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1. Introduction

We consider Cn with an indefinite inner product [·, ·] defined as [x, y] := y∗Jx, x, y ∈ Cn, where

J = Ir ⊕ −In−r . LetMn be the associative algebra of n × n complexmatrices. AmatrixA ∈ Mn is said to

be J-normal ifA#A = AA#,whereA# is the J-adjointofAdefinedby [A x, y] = [x, A# y], for any x, y ∈ Cn,

i.e., A# = JA∗J. If A is invertible and A−1 = A#, then A is J-unitary. The J-unitarymatrices form a locally
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compact group Ur,n−r , called the J-unitary group. A matrix A ∈ Mn is said to be J-Hermitian if A = A#,

that is, A = JA∗J.
The J-Hermitian matrices appear in many problems of physics, such as in relativistic quantum

mechanics or in the theory of algebraic models in quantum physics [4,9,10]. Due to its applications

and also on its own interest, the study of J-Hermitian matrices has deserved the attention of some

researchers [1,7]. In contrast with Hermitian matrices whose spectrum is real, the spectrum of J-

Hermitian matrices is symmetric relatively to the real axis. Henceforth, this property prevents the

derivation of spectral inequalities for these matrices, except for some particular classes.

We denote by σ(A) the spectrum of A ∈ Mn (counting multiplicities). Given λ ∈ σ(A), we say

that λ ∈ σ+
J (A) (resp. λ ∈ σ−

J (A)) and has multiplicity k if there exist k J-orthonormal eigenvectors

xj, Axj = λxj, j = 1, . . . , k, such that [xj, xj] > 0 (resp. [xj, xj] < 0). We notice that a J-normal matrix

A such that the equality σ(A) = σ−
J (A) ∪ σ+

J (A) holds is J-unitarily diagonalizable, that is, diago-

nalizable under a J-unitary matrix [6]. In this note we focus on HJ , the class of J-Hermitian matrices

with real and separated spectrum. We recall that the spectrum of A is separated if there exist two

disjoint intervals I+ and I− inRwithσ+
J (A) = (α1, . . . ,αr) ⊂ I+ andσ−

J (A) = (αr+1, . . . ,αn) ⊂ I−.

The matrices of HJ are J-unitarily diagonalizable. We will also be concerned with J-normal matrices

which are J-unitarily diagonalizable. We study analogs of the famous Cauchy–Poincaré interlacing

theorem (recalled below) for matrices in HJ . In [7], this problem was investigated in a more gen-

eral but, consequently, rather involved approach. Let A = A∗ ∈ Mn be a Hermitian matrix and let

A(n|n) be its principal (n − 1) × (n − 1) submatrix obtained by deleting the last row and column.

Let σ(A) = (α1 � · · · � αn) and σ(A(n|n)) = (μ1 � · · · � μn−1) be the ordered lists of eigenvalues of

A and A(n|n), respectively. The Cauchy–Poincaré interlacing theorem [3] states that these sequences

interlace each other, that is,

α1 � μ1 � α2 � μ2 � · · · � αn−1 � μn−1 � αn. (1)

It is known that the converse is also true, that is, for any two sequences (αj)
n
1 and (μj)

n−1
1 of real

numbers satisfying (1), there exists a (non-unique) Hermitian matrix A of order n such that σ(A) =
(αj)

n
1 and σ(A(n|n)) = (μj)

n−1
1 . In [5] an analog of Cauchy–Poincaré interlacing theorem for the case

of normal matrices was obtained by Fan and Pall.

Thisnote is organizedas follows. In Section2 somepreliminary results arepresented. In Section3we

state an indefinite version of Cauchy–Poincaré interlacing theorem for the class HJ of J-Hermitianma-

trices. InSection4wederiveananalog result for J-normalmatriceswhichare J-unitarilydiagonalizable.

We also investigate the corresponding inverse spectral problems.

2. Preliminaries

Throughout we use the following notation. For fixed integers n and k, 1� k � n, Qk,n denotes the

set of all strictly increasing sequences of k integers from 1 to n. For w, τ ∈ Qk,n, the k × k submatrix

of A ∈ Mn with rows and columns indexed by the elements of w and τ , respectively, is denoted by

A[w|τ ]. Ifw = τ , we simply write A[w]. The (n − 1) × (n − 1) submatrix obtained by deleting row i

and column j of A is denoted by A(i|j).
Let A, B be two square complex matrices of orders n and m, m < n. We say that B is imbeddable in

A if there exists a matrix V of type n × m such that V#V = Im and V#AV = B.

