissolved neurotoxin such as an organophosphorus
(OP) insecticide, the effect could be the result of impaired locomotory
ability, and/or impaired olfactory sensory neuron (OSN) function, and/
or cognitive ability.

Implicit in neurodegeneration and neurotoxin exposure is that
organism condition, and so likely behavioural responses, will change
with time. With neurotoxins, there are four temporal phases to
describe their effects: direct, secondary, tertiary and quaternary
effects. The first two phases deal with the presence and actions of an
agent within the organism, and the latter two, without. Direct effects
are those local or systemic effects that occur over the short run and
would typically be the “intended” effects, such as the actions of an
anticholinesterase (anti-AChE) drug. Secondary effects consist of
adaptations made over longer periods to restore equilibrium from
drug actions, such as upregulation of acetylcholinesterase (AChE)
expression. Tertiary effects are those that follow from the discontin-
uation of administration of an agent that has become physically
depended, i.e. involve withdrawal and stress. Over extended periods,
tertiary effects may give way to quaternary effects, such as
malnutrition. The majority of behavioural assays focus on direct and
secondary effects, however, there are studies of tertiary effects, e.g.
withdrawal from cocaine [16].

In the following, a diverse array of endpoints using apparatus from
simple, one chambered tests, to complex multi-chamber, decision-
based challenges are discussed (Table 1). The majority of the
behavioural endpoints can be conducted on zebrafish 3–4 days post
fertilization [17,18], excepting learning/memory-based endpoints.

2.1. Basic motor response endpoints

Compounds that modulate neuron firing rate have potential to
affect locomotory activity. In fishes, locomotory activity endpoints
include swimming speed [19], distance covered [14], and turning rate
(angular velocity) [20]. Changes in zebrafish activity have been noted
in studies investigating the mechanisms of addiction to ampheta-
mines [21], cocaine [16], ethanol [11,22], and nicotine [23], as well as
the effects of pesticides [24,25].

Whether any given drug/neurotoxin increases or decreases
activity is related to concentration/dose and time. For example,
exposure to a low concentrations of D-amphetamine caused hyper-
activity while higher concentrations caused hypoactivity [21].
Cholinesterase inhibiting drugs/pesticides are well known to have
similar effects [26–29]. Clearly, agonizing stimulatory receptors or
inhibiting neurotransmitter degradation will potentially lead to
activity increases in the short run that are not sustainable in the
long. In fact, persistent stimulation may result in excitotoxicity and
neuron apoptosis. Behavioural manifestations of neurotoxin exposure
may not appear until later in life. Additionally, some activity changes
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Table 1
Behavioural test endpoints and their associated stimuli available to fishes, including zebrafish. Some endpoints that are underutilized or hold promise in toxicity or degenerative
studies are in bold.

Apparatus Stimulus Stim. type Type of test References

Open arena None None Activity levelA [14,16,20–22,24,25,30]
Space Vis Searching behaviourA [22,23,70,90]
Food, dead Vis; Olf Appetitive behaviourA [37]
Food, alive Vis; Olf Prey captureA [40,42,43]
Tap Aud Startle responseA [7]
Glass bead Aud; Vis Startle responseA [58]
Predator Vis Alarm responseA [39,40]
Predator scent Olf Alarm responseB [68–70]
Simulated conspecific Social AggressivenessB [11,22]

Confined tube, or flume Water flow Motion UcritB [83,84]
Social Vis; Motion SchoolingB [58,59]

Moving background (striped drum) Simulated object Vis OMRA [47,49,50]
Vis OKRA [51,52]

Counter-current olfactometer Odours⁎ Vis; Olf Attraction; avoidanceB [15,74,75]
Y-maze Odours⁎ Olf AttractionB [76–79]
T-maze Preferred location Vis CPPB [93]

Food Chemo CPPB [97]
Location Drug CPPB [97,98]

Two-chamber tank Shade Vis CPPB [22]
Electric field Pain Aversive CPAB [16]
Colour Vis CPPB [99]

Three-chamber, gated Confinement Vis; Stress CPP, CPAB [100]
Three-chamber, separated Social Vis SchoolingB [22]

