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1. Introduction

We consider C" with an indefinite inner product [-, -] defined as [x,y] := y*Jx,x,y € C", where
J = I & —I,_.Let M, be the associative algebra of n x ncomplex matrices. A matrixA € M, is said to
beJ-normalif A*A = AA* where A* is the J-adjoint of A defined by [Ax, y] = [x, A* y],foranyx,y € C",
ie,A* = JA*].If Ais invertible and A~! = A*, then A is J-unitary. The J-unitary matrices form a locally
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compact group Uy ,—r, called the J-unitary group. A matrix A € Mj, is said to be J-Hermitian if A = A*,
that is, A = JA*J.

The J-Hermitian matrices appear in many problems of physics, such as in relativistic quantum
mechanics or in the theory of algebraic models in quantum physics [4,9,10]. Due to its applications
and also on its own interest, the study of J-Hermitian matrices has deserved the attention of some
researchers [1,7]. In contrast with Hermitian matrices whose spectrum is real, the spectrum of J-
Hermitian matrices is symmetric relatively to the real axis. Henceforth, this property prevents the
derivation of spectral inequalities for these matrices, except for some particular classes.

We denote by o (A) the spectrum of A € M, (counting multiplicities). Given A € o (A), we say
that A € a]+ (A) (resp. A € o (A)) and has multiplicity k if there exist k J-orthonormal eigenvectors
Xj, AX; = Axj,j = 1,...,k, such that [x;, x;] > 0 (resp. [xj, x;] < 0). We notice that a J-normal matrix
A such that the equality o (A) = o AU o]+ (A) holds is J-unitarily diagonalizable, that is, diago-

nalizable under a J-unitary matrix [6]. In this note we focus on H;, the class of J-Hermitian matrices
with real and separated spectrum. We recall that the spectrum of A is separated if there exist two
disjointintervals [T and I~ in [Rwithaf(A) = (a1,...,a) CItando; (A) = (Ary1,...,000) CI™.
The matrices of H; are J-unitarily diagonalizable. We will also be concerned with J-normal matrices
which are J-unitarily diagonalizable. We study analogs of the famous Cauchy-Poincaré interlacing
theorem (recalled below) for matrices in #;. In [7], this problem was investigated in a more gen-
eral but, consequently, rather involved approach. Let A = A* € M, be a Hermitian matrix and let
A(n|n) be its principal (n — 1) x (n — 1) submatrix obtained by deleting the last row and column.
Leto(A) = (o1 =--->ay)and o (A(n|n)) = (U1 =+ - - = up—1) be the ordered lists of eigenvalues of
A and A(n|n), respectively. The Cauchy-Poincaré interlacing theorem [3] states that these sequences
interlace each other, that is,

A1 Z U120 22"+ 201 2 n—1 = Up. (M

It is known that the converse is also true, that is, for any two sequences ()} and (u; ?71 of real
numbers satisfying (1), there exists a (non-unique) Hermitian matrix A of order n such that o (A) =
(ej)] and o (A(n|n)) = (,uj)'f_1. In [5] an analog of Cauchy-Poincaré interlacing theorem for the case
of normal matrices was obtained by Fan and Pall.

This note is organized as follows. In Section 2 some preliminary results are presented. In Section 3 we
state an indefinite version of Cauchy-Poincaré interlacing theorem for the class #; of ]-Hermitian ma-
trices. In Section 4 we derive an analog result for J-normal matrices which are J-unitarily diagonalizable.
We also investigate the corresponding inverse spectral problems.

2. Preliminaries

Throughout we use the following notation. For fixed integers n and k, 1 <k <n, Qx, denotes the
set of all strictly increasing sequences of k integers from 1 to n. For w, T € Qy, the k x k submatrix
of A € M,, with rows and columns indexed by the elements of w and 7, respectively, is denoted by
Alw|t]. If w = t, we simply write A{w]. The (n — 1) x (n — 1) submatrix obtained by deleting row i
and column j of A is denoted by A(ilj).

Let A, B be two square complex matrices of orders n and m, m < n. We say that B is imbeddable in
A if there exists a matrix V of type n x m such that V¥V = I, and V¥AV = B.

The following result extends Malamud’s Proposition 3.1 in [11].