The following result extends Malamud’s Proposition 3.1 in [11].

Theorem 2.1. Let (αk)
n
1 and (μj)

n−1
1 be two sequences of complex numbers such that {α1, . . . ,αr} ∩

{αr+1, . . . ,αn} = ∅. Define

p(λ) :=
∏n−1

k=1(λ − μk)∏n
k=1(λ − αk)

.
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Then the following conditions are equivalent:
(i) The singularities of the rational function p are α1, . . . ,αn, being αk either a removable singularity of

p with Resαk
p(λ) = 0 or αk is a simple pole of p with

Resαk
p(λ) < 0, if k = 1, . . . , r; Resαk

p(λ) > 0, if k = r + 1, . . . , n. (2)

(ii) There exists a J-normal (and J-unitarily diagonalizable) matrix A such that σ+
J (A) = (α1, . . . ,αr),

σ−
J (A) = (αr+1, . . . ,αn), and σ(A(n|n)) = (μ1, . . . ,μn−1).

Proof. Weprove (ii) ⇒ (i). Consider the J-orthonormal basis constituted by the vectors ek = (δ1k, δ2k,
. . . , δnk), where δij denotes the Kronecker symbol (i.e., δij = 1 if i = j and δij = 0 otherwise). Then

e∗k Jel = εkδkl , with ε1 = · · · = εr = 1, εr+1 = · · · = εn = −1. Let A be a J-normal matrix such that

σ+
J (A) = (α1, . . . ,αr), σ−

J (A) = (αr+1, . . . ,αn). As counting multiplicities the equality σ(A) = σ+
J

(A) ∪ σ−
J (A) holds, A is J-unitarily diagonalizable. Assume moreover that σ(A(n|n)) = (μ1, . . . ,

μn−1). Consider the function

q(λ) := −e∗nJ(λIn − A)−1en.

Thus, q(λ) is the (n, n)th entry of the matrix (λIn − A)−1 and we easily find that

q(λ) = det (λIn−1 − A(n|n))
det (λIn − A)

=
∏n−1

k=1(λ − μk)∏n
k=1(λ − αk)

= p(λ).

Consider the J-orthonormal basis constituted by the vectors ξk , where ξk is an eigenvector of A

associatedwithαk . Writing en = ∑n
k=1 xkξk, xk ∈ C, and having inmind that ξ∗

k Jξl = εkδkl , we obtain

p(λ) =
∏n−1

k=1(λ − μk)∏n
k=1(λ − αk)

= −e∗nJ(λIn − A)−1en = −
n∑

k=1

|xk|2εk
λ − αk

. (3)

It easily follows from (3) that the rational function p(λ) has only simple poles and they clearly belong

to the spectrum of A. Moreover, if λ0 is a multiple eigenvalue of A with multiplicity k, then λ0 is an

eigenvalue of A(n|n)withmultiplicity at least k − 1. Therefore, λ0 is not a removable singularity if and

only if λ0 is an eigenvalue of A(n|n) with multiplicity k − 1. The residue of p(λ) in a (simple) pole αk

is given by

Resαk
p(λ) = lim

λ→αk

∏n−1
j=1 (λ − μj)∏

1� j � n,j /=k(λ − αj)
.

Since σ+
J (A) and σ−

J (A) are disjoint,

Resαk
p(λ) < 0 if k ∈ {1, . . . , r}; Resαk

p(λ) > 0, if k ∈ {r + 1, . . . , n}.
We prove (i) ⇒ (ii). Under the hypothesis,

p(λ) = −
r∑

k=1

|xk|2
λ − αk

+
n∑

k=r+1

|xk|2
λ − αk

for some xk ∈ C, k = 1, . . . , n, and

−
r∑

k=1

|xk|2 +
n∑

k=r+1

|xk|2 = lim
λ→∞ λ p(λ) = 1.