Abbreviations: Aud, auditory; CPA, conditioned place aversion; CPP, conditioned place preference; OKR, optokinetic response; Olf, olfactory; OMR, optomotor response; Ucrit, critical
swimming speed; Vis, visual. Note: Zebrafish age may affect whether specific endpoints are appropriate, as the endpoints may depend on the development of swimming ability,
sensory responses, and memory. In general, assays requiring swimming or sensory-evoked swimming are available as soon as 48 post hatch (~4 dpf; endpoints marked A) [37,106].
Swimming intensive and memory based endpoints have mostly been conducted on adults (approx. ≥3 months), however many of these assays could likely be conducted on
juveniles (endpoints marked B). An exception: OMR relies on immobilizing fish, and so fish cannot beN7 dpf [51]. A caveat: olfactory-based alarm responses may be most robust and
least variable at 50 dpf [73].
⁎ Odours include food, conspecific, pheromones, predator, and synthetic compounds.
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may only be evident after the removal of the drug, i.e. during
withdrawal [16].

Zebrafish activity has proven a viable endpoint for detecting
neurological impairments received during development. For example,
embryonic zebrafish exposed to chlorpyrifos, an organophosphorus
insecticide and ubiquitous environmental pollutant, had reduced
swimming activity 6+ days later [24]. If persisting neurological
impairment or neurodegeneration are not readily apparent, a drug
can be used to evoke activity. Altered neurology will be apparent in a
lower response threshold to the drug. The convulsant (seizure
inducing drug) pentylenetetrazole (PTZ) has been used in recent
studies in zebrafish [30], including high throughput 24 and 96 well
plate assays [3,31,32], for just such a purpose. Specifically, zebrafish
embryos injected with domoic acid (DA), a neurotoxin of diatom
origin, reduced the concentration of PTZ required to evoke stage I and
II seizure activity [33]. Activity endpoints can also be used to detect
neurodegeneration. Specifically, to model the effects of Parkinson
disease, neurotoxic drugs can be injected directly into specific brain
regions (using microinjection), although this has historically not
carried out on fish [34]. A recent study demonstrated that unilateral
injection of the drugs 1,2,3,6-tetrahydropyridine (MPTP) and 6-
hydroxydopamine (6-OHDA), two neurotoxins with specific targets,
reduced the speed and distance zebrafish travelled [14]. Microinjec-
tion techniques make the zebrafish model portable to a variety of
neural ablation studies.

A consideration for activity-based sensory endpoints is that they
may not actually be stimulus-free. When a fish or other animal is
introduced into a new environment, such as a test tank, they will
likely begin searching and forming a cognitive map of their new
surroundings [35]. This process will draw upon one or more senses
and involve synaptic plasticity (discussed below). Even with elimi-
nation of searching behaviour, perhaps accomplished through tank
acclimation, activity changes may be based on input from the
interoceptive senses, i.e. the perception of internal movement and/
or pain (aspects of the somatosensory system). Activity-based
endpoints clearly have application, but they may be more of an
umbrella for other neurological impairments isolatable through
sense-specific tests.

2.2. Sensorimotor endpoints

Fishes have a suite of exteroceptive senses analogous to those of
mammals. These include vision (photoreceptor-based), audition
(mechanoreceptor-), olfaction, gustatory (both chemosensor-), balance
and somatosensory, which includes touch (mechanoreceptor-), pres-
sure, temperature (thermoreceptor-) andpain (nociceptor-). Fishes also
posses senses that do not havemammalian analogs, e.g. magnetorecep-
tion. Furthermore, some of the analogous senses, e.g. gustation, are
morphologically dissimilar—fishes, including zebrafish, have solitary
chemosensory cells (SCCs), which are externally-located taste buds
[36,37]. And unlikemammals, sound andmotion are not only perceived
by the ear and vestibular (inertial detection) system, but by an
additional system, the lateral line. In this system, neuromast cells
structurally similar to inner ear mechanoreceptor “hair” cells, detect
changes in water pressure and motion relative to themselves. These
cells can also detect sounds and provide information regarding
acceleration and velocity [38]. In the below, known and potential
sensorimotor endpoints will be discussed.