Theorem 2.1. Let (ay)| and (,uj)’f*] be two sequences of complex numbers such that {aq,...,a;} N
{otr41, . .., an} = @. Define

Iz O — )

A) = .
PO = 0 Za)
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Then the following conditions are equivalent:

(i) The singularities of the rational function p are o1, . . ., oy, being «y, either a removable singularity of
p with Resq, p(A) = 0 or oy is a simple pole of p with

Resq,p(A) <O, ifk=1,...,r; Resgp(A) >0, ifk=r+1,...,n (2)

(ii) There exists a J-normal (and J-unitarily diagonalizable) matrix A such that a]+ A) = (aq,...,q),

o; (A) = (@41, ..., an), and o (A(n|n)) = (@1, - - ., ln—1)-

Proof. We prove (ii) = (i). Consider the J-orthonormal basis constituted by the vectors e, = (81x, 62k,
..., k), where §;; denotes the Kronecker symbol (i.e., §; = 1 if i = j and §;; = 0 otherwise). Then
epJer = exdy, withey = -+ =&, = 1,641 = - - - = &y = —1. Let A be a J-normal matrix such that
a]+ A) = (a1,...,0), 07 (A) = (41, . . ., ). As counting multiplicities the equality o (A) = a]+
AU o (A) holds, A is J-unitarily diagonalizable. Assume moreover that o (A(n|n)) = (u4,...,
In—1). Consider the function

q(t) = —€;J(kly — A) e
Thus, g(A) is the (n, n)th entry of the matrix (A, — A)~! and we easily find that

det Moy —A[n) Tz (O, — i)
det M —A)  TIP_; Ok — o)

Consider the J-orthonormal basis constituted by the vectors &, where & is an eigenvector of A

associated with o Writing e, = Y p_; xk&k, x¢ € C, and having in mind that £;J& = 8y, we obtain
Tzt O — 1) - " Jxil%en

p(h) = ELT T — e, —A) ey = — Y
l_[k=1 A —ax) k=1 A — o

It easily follows from (3) that the rational function p(X) has only simple poles and they clearly belong
to the spectrum of A. Moreover, if A¢ is a multiple eigenvalue of A with multiplicity k, then A is an
eigenvalue of A(n|n) with multiplicity at least k — 1. Therefore, A¢ is not a removable singularity if and
only if Ag is an eigenvalue of A(n|n) with multiplicity k — 1. The residue of p(}) in a (simple) pole ok
is given by

q) =

= p(A).

(3)

= (o — )
Resy, p(A) = lim =1 Hi .
Ao [T <j<njpre — o)

Since 67" (A) and o} (A) are disjoint,
Resq,p(A) <0 ifk e {1,...,r}; Resyp(h) >0, ifke{r+1,...,n}
We prove (i) = (ii). Under the hypothesis,

T fxel? o xel?

O

k=1~ Ok

k=ri1 & T Ok

forsomex, € C, k=1,...,n,and
- 2 - 2
=Y Ixl*+ ) Ixl® = lim Ap() =1.
k=1 k=r+1 A—00

Let U* e Urn—r be aJ-unitary matrix whose last column is the vector [x1 - - - Xy Xp41 - - - xn]". Consider
the J-normal matrix A = Udiag (o1, . . ., on)U¥. It is clear that for D = diag (@1, . . ., @n), we have
0]+ (D) = (a1, ...,a;),and o (D) = (ar+1, - - -, op). By straightforward computations we get
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det (\lp—1 — A(n|n))

—e*J(Ml, — A) e
det (A, — A) w (o = A) e

e o T o= )
=—Zk +Zk =

=k )
o A—ae S —o ey (v — o)

ThlS 1mp11es that det (AI,—1 — A(n|n)) = ]_[k 1(A k), and so o (A(n|n)) = (u1, ..., kn—1). Since
of (D) =0 (A) and o}~ (D) = o (A), the result follows. [

Remark 2.1. In the proof of the above theorem, we have shown that if A is J-normal and J-unitarily

diagonalizable and & is an eigenvector associated with an eigenvalue o which is a pole of p, then
[k, &1 and Resg, p(1) have opposite signs.

The next result follows from the proof of (i) = (ii) in Theorem 2.1.