Let U# ∈ Ur,n−r be a J-unitary matrix whose last column is the vector [x1 · · · xr xr+1 · · · xn]T . Consider
the J-normal matrix A = Udiag (α1, . . . ,αn)U

#. It is clear that for D = diag (α1, . . . ,αn), we have

σ+
J (D) = (α1, . . . ,αr), and σ−

J (D) = (αr+1, . . . ,αn). By straightforward computations we get
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det (λIn−1 − A(n|n))
det (λIn − A)

= −e∗nJ(λIn − A)−1en

= −
r∑

k=1

|xk|2
λ − αk

+
n∑

k=r+1

|xk|2
λ − αk

=
∏n−1

k=1(λ − μk)∏n
k=1(λ − αk)

.

This implies that det (λIn−1 − A(n|n)) = ∏n−1
k=1(λ − μk), and so σ(A(n|n)) = (μ1, . . . ,μn−1). Since

σ+
J (D) = σ+

J (A) and σ−
J (D) = σ−

J (A), the result follows. �

Remark 2.1. In the proof of the above theorem, we have shown that if A is J-normal and J-unitarily

diagonalizable and ξk is an eigenvector associated with an eigenvalue αk which is a pole of p, then

[ξk, ξk] and Resαk
p(λ) have opposite signs.

The next result follows from the proof of (i) ⇒ (ii) in Theorem 2.1.

Corollary 2.1. Let (αk)
n
1 and (μj)

n−1
1 be two sequences of complex numbers under the assumptions of

Theorem 2.1. Assume that

p(λ) :=
∏n−1

k=1(λ − μk)∏n
k=1(λ − αk)

= −
r∑

k=1

|xk|2
λ − αk

+
n∑

k=r+1

|xk|2
λ − αk

for some complex numbers xk. Then for any J-unitary matrix U# ∈ Ur,n−r whose last column is the vector

[x1 · · · xr xr+1 · · · xn]T , the J-normal matrix A = Udiag (α1, . . . ,αn)U
# is such that σ+

J (A) = (α1, . . . ,

αr), σ−
J (A) = (αr+1, . . . ,αn), and σ(A(n|n)) = (μ1, . . . ,μn−1).

3. An indefinite version of Cauchy–Poincaré interlacing theorem

Next we present an analog of Cauchy–Poincaré interlacing theorem for J-Hermitian matrices.

Theorem 3.1. Let A ∈ HJ with σ+
J (A) = (α1 � · · · � αr), σ−

J (A) = (αr+1 � · · · � αn),αr > αr+1, and

let J′ = J(n|n). Then A(n|n) is J′-unitarily diagonalizable and its spectrum is separated. Forσ+
J′ (A(n|n)) =

(μ1 � · · · � μr), σ
−
J′ (A(n|n)) = (μr+1 � · · · � μn−1), the sequences (αj)

n
1, (μj)

n−1
1 interlace eachother:

μ1 � α1 � μ2 � α2 � · · · � μr � αr > αr+1 � μr+1 � · · · � μn−2 � αn−1 � μn−1 � αn. (4)

The converse is also true, that is, for any two sequences of real numbers (αj)
n
1 and (μj)

n−1
1 satisfying (4),

there exists a (nonunique) J-Hermitianmatrix A ∈ HJ such thatσ(A) = (αj)
n
1 andσ(A(n|n)) = (μj)

n−1
1 ,

beingσ+
J (A) = (α1 � · · · � αr), σ−

J (A) = (αr+1 � · · · � αn), andσ+
J′ (A(n|n)) = (μ1 � · · · � μr), σ

−
J′

(A(n|n)) = (μr+1 � · · · � μn−1).

Proof. We prove the necessity part of the theorem. Consider the sets

W±
J (A) := {[Ax, x] : x ∈ Cn, [x, x] = ±1}

and

WJ(A) = W+
J (A) ∪ W−

J (A).