The senses enable reflexive, innate responses to “unconditioned
stimuli” (UCS), as well as learned responses to “conditioned stimuli”
(CS). Both UCS and CS can be used to test sensorimotor responses, and
can be positive (attractive) or aversive. UCS evoked behavioural
responses stimuli have been included in this section, but their
modification is included in the proceeding section on learning and
memory. Positive UCS or CS stimuli may arrive via various senses but
uniformly enable the organism to place itself in an actual or perceived
improved fitness position that otherwise offers some benefit or
reward; example stimuli include food, cover, mate call or odour.
Aversive stimuli do the opposite; examples stimuli include electric
shocks, abrupt and severe changes in lighting, temperature, sound,
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(unpleasant) odours, or other sensory assaults causing discomfort.
Stimuli can also be neutral, i.e. perceptible but without an associated
behaviour [8]. For behavioural endpoints, both CS and UCS stimuli are
routinely used in behavioural studies in fishes, including those with
and without conditioning.

Changes in sensory responses can be due to impaired sensory
perception or due to impaired motor performance. Separating
perceptual vs. motor impairment in sensory studies may involve
using an additional endpoint, such as cell or tissue level assessment of
neuron function. Another challenge is that most behaviours are
multisensory, and isolating specific impairments may be difficult or
impossible. Nevertheless, behavioural endpoints exist to evoke
responses through each of the senses.

2.2.1. Visual endpoints
Unless experiments are conducted under darkness or with visually

occluded fish, all behavioural endpoints arguably have some visual
component. In fish, vision specific endpoints include predator
(simulated or actual) avoidance, prey capture, optomotor and
optokinetic responses. All of these methods have clearly defined
endpoints and involve coordination, except the last, which uses
immobilized fish.

One of the most basic assays draws upon phototaxis, i.e. light
seeking behaviour. Zebrafish are active during the day, and so should
spend time in light unless they perceive a risky (predation-prone)
condition.When given a choice between a lighted or shaded area in an
open arena, zebrafish did indeed spend less time under shade (~40%)
[22]. Ethanol exposure caused a concentration-dependent decline in
the proportion of time spent under shade. With exposures to ethanol,
zebrafish sheltering was reduced to ~10–15%, i.e. exposure evoked
risky behaviour. Such a robust and easily quantifiable behavioural
contrast could be exploited to test other neurological impairments.

Alarm (antipredator) behaviours are often used in fish research,
although they are usually investigated using olfactory cues. Neverthe-
less, visual cues can be used to evoke alarm [39,40]. Specifically,
presenting fish with a large shape modelled after a predator or an
actual predatory fish, such as in a neighbouring tank, can evoke
dashing, freezing and shelter seeking. Fast start responses (s-starts)
have been shown to increase in response to the presentation of a
simulated predator (painted falcon tube), and be sensitive to the effects
of ethanol exposure [22]. A recent paper suggested that alarm response
could be a very valuable tool for mechanistically understanding the
roles of signalling molecules, specific receptors and neurons in neural
circuitry [41]. One of the advantages to aversive responses is that they
are easy to score either manually or through video analysis. However,
in some stocks of lab reared fish, innate responses may have been lost.
In this case, conditioning would need to be carried out.

Visually guided prey capture (as opposed to chemosensory-guided)
has beenused ina varietyoffish species, althoughnot typically on such a
small one. Nevertheless, visually guided appetitive behaviours can be
carried out even in 7-day-old zebrafishusingparamecia [42]. Other prey
items such as daphnia, hyalella and brine shrimp have been used in
other species, and there is no reasonwhy they cannot also be used with
zebrafish. Assay endpoints include time to initiate attack (latency),
number of attacked or captured prey, capture efficiency, and time to
cessation [40,42,43]. For example, a recent study on striped bass noted
that time to prey capturewas increased 6 days following exposure to an
anti-AChEpesticide, theOP diazinon [44]. Another used zebrafish larvae
with laser ablated premotor neurons in the retinotectum and
reticulospinal neurons to isolate neural circuitry associatedwithvisually
directed prey capture [42]. Tracking software currently uses contrast
(i.e. a dark object, the animal, against a light background) to track as
many as ten objects in one open arena (EthoVision; www.noldus.com).
However, preymay not be easily discernable, and their removal froman
arena may not yet be easily quantifiable. A high throughput version of
this assays remains for development.
A test of optomotor response (OMR) was pioneered over 80 years
ago (see [45]) and has been frequently used on a variety of animals
since, including mice [46] and zebrafish [47]. The test is one of
tracking: animals reflexively keep pace with a rotating a striped or
“grated” drum. At a high enough rotation speed, the lines will blur and
fish will cease to follow. The parameter of interest is the point at
which the animal ceases to track. Excitatory and inhibitory drugs
should increase and decrease this point, respectively, and neurode-
generation will obviously affect it. Another way to conduct the test is
to hold the drum speed constant but vary the illumination [48]. This
method was capable of resolving optomotor differences between
strains. A different version of the test replaces the uniform stripes
with one large stripe. The large stripe represents a threatening object,
and so fish will swim away from it. This test proved capable of
detecting retinal degeneration in a “night blind” mutant [49].