Corollary 2.1. Let (o)} and (//Lj)ql_] be two sequences of complex numbers under the assumptions of
Theorem 2.1. Assume that
n

r 2
p()\) I—[k ]( Z Z )\|Xk|

[T O — “") ATk Sy A ok

|xk|2

for some complex numbers xy. Then for any J-unitary matrix U* € Uy n—r whose last column is the vector
[X1 - X Xr41 - - - Xp]7, the J-normal matrix A = Udiag (a1, . . ., oy)U* is such that O'J+(A) =(ay,...,

ar)r Oiji (A) = (ar+1r cry an)' and O(A(n|n)) = (H/lr R anl)-

3. An indefinite version of Cauchy-Poincaré interlacing theorem
Next we present an analog of Cauchy-Poincaré interlacing theorem for J-Hermitian matrices.

Theorem 3.1. Let A € Hj with a]+(A) =(1=2-->ap), a]_(A) = (0tr41 >+ 20p), 0 > ppq, and
let]’ = J(n|n). Then A(n|n) isJ -unitarily diagonalizable and its spectrum lsseparated Foro," (A(n|n)) =
(U1 =-++= ), oy (A[n)) = (1 =+ - > pn—1), thesequences ()], ()] Vinterlace each other:

M1Z012 U202 2 Ur 20 > Oy 2 41 2770 2 n—2 2 On—1 = [n—1 2 On. (4)

The converse is also true, that is, for any two sequences of real numbers (c;j)} and (/Lj);l_l satisfying (4),
there exists a (nonunique) J-Hermitian matrixA € HJ suchthato (A) = (o))} and o (A(nln)) = (,uj)'}fl,
beingo; (A) = (1> >ay), 0 (A) = (0tr41 >+ -+ > ), and o/ (A(n|n)) = (1 >+ > py), o)
(A(nn)) = (fr412 -+ = fn—1).
Proof. We prove the necessity part of the theorem. Consider the sets

WiEA) = {[Ax.x] : x € C", [x,x] = £1}
and

Wi(4) = W (4) UW (4.
Since a]+(A) =(1=2---=ay), a]_ (A) = (@r412--->0ap), ar > ary1, by Theorem 3.1 of [2]
Wj(A) = (=00, ar41] U [y, +-00). Taking into account that Wy (A(n|n)) is a subset of W (A), we may

easily conclude that it is a union of two half-rays. The matrix A(n|n) can not have complex eigenvalues,
contrarily by Theorem 2.1 of [2] Wy (A(n|n)) would be the whole real line. By Theorem 2.3 of [8]
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A(n|n) can have at most one isotropic eigenvalue u, being in this case Wy (A(n|n)) the real line except
eventually u, which is impossible. Thus, A(n|n) has a real and separated spectrum and is J-unitarily di-

agonalizable. Assume that aT(A(n|n)) =(W1=2---2u), 0, (Ann)) = (Ury1 >+ > Up—1), with
Ur > [r41. Let

p(A) = —eiJ (M — A) 'en.

Consider the J-orthonormal basis constituted by the vectors &, where & is an eigenvector of A
associated with o Writing e, = Y_p_; xk&k, x« € C, and having in mind that £J& = &8y, we obtain

p(A) = — Xn: |Xk|25k _ HZ;1 (A — i)
A — o HZ=1 (A — o) ’

k=1

The singularities of the rational function p(}) are a1, . . ., a,. If @ is a removable singularity with
algebraic multiplicity s, there are at least s u;’s with tj = ay. So, without loss of generality we assume
that oy, is not a removable singularity. Thus,

Resq p(A) <O, ifke{l,...,r}; Resyp(r) >0, ifke{r+1,...,n}.