Since σ+
J (A) = (α1 � · · · � αr), σ−

J (A) = (αr+1 � · · · � αn), αr > αr+1, by Theorem 3.1 of [2]

WJ(A) = (−∞,αr+1] ∪ [αr ,+∞). Taking into account thatWJ′(A(n|n)) is a subset ofWJ(A), we may

easily conclude that it is a union of two half-rays. Thematrix A(n|n) can not have complex eigenvalues,

contrarily by Theorem 2.1 of [2] WJ′(A(n|n)) would be the whole real line. By Theorem 2.3 of [8]
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A(n|n) can have at most one isotropic eigenvalue μ, being in this caseWJ′(A(n|n)) the real line except

eventuallyμ, which is impossible. Thus, A(n|n) has a real and separated spectrum and is J-unitarily di-

agonalizable. Assume that σ+
J′ (A(n|n)) = (μ1 � · · · � μr), σ

−
J′ (A(n|n)) = (μr+1 � · · · � μn−1), with

μr > μr+1. Let

p(λ) := −e∗nJ(λIn − A)−1en.

Consider the J-orthonormal basis constituted by the vectors ξk , where ξk is an eigenvector of A

associatedwithαk . Writing en = ∑n
k=1 xkξk, xk ∈ C, and having inmind that ξ∗

k Jξl = εkδkl , we obtain

p(λ) = −
n∑

k=1

|xk|2εk
λ − αk

=
∏n−1

k=1(λ − μk)∏n
k=1(λ − αk)

.

The singularities of the rational function p(λ) are α1, . . . ,αn. If αk is a removable singularity with

algebraic multiplicity s, there are at least sμj ’s withμj = αk . So, without loss of generality we assume

that αk is not a removable singularity. Thus,

Resαk
p(λ) < 0, if k ∈ {1, . . . , r}; Resαk

p(λ) > 0, if k ∈ {r + 1, . . . , n}.
For 1� j � r, we obtain limλ→α+

j
p(λ) = −∞ and limλ→α−

j
p(λ) = +∞. For r + 1� j � n, we find

that limλ→α+
j
p(λ) = +∞ and limλ→α−

j
p(λ) = −∞. Hence, the intermediate value theorem en-

sures that p(λ) has one zero between two consecutive poles αj−1 and αj for j = 2, . . . , r, and there

also exists one zero betweenαj andαj+1 for j = r + 1, . . . , n − 1. The rational function p(λ)has a zero
above α1, this being justified by the fact that limλ→α+

1
p(λ) = −∞ and limλ→+∞ λp(λ) = 1. More-

over,p(λ)hasnozerosbetweenαr andαr+1. In fact, since limλ→α+
r
p(λ) = −∞and limλ→α−

r+1
p(λ) =

−∞, the existence of one zero would imply the existence of at least two zeros between αr and

αr+1, which is impossible because we have just n − 1 μ’s. The zeros of p(λ) are obviously the n − 1

roots (counting multiplicities) μ1, . . . ,μn−1 of the degree n − 1 polynomial
∏n−1

j=1 (λ − μj). Thus, (4)

follows.

We prove the sufficiency part of the theorem. It is enough to show that (i) in Theorem 2.1 holds.

Consider

p(λ) =
∏n−1

k=1(λ − μk)∏n
k=1(λ − αk)

.

Suppose that (4) is fulfilled. Clearly, the singularities of p are α1, . . . ,αn. Having in mind (4), if λ0 has

multiplicity s > 1 in the list α1, . . . ,αn, then λ0 belongs to {μ1, . . . ,μn−1} and has multiplicity at

least s − 1. Thus, either αk is a removable singularity or αk is a simple pole of p. For simplicity, in the

latter case we assume that αk has multiplicity one, otherwise we eliminate the common factors in the

numerator and in the denominator of p in order to make its expression irreducible. Then,

Resαk
p(λ) = (αk − μ1) · · · (αk − μn−1)

(αk − α1) · · · (αk − αk−1)(αk − αk+1) · · · (αk − αn)
.

Counting the number of positive and negative numbers in the numerator and in the denominator, it

follows that

Resαk
p(λ) < 0, if k ∈ {1, . . . , r}; Resαk

p(λ) > 0, if k ∈ {r + 1, . . . , n}.
By Theorem 2.1 (i) ⇒ (ii), there exists a J-normalmatrix A such that σ+

J (A) = (α1, . . . ,αr), σ−
J (A) =

(αr+1, . . . ,αn) and σ(A(n|n)) = (μ1, . . . ,μn−1). The matrix A is J-Hermitian because its eigenvalues

are real, and so is A(n|n). By an argument similar to the one given in the necessity part of the proof,

we get σ+
J′ (A(n|n)) = (μ1 � · · · � μr) and σ−

J′ (A(n|n)) = (μr+1 � · · · � μn−1) for J
′ = J(n|n). �
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Given a J-Hermitian matrix A, the interlacing relation between its eigenvalues and the eigenvalues

of A(j|j) depends on whether j � r or j � r + 1, where j labels the row and the column of the matrix A

which are deleted.