A variation of the OMR assay includes using competing visual
grating [50]. Specifically, a background reference grating is kept at a
constant speed in one direction while a test grating of variable speed
is moved in the other. Fish will move in the direction of the more
strongly perceived cue. Three scenarios are possible: the fishwill track
the reference cue when the test cue is of lower contrast, or they will
track the test cue when it is of higher contrast, or when there is
insufficient contrast between the two, they will stop moving. The null
motion point provides an index of visual guided response, with acuity
inversely related to contrast. This test identified performance
differences from a mutation in a vesicular glutamate transporter.

The OMR has been adapted to isolate eye tracking ability in static
larval zebrafish [51,52]. In this “optokinetic response” (OKR) assay,
larvae are immobilized in methylcellulose gel, placed in the same
visual scenario as adults (a circular arena with a rotating striped
perimeter), and smooth tracking and rapid saccades with stripe
sweep are recorded. Impaired altered visual performance will be
evident in decreased saccadic movement [52–54]. The output of eye
velocity in degrees/s can be determined using computer software (a
protocol is available [55]). A consideration is that fish cannot be N7
dpf because gel immobilization becomes problematic [51]. The OKR
test is functionally equivalent to the finger tracking-based field
sobriety test, where the degree at which eye motion switches from
smooth tracking to saccadic movement is indicative of intoxication.

Zebrafish are a schooling species that exhibits territoriality [56,57].
Although schooling and aggressive behaviour are not solely driven by
vision–they can rely on sensory input from the octavolateralis (sound/
motion), etc.–they are predicated on it. The propensity of a small group
of zebrafish that was physically but not visually isolated from a larger
school to swim near the larger group, i.e. their “social preference,” was
inhibited in a concentration-specific manner by ethanol [22]. School
cohesion, apparent in “nearest neighbour distance” (NND), may also be
used as a sensitive indicator of intoxication [58] and genetic-based
differences [59]. Aggressive behaviour (agonistic behaviour) consists of
alternating and/or coincident fin displays and attack behaviours.
Displays consist of erection of dorsal, pectoral or anal fins, and/or
slapping of the caudal fin; attack behaviours include bitingmotions and
directed swimming at the attacker [22]. An inclined mirror can be used
to simulate a conspecific, and assess aggression [11,22]. In an
“aggressiveness test,” ethanol exposure was correlated with increased
time near the mirror and aggressive displays [22]. Automatic video
analysis offinmotionsobviously poses a challenge, but changes in speed
and distance near the mirror would be easy to determine.

2.2.2. Olfactory endpoints
Infish, olfaction is so important to somany behaviours that it cannot

be donewithout (reviewed in [60]). This is the reason numerous studies
have focused on its impairment through exposure to a variety of
neurotoxic contaminants (reviewed in [61]). In humans, olfaction is not
so indispensable, however, its loss does correlate with neurodegener-
ative diseases such as Parkinson's and Alzheimer's [62]. The use of
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zebrafish olfactory-based behavioural endpoints of neurodegeneration
remains largely unexplored. A recent publication suggests olfactory
endpoints may also be viable in prion research [63].