For 1<j<r, we obtain lim,__ + p(A) = —o0 and lim, _, - p(A) = +o0. For r +1<j <n, we find
J J
that lim, _, + p(A) = 400 and lim, _, - p(A) = —o0. Hence, the intermediate value theorem en-
) ]

sures that p(A) has one zero between two consecutive poles «j_1 and «; for j = 2,...,r, and there
also exists one zero between oj and j 1 forj = r 4 1,...,n — 1.Therational function p(A) has a zero
above o/, this being justified by the fact that limk_w;r p(A) = —oo and lim)_, 450 Ap(A) = 1. More-
over,p(A) has no zeros between o and o1 In fact, since limx—nx;f p(A) = —ooand lim)h_)a—+1 p(A) =
—o0, the existence of one zero would imply the existence of at least two zeros between «;, and
or4+1, which is impossible because we have just n — 1 u’s. The zeros of p(A) are obviously the n — 1
roots (counting multiplicities) i1, . . ., tn—1 of the degree n — 1 polynomial ]_[]'7;]] (A — ;). Thus, (4)
follows.

We prove the sufficiency part of the theorem. It is enough to show that (i) in Theorem 2.1 holds.
Consider

T = )

p(h) = .
[Ti=1 (A — o)
Suppose that (4) is fulfilled. Clearly, the singularities of p are «y, . . ., &,. Having in mind (4), if Ao has
multiplicity s > 1 in the list o, . . ., &y, then Ay belongs to {u1, ..., un—1} and has multiplicity at

least s — 1. Thus, either « is a removable singularity or ¢y is a simple pole of p. For simplicity, in the
latter case we assume that oz has multiplicity one, otherwise we eliminate the common factors in the
numerator and in the denominator of p in order to make its expression irreducible. Then,

(o — 1) -+ - (o — n—1)
(o —a1) + -+ (g — op—1) (@ — Q1) - -+ (o — 0ty)

Counting the number of positive and negative numbers in the numerator and in the denominator, it
follows that

Resq p(A) <O, ifke{l,...,r}; Resqp(r) >0, ifke{r+1,...,n}

Resy, (1) =

By Theorem 2.1 (i) = (ii), there exists a J-normal matrix A such that o]+ A) = (a1,...,q), o (A) =
(r4+1, ..., 0p)and o (A(n|n)) = (u1, ..., wn—1). The matrix A is J-Hermitian because its eigenvalues
are real, and so is A(n|n). By an argument similar to the one given in the necessity part of the proof,
we get g, (A(n|n)) = (w1 >+ -~ > py) and o (A[) = (r1 >+ - > pg—1) for )’ = J(n|n). O
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Given a J-Hermitian matrix A, the interlacing relation between its eigenvalues and the eigenvalues
of A(j|j) depends on whether j <r orj>r + 1, where j labels the row and the column of the matrix A
which are deleted.

Remark 3.1. Let A € H; and J' = J(1|1). Let o]Jr(A) =(@=--2ar), 00 (A) = (ar412--- =),
@ > ary1. Then A(1]1) € Hy and for o (A(1[1)) = (1 > -+ 2 1), 0p (A1) = (pr >+ - >
In—1) an analog of Theorem 3.1 holds, being the interlacing relations (4) replaced by

U1 Z U1 202 U222 Ur—1 20 > Opg1 2 Uy 2+ 20n—1 2 Un—2 2 0Qn > Up—1- (5)

Remark 3.2. Replacing in Theorem 3.1 the condition o > o1 by oy > 9, then an analog of the
theorem is valid, with (4) replaced by

Qrp1 2 1 2 Q42 Z hp42 2+ 2 1 2 0p > 0] 2 41 2+ 201 2 f4r—1 2 0 2 fAr. (6)

Remark 3.3. Replacing in Theorem 3.1, the submatrix A(n|n) by A(1|1) and the condition o > ;41
by o, > o1, then an analog of the theorem holds, with (4) replaced by

Mr Z0r1 2 p1 2042 =0 2 n—1 20p > 01 2 U1 2+ 2 Uy—2 2 Qr—1 2 r—1 2 . (7)

The interlacing results (4)—(7) are easily generalized when the number of deleted rows and columns
in the original matrixism = n — t > 1, by inserting intermediary sequences of eigenvalues, such that
two consecutive sequences so obtained interlace similarly to (4)-(7), respectively. Thus, by the result
for t = n — 1, there exists a chain of J-Hermitian matrices, with sizes increasing by unity, such that
each one is imbeddable in the next.