Remark 3.1. Let A ∈ HJ and J′ = J(1|1). Let σ+
J (A) = (α1 � · · · � αr), σ−

J (A) = (αr+1 � · · · � αn),

αr > αr+1. Then A(1|1) ∈ HJ′ and for σ+
J′ (A(1|1)) = (μ1 � · · · � μr−1), σ−

J′ (A(1|1)) = (μr � · · · �
μn−1) an analog of Theorem 3.1 holds, being the interlacing relations (4) replaced by

α1 � μ1 � α2 � μ2 � · · · � μr−1 � αr > αr+1 � μr � · · · � αn−1 � μn−2 � αn � μn−1. (5)

Remark 3.2. Replacing in Theorem 3.1 the condition αr > αr+1 by αn > α1, then an analog of the

theorem is valid, with (4) replaced by

αr+1 � μr+1 � αr+2 � μr+2 � · · · � μn−1 � αn > α1 � μ1 � · · · � αr−1 � μr−1 � αr � μr . (6)

Remark 3.3. Replacing in Theorem 3.1, the submatrix A(n|n) by A(1|1) and the condition αr > αr+1

by αn > α1, then an analog of the theorem holds, with (4) replaced by

μr � αr+1 � μr+1 � αr+2 � · · · � μn−1 � αn > α1 � μ1 � · · · � μr−2 � αr−1 � μr−1 � αr . (7)

The interlacing results (4)–(7) are easily generalizedwhen the number of deleted rows and columns

in the originalmatrix ism = n − t > 1, by inserting intermediary sequences of eigenvalues, such that

two consecutive sequences so obtained interlace similarly to (4)–(7), respectively. Thus, by the result

for t = n − 1, there exists a chain of J-Hermitian matrices, with sizes increasing by unity, such that

each one is imbeddable in the next.

In the sequel, we adopt the following notation. Given p1 � r, p2 � n − r, J′′ = J[p1 + 1, . . . , n − p2],
and B = A[p1 + 1, . . . , n − p2], with σ(B) = σ+

J′′ (B) ∪ σ−
J′′ (B), we consider

σ+
J′′ (B) = (μ1 � · · · � μr−p1), σ−

J′′ (B) = (μr−p1+1 � · · · � μn−p1−p2).

When we write j′ � j � j′′ with j′ > j′′ we mean that the interval where j ranges is empty.

The next lemma is a simple consequence of Theorem 3.1 and of Remarks 3.1–3.3.

Lemma 3.1. (I) Given A ∈ HJ , consider its (n − m) × (n − m) principal submatrix A[m + 1, . . . , n]with

m� r. If m� r − 1, then an analog of Theorem 3.1 holds with the following interlacing conditions:

αj � μj � αj+m, 1� j �min{r − m, n − 2m};
αj+m � μj � αj+2m, r − m + 1� j � n − 2m; (8)

αj+m � μj , n − 2m + 1� j � n − m,

where (8) applies only if r < n − m. If m = r, then

αj+r � μj � αj+2r , 1� j � n − 2r;
αj+r � μj , n − 2r + 1� j � n − r.

(II) Given A ∈ HJ , consider its (n − m) × (n − m) principal submatrix A[1, . . . , n − m]with m� n −
r. If n − m� r + 1, then an analog of Theorem 3.1 holds with the following interlacing conditions:

μj � αj , 1� j �m;
αj−m � μj � αj , m + 1� j � r; (9)

αj � μj � αj+m, max{r + 1, m + 1} � j � n − m.

where (9) applies only if m < r. If n − m = r, then
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μj � αj , 1� j � n − r;
αj−n+r � μj � αj , n − r + 1� j � r.