In fishes, odorants and odorant classes are associated with specific
behavioural responses, which facilitate isolating specific neuronal
impairments. Odorants include amino acids, bile salts and pheromones,
which evoke feeding and antipredator, social (assumed), alarm and
mating-based responses, respectively [60]. Amino acids associated with
food, such as L-alanine [64], evoked appetitive behaviours such attraction
(directed movement up a concentration gradient) [65]. A mixture of ten
amino acids, including L-alanine, evoked increases in turning rate and
activity level at 4 dpf [37], suggesting the possibility of using amino acid
responses in high throughput assays. Bile salts remain untested as
behavioural modulators in zebrafish, but given their efficacy at evoking
OSN responses [66], they may be of use in olfactory-based assays.
Pheromone-based behavioural endpoints of mating have been restricted
to other species (e.g. F-type prostaglandins evoke substrate probing in
salmonids [67]), however, the behaviours evoked by alarm pheromone
are well studied.

Alarm pheromone is anxiogenic and makes for a very reliable
endpoint since it is an innate reflex. Alarm responses involve a set of
stereotypical behaviours, which include dashing, freezing, jumping and
erraticmovements [68–70]. All the actions are “fight or flight” in nature,
and are associatedwith increases in stress hormone concentrations [70].
Many fish studies have included alarm response as an endpoint of
olfactory neuron function [61]. Numerous neurotoxic agents, including
anti-AChE pesticides, alter alarm response, possibly through impairing
both peripheral (OSNs) and central neurons [61,71]. Alarm behaviour
endpoints are highly sensitive, with someOPs impairing responseswith
exposures to just 1 ppb [28,71]. Studies wishing to test the functionality
of the hypothalamic-pituitary-interrenal (HPI) axis (analogous to the
hypothalamic-pituitary-adrenal (HPA) axis in mammals) may benefit
from the inclusion of an alarm assay [41].

A recent study found that hypoxanthine 3-N-oxide (H3NO)
evoked alarm response in zebrafish [72]. Whether this compound is
alarm pheromone or a component thereof, this discovery has great
potential to improve the standardization of alarm response testing,
since a molecularly based behavioural concentration-response curve
can now be constructed. The previous alarm response testingmethods
involved the use of a skin extract or filtrate derived from the skin of
conspecifics. These methods suffer by not being able to standardize
the unknown(s) pheromone, however some did endeavour to do so
by measuring total protein [6]. In zebrafish, the alarm response may
be most robust and least variable 50 dpf [73].

One of the simplest tests for olfactory-evoked motion involves the
use of an avoidance trough or “counter current olfactometer.” In this
device, water/odour sources flow from either end of rectangular
trough and exit in the center without mixing appreciably. In this way,
there are effectively two odour zones in the tank, and fish can choose
to spend time in either one. As long as a fish is swimming back and
forth prior to odorant introduction (i.e. has not preferred an end
before stimulus introduction), both attractive and aversive responses
can be determined [15,74,75]. This test is not unlike a Y-maze, where
odours flow down two arms to a null or mixing zone. Y-maze can be
problematic in some cases because fishmay elect to make no decision,
i.e. not explore the arms. Nevertheless, both Y-mazes and avoidance
troughs have been useful in fish studies of the attractive or aversive
qualities of amino acids, pheromones and neurotoxic contaminants
[76–79].

2.2.3. Auditory endpoints
Even though the anatomy of the zebrafish ear is dissimilar to that

of mammals (i.e. no cochlea), the neuron hair cell structure is highly
conserved. Additionally, the lateral line cells are structurally and
functionally the same as ear hair cells. Both ear and later line cells can
be disturbed by compounds of human origin (i.e. “ototoxic” agents).
For example, the antibiotic streptomycin can negatively affect fish
behaviour [80]. For these reasons, hair cell alteration has mammalian
parallel (reviewed in [17]).

An auditory-evoked startle response has recently been adapted
from rodents to zebrafish [7]. In the study, adult zebrafish were placed
individually in an eight tank array and video was recorded from
overhead. The stimulus consisted of an automated, mechanical “tap”
to the tank bottom. Fish swimming distance was determined over the
following 5 s, and the taps were repeated every minute for a total of
ten times. This session was then subsequently repeated. This design is
particularly interesting because its neurological assessment is two-
dimensional: it tests an innate, behavioural reflex (which includes
integration of sound and space, and depends on physiological
condition), as well as the ability to adapt (habituate) rapidly to a
stimulus. In their study, they found that both endpoints could show
changes due to larval exposure to chlorpyrifos. However, it was
arguably the ability to adapt that highlighted the biggest neurological
alteration. The difference in startle response magnitude was greater
and more significant with repetition. The purpose of this high
throughput auditory-based test was to assess the persisting effects
of chlorpyrifos exposure, however there is no reason this assay could
not be used to screen/assess a variety of neurological conditions/
pathologies. Furthermore, given their findings regarding habituation,
studies including other stimuli (such as odorants), could benefit from
including such a parameter.