In the sequel, we adopt the following notation. Givenp; <r,pp<n—r,J”" =J[p1 + 1,...,n — p2],
and B =Alp1 +1,...,n — p], with o (B) = o1 (B) U 0}, (B), we consider

G]f/r(B) = (= >Mr7p1)v o (B) = (N«rfp1+l 2. >,U«nfp17p2)~

When we write j < j < j” withj’ > j” we mean that the interval where j ranges is empty.
The next lemma is a simple consequence of Theorem 3.1 and of Remarks 3.1-3.3.

Lemma 3.1. (I) Given A € ‘Hj, consider its (n — m) X (n — m) principal submatrix Alm + 1, ..., n] with
m<r. Ifm<r — 1, then an analog of Theorem 3.1 holds with the following interlacing conditions:

Qj 2 Wi 2 jym, 1<j<min{r —m,n — 2m};
Wjtm 2 Wj 2 Qjtom, T—m+1<j<n—2m; (8)
Ujim=MWj, n—2m+1<j<n—m,
where (8) applies only ifr < n — m. Ifm = r, then
Qjpr 2 Wj 2 iy, 1<j<n—2r;

Wjpr 2 j, Nn—2r+1<j<n—r.

() Given A € Hj, consider its (n — m) x (n — m) principal submatrixA[1, ...,n — m]withm<n —
r.Ifn — m>r + 1, then an analog of Theorem 3.1 holds with the following interlacing conditions:

Wiz, 1<j<m;
Oj—m = pj>aj, m+1<j<r; (9)
o> W=y, max{r+1m4+1}<j<n—m.

where (9) applies only if m < r.Ifn — m =r, then
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Hizo, 1<j<n—r;
Qjpyr>pj>a, n—r+1<j<r.

Theorem 3.2. Let Ac Hy and J'=]J[p+1,....n—m]p<r,m<n—r. Let aj+(A) =(a1>=2---
zar), 07 (A) = (ar412>--->an), o > ary1. ThenAlp+1,...,n —m] € H]/.Foro,*(A[p—i— 1,...,
n—ml =W =--=2u—p)o, Ap+1,...,n —m]) = (Ur—p41 >+ > n—p—m), the sequences

()7, (uj)7 ™ P interlace each other as follows:
Ifn—m>r+1landp<r — 1, then

i = ojyp, 1<j<min{m,r — p};
Cjom >[4 > Qjyp, M+ 1<j<r —p; (10)
Qjtp 2 [ Z Qjymt2p, T — P+ 1<j<n—m—2p; (11)
Qjpp=pj, maxin—m—2p+1,r—p+1}<j<n—m—p,
where (10) applies only if m + p < r and (11) appliesonlyifm+p <n —r.

Ifn—m=randp < r then
MWjZQjyp, 1<j<n—r;
Qjntr 2 1j 2 Qjpp, N—T+1<j<r —p.

Ifp=randm < n —r, then

Wjyr 2 Lj 2 Ojrm+2r 1<js<n—m-—2r;
Qjyrzpj, n—m=2r+1<j<n—m-—r.

The converse is also true, that is, for any two sequences of real numbers (c;)] and (,uj)'f_p " satisfying
the above inequalities, there exists a (nonunique) J-Hermitian matrix A € Hj such that o (A) = (ej)] and

G@Ap+1,....n—m) = ()] """, being o] (A) = (o1 >+ > @), 07 (A) = (@41 >+ > ),
and afr(A[p—i- L...n—ml)=@Wi1=---2pur—p), oy Ap+1,....n—m]) = (Ur—pp1=---2
Mn—p—m)-

Proof. Necessity: Let B=A[p+1,...,n] and J” =J[p+1,...,n]. It can be easily seen that B €
Hyr. Let aﬁ B)=(12-2y—p) and 0, (B) = (Vr—p+1 ="+ 2 Ya—p). We have yr—p > yr—pi1.
By Lemma 3.1 (II)

Hizy, 1<j<sm (12)
Yi-m = M=y, mA1<j<r—p;
ViZWiZYj+m T—pt+1<j<n—p—m.

By Lemma 3.1 (I)

ajzyizdjiyp 1<j<r—p; (13)
Qjtp 2 Vi >Qjpop, T—p+1<j<n—2p;
Qigp>yj, Nn—2p+1<j<n—p.

