
Discrete Applied Mathematics 154 (2006) 622–639
www.elsevier.com/locate/dam

Designing PTASs for MIN-SUM scheduling problems�

F. Afratia, I. Milisb

aNTU Athens, School of Electrical and Computer Engineering, Heroon Polytechniou 9, 15773, Athens, Greece
bAthens University of Economics and Business, Department of Informatics, Patission 76, 10434 Athens, Greece

Received 2 December 2001; received in revised form 25 November 2003; accepted 6 May 2005
Available online 20 December 2005

Abstract

We review approximability and inapproximability results for MIN-SUM scheduling problems and we focus on techniques for
designing polynomial time approximation schemes for this class of problems. We present examples which illustrate the efficient use
of the ratio partitioning and time partitioning techniques.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Scheduling; MIN-SUM criteria; Approximation algorithms; PTASs

1. Introduction

In a scheduling problem, a set of n jobs and a set of m machines are given. We want to schedule these jobs on the
machines. A schedule is an assignment of time slots in a machine to each job so that certain constraints are satisfied. An
optimal schedule is the one that minimizes a given objective function. Depending on the constraints and the objective
function, many variants of the problem can be obtained. In simple variants, the data associated with each job j is its
processing time, p(i)

j , on each machine i. Objective functions are defined in terms of the completion time of each job. The
completion time Cj of job j is the time at which the job completes its execution. The most common objective functions
are the maximum completion time over all jobs, called also makespan of the schedule, and the sum of completion times.

Example. We are given a set of jobs {J1, J2, J3, J4, J5} and processing times 3, 1, 2, 3, 2, respectively. Also we have
two identical (hence the processing times of jobs are independent of the machine on which they are executed) machines
available, {M1, M2}. Suppose we decide on scheduling S1 which assigns jobs J1, J2, J3 on machine M1 and in this
order, i.e., job J1 completes at time C1 = 3, job J2 completes at time C2 = 4, and job J3 completes at time C3 = 6. The
rest of the jobs are assigned to machine M2 so that job J4 completes at time C4 =3 and job J5 completes at time C5 =5.
For a visualization of this schedule see the Gantt chart in Fig. 1. Gantt charts are convenient means of describing a
schedule.

Then the makespan, i.e. the maximum completion time, is equal to 6. The same makespan can be achieved by the
following schedule S2 which assigns jobs J2, J3, J5 to machine M1 and in this order, and the rest to machine M2. It is
clear that both schedules are optimal for the objective function maxjCj which defines the makespan.

� This work has been partially supported by European Commission, Project APPOL-IST-1999-14084.
E-mail address: milis@aueb.gr (I. Milis).

0166-218X/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2005.05.014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82629856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/dam
mailto:milis@aueb.gr

F. Afrati, I. Milis / Discrete Applied Mathematics 154 (2006) 622–639 623

1

P1

P2

T1 T2 T3

T4 T5

t2 3 4 5 6

Fig. 1. Gantt chart for schedule S1.

However, if we sum the completion times on schedule S1, we get 3+4+6+3+ 5 = 21 which is not optimal because we
can swap jobs J1 and J2 on machine M1 and reduce this sum to 1+4+6+3+ 5 = 19. Schedule S2 has sum of completion
times 18. Finally it is easy to see that, in the case we want to minimize the sum of completion times,

∑
j Cj , then the

best schedule is S3, defined by the following assignment: machine M1 is assigned jobs J2, J3, J1 and machine M2 is
assigned jobs J5, J4; the sum of completion times in this case is 17. Schedule S3 may be produced by rearranging jobs
within machines on scheduling S1. Observe, however, that there is no way to get an optimal schedule for the objective
function sum-of-completion-times by rearrangement within machines starting from schedule S2.

Besides the processing times of jobs a variety of other constraints may be imposed on the set of jobs such as
release dates, due dates, weights and precedence constraints. A release date, rj , represents the time the job j arrives
in the system, that is, the earliest time at which the job can start its execution. A due date, dj , represents a committed
completion time of the job j. The completion of the job after this time is allowed, but usually a penalty is incurred.
When the due date absolutely must be met, it is referred to as a deadline. Finally, a weight, wj , is a positive integer and
represents the importance of job j relative to the other jobs in the system. Thus, when jobs have not the same importance,
then an objective function that is more realistic to minimize is the weighted sum of completion times

∑
j wjCj instead

of the sum of completion times
∑

j Cj .
Precedence constraints express the inter-dependence among jobs that do not allow certain jobs to start being executed

before some other jobs have completed their execution. Precedence constraints are described by a partial order, ≺, on
the set of jobs. If i ≺ j , then job j can start its execution after the completion of job i. We say that jobs are independent
if ≺ is empty.

Also two different scheduling models are usually considered depending on whether we allow jobs to be interrupted
once started (to be resumed later) or not. These are the preemptive schedule, where the execution of a job can be
interrupted and continued later on the same or on another machine, and the non-preemptive schedule, where once a job
starts executed it should be completed.