2.2.4. Interoceptive sensory endpoints
Fish rely on balance and experience pain. However, unlike

mammals, equilibrioception (balance) is accomplished through the
octavolateralis system, which includes neurons that perceive sound
and motion. Additionally, fish do not rely upon their “limbs” (i.e. fins)
for balance. In fact, removing two or more fins has frequently been
used as a non-invasive, low impact means of identifying fish [81,82].
Nevertheless, neurotoxins affecting the vestibular portion (i.e. inertial
sense) of the inner ear, or neurodegeneration in general, may
conceivably affect balance, and so may impair rheotactic ability.
Performance deficiencies could be gauged through measuring the
time to current orientation.

Decades of research on fish swimming performance has relied on
mild electrical shock to evoke swimming [83,84]. Detecting altered
neurological performance through nociceptor-based response is not
common in fish, but it does show promise, particularly with agents/
conditions which modify anxiety. A surprising result of a recent study
was that cocaine did not alter a behavioural avoidance of a mild
electrical field [16]. Given that establishing a local electric field in an
open arena is not difficult, and that fish will instinctively avoid it, this
method has promise for screening neurotoxins with anaesthetic
effects.

2.3. Learning and memory based endpoints

In mammals, the hippocampus is involved with cognitive
plasticity. Zebrafish lack a hippocampus, but they do have a
developmentally similar region, the lateral pallium, that appears
functionally equivalent [85]. Reference memory (i.e. acquired mem-
ories) and working memory (i.e. the attentional component of short-
term memory), and their interplay (i.e. cognitive plasticity) can be
tested in a variety of ways, including both classical (Pavlovian) and
operant (instrumental) conditioning. Both conditioning methods
evoke response(s) using a pre-existing behaviour (evoked by either
CS or UCS), but for classical conditioning, a neutral stimulus is converted
into a positive CS (through their repeated pairing), and in operant
conditioning consequences are used to reinforce or extinguish a CS. In the
below, endpoints are discussed for (1) attention, for (2) searching
(map building) behaviour, for (3) the acquisition of responses to
neutral stimuli (classical conditioning), as well as for (4) the
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reinforcement or extinguishment of positive and negative stimuli
(operant conditioning).

2.3.1. Attentional endpoints
Behaviours generally result from the integration of multiple

signals. What is important is the ability to discern important signals
amidst background noise. Neurological filtering in vertebrates has
been referred to as the “cocktail party effect,” coined to describe the
ability of a person to hear a signal such as their name spoken in a room
full of chatting people [86]. Implicit in “selective attention” is that
distracting signals be ignored. One assessment methodology used in
non-human primates involves coupling a positive stimulus, such as
food, with the occurrence of another stimulus, such as a particular
visual signal, and varying delay between the two [87]. Distractability
can be assessed though inserting irrelevant stimuli in the delay
period. Since filtering draws upon reference memory and working
memory, it is a useful correlate of neurological function. While
numerous paradigms exist to test selective attention-based tests in
rodents and primates [87,88], no obvious correlate currently exist for
zebrafish. However, a functionally similar test might be carried out by
challenging zebrafish with competing cues of fitness relevance. For
example, fish could be exposed to a food odorant, which would
initiate appetitive behavioural response, then interrupted with an
alarm cue, which should evoke anti-predator behaviour. The degree
and rate at which the appetitive behaviour is replaced and anti-
predator responses exhibited (i.e. evokes attention) could prove
meaningful endpoints of sensorimotor function and cognition. To
explicitly test memory function, the UCS food and/or predator cues
could be replaced with CS cues, such as behaviourally neutral amino
acids or PEA. An attentional endpoint could be especially useful in
testing cholinergic system functionality, since working memory is
dependent on it [89], and since many drugs agonize or antagonize
cholinergic receptors andneurodegenerativediseases suchasAlzheimer's
impair it.