Theorem 3.2. Let A ∈ HJ and J′ = J[p + 1, . . . , n − m], p� r, m� n − r. Let σ+
J (A) = (α1 � · · ·

� αr), σ
−
J (A) = (αr+1 � · · · � αn),αr > αr+1. Then A[p + 1, . . . , n − m] ∈ HJ′ . For σ+

J′ (A[p + 1, . . . ,

n − m]) = (μ1 � · · · � μr−p), σ
−
J′ (A[p + 1, . . . , n − m]) = (μr−p+1 � · · · � μn−p−m), the sequences

(αj)
n
1, (μj)

n−m−p
1 interlace each other as follows:

If n − m� r + 1 and p� r − 1, then

μj � αj+p, 1� j �min{m, r − p};
αj−m � μj � αj+p, m + 1� j � r − p; (10)

αj+p � μj � αj+m+2p, r − p + 1� j � n − m − 2p; (11)

αj+p � μj , max{n − m − 2p + 1, r − p + 1} � j � n − m − p,

where (10) applies only if m + p < r and (11) applies only if m + p < n − r.
If n − m = r and p < r then

μj � αj+p, 1� j � n − r;
αj−n+r � μj � αj+p, n − r + 1� j � r − p.

If p = r and m < n − r, then

αj+r � μj � αj+m+2r , 1� j � n − m − 2r;
αj+r � μj , n − m − 2r + 1� j � n − m − r.

The converse is also true, that is, for any two sequences of real numbers (αj)
n
1 and (μj)

n−p−m
1 satisfying

the above inequalities, there exists a (nonunique) J-Hermitian matrix A ∈ HJ such that σ(A) = (αj)
n
1 and

σ(A[p + 1, . . . , n − m]) = (μj)
n−p−m
1 , being σ+

J (A) = (α1 � · · · � αr), σ−
J (A) = (αr+1 � · · · � αn),

and σ+
J′ (A[p + 1, . . . , n − m]) = (μ1 � · · · � μr−p), σ−

J′ (A[p + 1, . . . , n − m]) = (μr−p+1 � · · · �
μn−p−m).

Proof. Necessity: Let B = A[p + 1, . . . , n] and J′′ = J[p + 1, . . . , n]. It can be easily seen that B ∈
HJ′′ . Let σ+

J′′ (B) = (γ1 � · · · � γr−p) and σ−
J′′ (B) = (γr−p+1 � · · · � γn−p). We have γr−p > γr−p+1.

By Lemma 3.1 (II)

μj � γj , 1� j �m; (12)

γj−m � μj � γj , m + 1� j � r − p;
γj � μj � γj+m, r − p + 1� j � n − p − m.

By Lemma 3.1 (I)

αj � γj � αj+p, 1� j � r − p; (13)

αj+p � γj � αj+2p, r − p + 1� j � n − 2p;
αj+p � γj , n − 2p + 1� j � n − p.

It is not hard to confirm that the previous inequalities imply the stated interlacing relations.
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Sufficiency: Let

γj = min{μj ,αj}, 1� j � r − p;
γj = max{αj+2p,μj}, r − p + 1� j �min{n − p − m, n − 2p}.

If m� p, let
γj = μj , n − 2p + 1� j � n − p − m;
γj = μn−p−m, n − p − m + 1� j � n − p.

If m > p, let

γj = αj+2p, n − p − m + 1� j � n − 2p;
γj = αn, n − 2p + 1� j � n − p.

Then (12) and (13) hold. By Lemma 3.1 (II), there exists a J′′-Hermitian matrix B of size n − p such that

σ+
J′′ (B) = (γ1, . . . , γr−p), σ−

J′′ (B) = (γr−p+1, . . . , γn−p),

with J′′ = J[p + 1, . . . , n] and
σ+
J′ (B[1, . . . , n − p − m]) = (μ1, . . . ,μr−p),

σ−
J′ (B[1, . . . , n − p − m]) = (μr−p+1, . . . ,μn−p−m).

By Lemma 3.1 (I), there exists a matrix A ∈ HJ such that

σ+
J (A) = (α1, . . . ,αr), σ−

J (A) = (αr+1, . . . ,αn),

and

σ+
J′′ (A[p + 1, . . . , n]) = (γ1, . . . , γr−p), σ−

J′′ (A[p + 1, . . . , n]) = (γr−p+1, . . . , γn−p).