It is not hard to confirm that the previous inequalities imply the stated interlacing relations.
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Sufficiency: Let

yi = min{u;, o}, 1<j<r—p;

v; = max{ajyop, i}, r—p~+1<j<min{n —p —m,n—2p}.
Ifm<p, let .

Yi=Mjp n=2p+1<jsn—p—m

Vi = Mn—p-m, N—p—m+1<j<n—p.

Ifm > p,let

Vi=0jyop n—p—m+1<j<n—2p;
Vi=ap n—2p+1<j<n—p.

Then (12) and (13) hold. By Lemma 3.1 (II), there exists a J”-Hermitian matrix B of size n — p such that
o (B) = (Vi Vr—p): 0jr (B) = (Wr—p+1, -+ Ynp)s
with]” =J[p+1,...,n]and

o BI1,...,n—p—ml) = (u1,.... fir—p),
0p (B[1,...on = p = ml) = (Hr—pi1, - - s Hnp-m).
By Lemma 3.1 (1), there exists a matrix A € H;j such that

GJ+(A) = (a1,...,0qr), U]_ A) = (@41, - .., an),
and

oy Alp+1,..n) = (1, vi—p), O AP+ 11D = roptts - Vap)-

Since Band A[p + 1, ..., n] are J”-unitarily similar, the result follows. [J

4. An indefinite version of Fan-Pall theorem

Fan-Pall interlacing theorem gives a necessary and sufficient condition for the tuples (cx)} and
(Mk)?_] of complex numbers to be the spectrum of a normal matrix A and of its principal submatrix
A(n|n). In Theorem 3.1 we establish an analog of this result for J-normal matrices.

Contrarily to the J-Hermitian case, the next result is not generalizable to a principal submatrix B
with size m < n — 1.In general, it is not true that there exists a chain of J-normal matrices beginning
with B and ending with A, with orders increasing by unity and such that each one is imbeddable in
the next one. The same situation occurs for normal matrices as shown by the following example in
[5]. Consider A = diag (0, 1,1, 1 4 i) and B = 10~ 'diag (5 + 8i, 5 + 2i). Then Bis imbeddable in A, but
there does not exist a 3 x 3 normal matrix C such that B is imbeddable in C and C is imbeddable in A.

Theorem 4.1. Let A € M, be a J-normal matrix with a]+(A) =(o1,...,00), o (A) = (dr41,---,0n).
Assume that 0]+ (A) is contained in the right half plane and o} (A) is contained in the left half plane. For
J' = J(n|n), let Bbe a ] -normal matrix ofordern — 1witha,} (B) = (i1, . .., ur), 65 B) = (trg1s - - -,
WUn—1).Renumber the eigenvaluessothatoy = iy, ..., Qs = s, ST, On—t+1 = Mn—ty - -+, 0n = Un—1,
t<n—r—1, Usy1, - . ., Uy, are each distinct from otg4q, . . ., op and fhry1, - - -, n—t—1 are each distinct
from oryq, ..., 0n—¢. Then a necessary and sufficient condition for B to be imbeddable in A is that the
2(n —s —t) — 1points &s41, - - ., ¥n—t, hs+1, - - -, Wn—t—1 Shall be collinear, and may be ordered so that
every line segment whose endpoints are o; and oj41 (s+1<I<r—1orr+1<I<n—t — 1) shall
contain one w; and (s11 belongs to the half-ray o511 + t(ots41 — 1), £>0.
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Proof. We first prove the necessity part. Assume that there exists a J-unitary U such that

M1

u*Au =

0

0
0

Wr

0
0

0
Wr41

0
0

Mn—1
Wn—1
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21

22

Zr
Zr4+1

Zn—1
Yy A

for some complex numbers z;, wj and y. The J-normality of A can be expressed by

lzjl = lwjl, 1<j<n—1, (14)
Zjz = wjwiegjer, 1<jk<n—1, (15)
(wj —yI)wj = —(uj — y)zgj, 1<j<n—1, (16)
where gy = 1,1<k<r, and g, = —1,r + 1<k <n. We may assume that the vanishing z; (if they

exist) are zq,...,z; and z,—1, . .

we get

. Zn—t. If j is different from zero, then by (14) also w; # 0. From (15)