2.3.2. Searching (spatial) endpoints
Introduction to new surroundings will stimulate searching behav-

iour and map building [35]. The formation of a new cognitive map is
another form of neural plasticity and therefore a possible performance
metric for neurological impairment. Numerous studies have already
validated that searching behaviour in an open arena is a meaningful
endpoint in zebrafish [22,70,90]. Searching behaviourwas recently used
in combination with two anxiogenic factors, alarm pheromone or
caffeine, and two axiolytic factors, ethanol and fluoxetine (i.e. the SSRI
Prozac), as an endpoint in “a novel tank test” [70]. Release into a new
tank evoked a bottom seeking in control fish, which was followed by
subsequent upper tank exploration. With alarm pheromone and
caffeine exposure, the number of upper tank explorations was reduced,
and the time taken to explore (latency) increased. With exposure to
ethanol or fluoxetine, the reverse pattern was noted: transitions to the
upper tank increased, and the latency to upper tank searching was
greatly diminished. Nicotine had the opposite effect, fish were not as
inclined to dive to the tank bottom [23].

Spatial memory is mediated through the lateral pallium. Studies
have found that lesioning the functionally equivalent region in rats
(hippocampus), abolished searching behaviour [91]. Given the ability
to focally lesion larval zebrafish brain tissue and neurons using laser
ablation [42], studies of searching hold promise for cognitive
endpoints. A tried and true test of spatial memory in rats is the
Morris water navigation task, which is essentially map building under
stress and with visual cue reference. The rate of learning of the
platform location can be gauged by the latency to platform discovery
and distance covered in successive trials. Learning under stress in fish
could be accomplished in a variety of means, such as by the ability to
find an escape portal (to another potion of a test tank), under the
threat of predation, evoked by visual or olfactory stimuli. One
zebrafish study using a net as a freight stimulus showed that the
latency to discover an escape portal decreased significantly over six
training sessions [92].

2.3.3. Classical conditioning endpoints
Zebrafish studies have demonstrated that both visual [93] and

olfactory [8] cues unassociated with behavioural response(s) can be
converted to behavioural response cues. For example, over a few
(b10) trials, zebrafish were able to visibly discriminate and select
coloured arms of a T-maze where they would receive a food reward
[93]. As for odorant-based learning, a recent study demonstrated that
by pairing PEA (a neutral stimulus) with food odours (L-alanine and L-
valine) over a number of training sessions, appetitive swimming
behaviour (turning rate) could be evoked by the addition of PEA alone
(i.e. it was converted to a CS) [8]. Classical conditioning endpoints
may be increasingly adopted since conditioning can be achieved
rapidly. For example, just one pairing of a neutral stimulus (red light)
with alarm pheromone (UCS) evoked significant conditioning in a
related species (fathead minnow) [94]. These data suggest that the
strength of the innate response determines the rate of learning.

In many species of vertebrates, shaping is used to evoke a desired
behaviour. This method consists of reinforcing successive steps
towards a target behaviour. This method of reference memory
creation may be unreasonable for fish; however autoshaping may
be a viable option. Autoshaping was developed in pigeons and
consisted of the pairing of a visual cue (light) with food. Initially the
pigeons will respond (peck) to the UCS, but over time will respond to
the CS alone [95]. There is no reason why this model would not also
work in fish. Zebrafish will swim into odour sources and sometimes
“bite” at water inflows including food odour (personal observation).
With repeated trials, they could be expected to bite at a water flow
source alone.

2.3.4. Operant conditioning endpoints
A variety of methods using open arena to multi-chambered arenas

exist to test stimulus reinforcement or extinguishment. Open arenas
have been used for tests involving food odour and predator scent. In
the first, an appetitive response to food flake was enhanced by pairing
it with amino acids food odours [8]. In the second, a study of a closely
related species (fathead minnow) found that it took 6 to 8 days and
two to four days to visually and olfactorily acquire a predator,
presumably by the pairing of a UCS (alarm pheromone) with visual
cues and scent, respectively [39]. Visual and odorant cues clearly have
potential for assessing cognition, and the differential time course
could provide a valuable diagnostic tool.