Since B and A[p + 1, . . . , n] are J′′-unitarily similar, the result follows. �

4. An indefinite version of Fan–Pall theorem

Fan–Pall interlacing theorem gives a necessary and sufficient condition for the tuples (αk)
n
1 and

(μk)
n−1
1 of complex numbers to be the spectrum of a normal matrix A and of its principal submatrix

A(n|n). In Theorem 3.1 we establish an analog of this result for J-normal matrices.

Contrarily to the J-Hermitian case, the next result is not generalizable to a principal submatrix B

with sizem < n − 1. In general, it is not true that there exists a chain of J-normal matrices beginning

with B and ending with A, with orders increasing by unity and such that each one is imbeddable in

the next one. The same situation occurs for normal matrices as shown by the following example in

[5]. Consider A = diag (0, 1, i, 1 + i) and B = 10−1diag (5 + 8i, 5 + 2i). Then B is imbeddable in A, but

there does not exist a 3 × 3 normal matrix C such that B is imbeddable in C and C is imbeddable in A.

Theorem 4.1. Let A ∈ Mn be a J-normal matrix with σ+
J (A) = (α1, . . . ,αr), σ

−
J (A) = (αr+1, . . . ,αn).

Assume that σ+
J (A) is contained in the right half plane and σ−

J (A) is contained in the left half plane. For

J′ = J(n|n), let B be a J′-normalmatrix of order n − 1withσ+
J′ (B) = (μ1, . . . ,μr), σ

−
J′ (B) = (μr+1, . . . ,

μn−1).Renumber theeigenvalues so thatα1 = μ1, . . . ,αs = μs, s� r,αn−t+1 = μn−t , . . . ,αn = μn−1,

t � n − r − 1,μs+1, . . . ,μr , are each distinct from αs+1, . . . ,αr andμr+1, . . . ,μn−t−1 are each distinct

from αr+1, . . . ,αn−t . Then a necessary and sufficient condition for B to be imbeddable in A is that the

2(n − s − t) − 1 pointsαs+1, . . . ,αn−t ,μs+1, . . . ,μn−t−1 shall be collinear, andmay be ordered so that

every line segment whose endpoints are αl and αl+1 (s + 1� l � r − 1 or r + 1� l � n − t − 1) shall

contain one μj and μs+1 belongs to the half-ray αs+1 + t(αs+1 − αr+1), t � 0.
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Proof. We first prove the necessity part. Assume that there exists a J-unitary U such that

U#AU =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ1 0 · · · 0 0 · · · 0 z1
0 μ2 · · · 0 0 · · · 0 z2
...

...
. . .

...
...

. . .
...

...
0 0 · · · μr 0 · · · 0 zr
0 0 · · · 0 μr+1 · · · 0 zr+1

...
...

. . .
...

...
. . .

...
...

0 0 · · · 0 0 · · · μn−1 zn−1

w1 w2 · · · wr wr+1 · · · wn−1 γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for some complex numbers zj, wj and γ . The J-normality of A can be expressed by

|zj| = |wj|, 1� j � n − 1, (14)

zjz̄k = w̄jwkεjεk, 1� j, k � n − 1, (15)

(μj − γ )w̄j = −(μj − γ )zjεj , 1� j � n − 1, (16)

where εk = 1, 1� k � r, and εk = −1, r + 1� k � n. We may assume that the vanishing zj (if they

exist) are z1, . . ., zs and zn−1, . . ., zn−t . If zj is different from zero, then by (14) also wj /= 0. From (15)

we get

(wjzj)(zkz̄k) = (zkwkεk)(wjw̄jεj),

which implies that all the nonvanishing numbers among the (n − 1)zkwkεk have the same argument

arg(wjzjεj) = arg(wkzkεk).

Denoting this argument by 2θ + π , with −π/2 < θ � π/2, from (14) it follows that zj = wj = 0 or

zjεj = −ei2θ w̄j.

Thus, in any case

zje
−iθ = −wje

−iθ εj.