(Wjzj) (zkz) = (Zkwier) (Wijwie;)),
which implies that all the nonvanishing numbers among the (n — 1)zwye, have the same argument
arg(w;jzjgj) = arg(wiziér).
Denoting this argument by 26 + 7, with —m /2 < 6 <m /2, from (14) it follows that z; = w; = O or
zjgj = —eizeﬁ/j.
Thus, in any case
zje*’lg = —Wej.
Having in mind (16) either u; — y = 0 or arg(uj — y) = 6 (mods). In any case we may set pj =
y + eiebj with b; real. Then
U*AD)[s+1,...n—t —1,n] = Yl + €H,

where H is J-Hermitian for ] = J[s + 1,...n — t — 1,n].
Let us introduce the matrices

C = diag (11, ... us), E=diag(un—t,.-~pn-1), P=Ihh——1®T,
where T is the circulant matrix
o 0 --- 0 1
1 0 --- 0 O
=10 1 -~ 0 O0lcp,,. (17)
0 0 1 0
Hence

PU*AUP ' = C®DDE,
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where D = yl_s—¢ + el H. Renumber the eigenvalues of D such that for oj = y + eieaj, j=s+
1,...,n—t, we have

o (H) = (@51 >--->ap), 07 (H) = (@1 >+ > ).

Since we are assuming that o7 (A) is contained in the right half plane and o (A) is contained in the
left half plane, it follows that a, > a,41. Renumber the

M =y+ei9bj, j=s+1,..,n—t—1,
so that

Uﬁ(H(n —tln—1)) = (bsy1=--->b;), op (H(n—tin —t)) = (b1 =+ 2 bn—t—1),
where]” = J'(n — t|n — t). Then by Theorem 2.2

bst12a5412bsy2>05422 - 2br2ar > Grp1 2 b1 200 2 by 2 an—.

We prove the sufficiency. Let oj, u; € C satisfy the conditions of the theorem. Since the distinct o, 14
are collinear, there exist a complex number y and real numbers

0, As41, ..+ Ar, Ar1, -« o On—t, bs1, - . o b brg1, o bp—e—q,

with —7/2 < 6 <m/2, suchthatoej=ei9aj+y,s+1<j<n—t,and ujzeiebj+y,s~|—1<j<
n—t,

bsy1>2a5012bs122 05122 - 2br>2ar > 1 2brp1 2.0 2bp 1 > ap.

From Theorem 2.2, there exists a J-Hermitian matrix H of sizen — s — t,T: JIs+1,...,n—t],such
that

Gf(“) = (41, ar), 05 (H) = (ar41, .. o)
and
cr]f?(H(n —tin—1t)) = (bsy1,...,br), o, (Hn—tln—1t)) = (brg1, ... bn—t—1),
where J” = J'(n — t|n — t). Now we consider the J-normal matrix
D= yl_s_¢ +eH.
It can be easily seen that P~1(C @ D @ E)P, where C = diag (i1, . . ., is), E = diag (tn—t, . - . fhn—1)
andP =I,,_¢_1 @ T, for T in (17), satisfy the asserted conditions. [J

The following analog to Theorem 3.1 holds.

Theorem 4.2. Let A € My, be a J-normal matrix with aj+(A) =(a1,... ), o (A) = (Ar41, - - - 0n).
Assume that a]+ (A) is contained in the right half plane and o (A) is contained in the left half plane. Let] =
J(1|1), and B € M,_1 be aJ'-normal matrix with o (B) = M1y« w0 hr=1), 03 (B) = (s« + o Un—1)-
Renumber the eigenvalues so that oy = 1, ..., 0 = s, ST — 1, 0p—r41 = Un—ts- - » On = Un—1,
t<n—r, hs+1, - - -, Wr—1 are each distinct from o511, . . ., op and phr, . . ., ln—r—1 are each distinct from
41, - - - On—¢. Then a necessary and sufficient condition for B to be imbeddable in A is that the 2(n — s —
t) — 1 points o541, - - ., Cn—t, Ust1, - - - Un—t—1 Shall be collinear, and may be ordered so that every line
segment whose endpoints are oy and 41 (S +1<I<r—1orr+ 1<I<n —t — 1) shall contain one
Wi and py——1 belongs to the half-ray ay—¢ + t(n—¢ — otr41), £ >0.
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