A commonmethod of operant conditioning involves presenting an
animal with one or more choices between arena arms or areas, and
based on the decision, either rewarding the animal with food or
punishing it with pain or stress. A popular paradigm is “conditioned
place preference” (CPP) or sometimes just “place preference” (PP), in
which animals are rewarded with a drug after selecting a particular
location [96]. The reinforcing stimulus needs to be a positive
psychoactive stimulant, such as cocaine [97] or amphetamine [98].
A version of CPP is “conditioned place avoidance” (CPA), which is
where the conditioned areawas initially avoided [99]. For example, by
“addicting” zebrafish to D-amphetamine, preference for a side of the
tank with two large freight inducing black dots could be evoked [99].
In general, CPP and CPA are good models for testing the neurological
bases for addiction, but they remain largely unadopted but available
in toxicity or degenerative studies.

At least two methods exist to test vision-based learning in fishes,
the T-maze and the three chambered arena. Bothmethods share some
similarities to the radial arm maze (RAM), frequently used in
mammalian models. In the T-maze, fish are introduced into the long
arm (base of the T) and they will generally swim to one or both of the
sort arms. However, as many as 5% fish may not move from the base
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arm unless provoked [97]. The intended outcome is for a fish to favour
one arm based on the desirability of the settings (“spatial preference”)
[97], or a reward coupled to a visual cue [93]. In tests using the three
chambered arena, fish are introduced to a center area that is flanked
on either side by gated chambers [100]. To generate avoidance
behaviour of one of the side chamber, fish are penalized (using
confinement) for making repeated selections of one tank side (in
general, to condition an animal to avoid an area based on a visual cue,
nociceptor and stress based methods are used [101]). The three
chamber confinement test demonstrated that cholinergic agonization
can improve the number of correct decisions [100].

In all operant models discussed above, a conditioned CS will lose
its behavioural stimulatory efficacy as its repeated presentation goes
unpaired with the initial pre-existing, positive stimulus [8]. As with
acquisitional endpoints, the rate of change in the reinforced decision
can provide a correlate of neurological function [102].

3. Problems associated with behavioural endpoints

Variation in responses/traits/parameters increases with organisa-
tional level, and so behaviours are obviously the most variable of
organismal responses. Additionally, in fish, as other animals, their
state will affect memory recall and motivation, and they are not
without personality. Furthermore, with aquatic species, special
consideration must be made for the water source. Municipal water
is often rife with neurotoxic contaminants, which may vary in
concentration considerably even over brief time periods. Water
needs to be carbon filtered and tested to remove/account for any
confounding chemical effects.

An appreciable amount of individual variation can be accounted
for by classifying behavioural phenotypes, such as low or high activity
subgroups. Doing so will increase the power of the test; however, not
all traits that appear obviously related to behaviour may be so. In
juvenile brook trout, for example, swimming performance ability was
not associated with actual (conative) swimming activity [103]. Some
temporal issues can be exploited; food responsiveness and willing-
ness to take risks, for example, are enhancedwith brief periods of food
deprivation [65,103]. Social status can also affect stress level which
will in turn modulate activity and stimuli responses [103]. If social
endpoint was to be used, accounting for dominance behaviour in fish
may present a challenge. Careful observation and selective removal of
individuals of stronger resource utilization (e.g. food consumption)
could help resolve variation.

4. Conclusions

Vertebrates have been proposed as the best models for elucidating
mechanisms of neurodegeneration [104]. Among vertebrate models,
zebrafish are finding ever increasing application. In studies of drugs,
zebrafish make for excellent models, since delivery can be achieved in
many cases by simple addition to the tank water. Furthermore,
microinjection techniques are now available to deliver agents directly
to specific cells/tissues, even within larval fish [105]. This review has
highlighted behavioural endpoints available to zebrafish that probe
basic neurological function, that test behaviours predicated on the
function of diverse types of sensory neurons, and that investigate
cognitive performance. Some behavioural endpoints test multiple
neurologically-based abilities; this review is intended to provide a
template by which to link and/or apportion specific physiological,
perceptual and cognitive impairments. Most methodologies described
herein have very tight parallel withmammalianmodels. Furthermore,
many behavioural tests, especially those using high throughput
screens, remain in evolution. The future holds promise for the
development of a suite of standardized behavioural assays that can
be used to determine the mechanisms by which neurotoxic effects
and neurodegenerative diseases develop and progress.
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