Having in mind (16) either μj − γ = 0 or arg(μj − γ ) = θ (modπ). In any case we may set μj =
γ + eiθbj with bj real. Then

(U#AU)[s + 1, . . ., n − t − 1, n] = γ In−s−t + eiθH,

where H is J̃-Hermitian for J̃ = J[s + 1, . . ., n − t − 1, n].
Let us introduce the matrices

C = diag (μ1, . . .,μs), E = diag (μn−t , . . .,μn−1), P = In−t−1 ⊕ T,

where T is the circulant matrix

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ Mt+1. (17)

Hence

PU#AUP−1 = C ⊕ D ⊕ E,
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where D = γ In−s−t + eiθH. Renumber the eigenvalues of D such that for αj = γ + eiθaj, j = s +
1, . . ., n − t, we have

σ +̃
J

(H) = (as+1 � · · · � ar), σ −̃
J

(H) = (ar+1 � · · · � an−t).

Since we are assuming that σ+
J (A) is contained in the right half plane and σ−

J (A) is contained in the

left half plane, it follows that ar > ar+1. Renumber the

μj = γ + eiθbj, j = s + 1, . . ., n − t − 1,

so that

σ+
J′′ (H(n − t|n − t)) = (bs+1 � · · · � br), σ−

J′′ (H(n − t|n − t)) = (br+1 � · · · � bn−t−1),

where J′′ = J′(n − t|n − t). Then by Theorem 2.2

bs+1 � as+1 � bs+2 � as+2 � · · · � br � ar > ar+1 � br+1 � · · · � bn−t−1 � an−t .

We prove the sufficiency. Let αj ,μj ∈ C satisfy the conditions of the theorem. Since the distinct αj ,μj

are collinear, there exist a complex number γ and real numbers

θ , as+1, . . ., ar , ar+1, . . ., an−t , bs+1, . . ., br , br+1, . . ., bn−t−1,

with −π/2 < θ � π/2, such that αj = eiθaj + γ , s + 1� j � n − t, and μj = eiθbj + γ , s + 1� j �
n − t,

bs+1 � as+1 � bs+2 � as+2 � · · · � br � ar > ar+1 � br+1 � . . . � bn−t−1 � an−t .

From Theorem 2.2, there exists a Ĵ-Hermitian matrix H of size n − s − t, Ĵ = J[s + 1, . . ., n − t], such
that

σ +̂
J

(H) = (as+1, . . ., ar), σ −̂
J

(H) = (ar+1, . . .,αn−t)

and

σ+
J′′ (H(n − t|n − t)) = (bs+1, . . ., br), σ−

J′′ (H(n − t|n − t)) = (br+1, . . ., bn−t−1),

where J′′ = J′(n − t|n − t). Now we consider the J-normal matrix

D = γ In−s−t + eiθH.

It can be easily seen that P−1(C ⊕ D ⊕ E)P, where C = diag (μ1, . . .,μs), E = diag (μn−t , . . .,μn−1)
and P = In−t−1 ⊕ T , for T in (17), satisfy the asserted conditions. �

The following analog to Theorem 3.1 holds.

Theorem 4.2. Let A ∈ Mn be a J-normal matrix with σ+
J (A) = (α1, . . .,αr), σ

−
J (A) = (αr+1, . . .,αn).

Assume thatσ+
J (A) is contained in the right half plane andσ−

J (A) is contained in the left half plane. Let J′ =
J(1|1), and B ∈ Mn−1 be a J′-normal matrix with σ+

J′ (B) = (μ1, . . .,μr−1), σ−
J′ (B) = (μr , . . .,μn−1).

Renumber the eigenvalues so that α1 = μ1, . . .,αs = μs, s� r − 1,αn−t+1 = μn−t , . . .,αn = μn−1,

t � n − r,μs+1, . . .,μr−1 are each distinct from αs+1, . . .,αr and μr , . . .,μn−t−1 are each distinct from

αr+1, . . .,αn−t . Then a necessary and sufficient condition for B to be imbeddable in A is that the 2(n − s −
t) − 1 points αs+1, . . .,αn−t ,μs+1, . . .,μn−t−1 shall be collinear, and may be ordered so that every line

segment whose endpoints are αl and αl+1 (s + 1� l � r − 1 or r + 1� l � n − t − 1) shall contain one

μj and μn−t−1 belongs to the half-ray αn−t + t(αn−t − αr+1), t � 0.
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