According to optimization criteria, scheduling problems can be classified into two broad classes: MIN-MAX criteria
and MIN-SUM criteria. The most common MIN-MAX criterion is the maximum completion time (makespan) of the
schedule, maxj Cj , and another is the maximum lateness, maxj (Cj − dj). The most common MIN-SUM criterion
is the total (weighted) completion time,

∑
j wjCj , and another is the total (weighted) flow time,

∑
j wjFj , where

Fj = Cj − rj .
It is well known that only some of the simplest variants of scheduling problems can be solved in polynomial time. Most

of the recent research is directed towards designing approximation algorithms for the NP-hard variants of scheduling
problems. A �-approximation algorithm computes polynomially a solution within a factor � of the optimum one. In
this setting we are interested in designing �-approximation algorithms with � as small as possible as well as on finding
lower bounds for �. When � is a constant, then we say that the approximation algorithm is a constant factor one. We
say, however, that we have a polynomial time approximation scheme (PTAS) if we give an algorithm which, for any
fixed value of �, can construct an (1 + �)-approximation solution. If the time complexity of a PTAS is also polynomial
in 1/�, then it is called a fully polynomial time approximation scheme (FPTAS). For negative approximation results, the
notion of NP-completeness is used to disprove the existence of good approximation algorithms, unless P = NP. It is
well known that no strongly NP-hard optimization problem, for which the optimum cost is polynomially bounded with
respect to the length of its instance, can have a FPTAS. Also, there is no PTAS for MAX SNP-hard problems, unless
P = NP (see for example [30]).

Historically, MIN-MAX scheduling problems were the first investigated in the approximation algorithm framework
and a lot of results have been proposed after Graham’s seminal paper [19]. Most of the early constant approximation

624 F. Afrati, I. Milis / Discrete Applied Mathematics 154 (2006) 622–639

algorithms for MIN-SUM scheduling problems appeared during the 1990s [21,22,31]. However, during the next years,
there was much progress on the approximability of MIN-SUM problems, that led to PTASs for many of them.

In this paper we present a survey of this research on approximation algorithms for MIN-SUM scheduling problems,
focusing on PTASs design techniques. In Section 2, we give formal definitions and examples for the reader to be
introduced to some of the most common known techniques for deriving approximation algorithms for scheduling
problems. In Section 3, we review briefly the known constant approximation algorithms by focusing on ideas that were
used later for designing PTASs. In Section 4, we present recent results on PTASs and we classify the techniques into
two main categories: the ratio partitioning and the time partitioning. These techniques are presented in Sections 5 and
6, respectively, where we give examples which illustrate how they may be used to derive PTASs for various problems.
Examples are taken from [3] and [1,2]. We conclude with some open questions in Section 7.

2. Background and preliminaries

In this section we first give some detailed definitions to explain the variants of the scheduling problem that we discuss
in this paper and some notation. Then we give an introduction to some of the most well known simple algorithms for
scheduling problems. In that respect, we present two polynomial algorithms, one constant ratio approximation algorithm
and a PTAS.

2.1. Basic definitions

In the Introduction we have discussed the general setting for the scheduling problem. However, this applies to many
variants and in order to distinguish among them we use the standard three-field, �|�|�, notation scheme of Graham et
al. [20].

The first field describes the machine environment, the second field describes the constraints on jobs and the third field
describes the objective function. Thus, the notation 1| | ∑ wjCj represents the variant where a number of (independent)
jobs are to be executed in one machine and we want to minimize the weighted sum of completion times. The notation
P |rj | ∑ Cj represents the variant where a number of jobs are to be executed on any given number of identical
machines, jobs have release dates (hence are not all available at any time instance) and we want to minimize the sum
of completion times. We already discussed and defined in the Introduction the most common constraints on the jobs
such us processing times, release dates, deadlines, precedence relation and preemption, which appear in the second
field and are denoted by pj , rj , dj , prec and pmtn, respectively. We have also discussed the most common objective
function which appear in the third field.

The machine environment described by the first field could be, e.g., one of (a) any given number of identical machines,
or (b) a fixed number of identical machines or (c) any given number of unrelated (non-identical) machines, and so on.
To denote the set of the available machines, we use a standard notation. A single machine environment is denoted by 1.
Identical parallel machines are denoted by P. In both single machine and identical parallel machines environments the
processing time of each job does not depend on the machine and for each job j we are given a single processing time
pj . Uniformly related parallel machines are denoted by Q. In this case for each job j we are given a processing time

pj and for each machine i a different speed si . Hence, the time p
(i)
j job j spends on machine i, assuming it is processed

only on machine i, equals to pj/si . Unrelated parallel machines are denoted by R and in this case we are given a

processing time p
(i)
j for processing each job j on each machine i. Thus � takes values from {1, P (m), Q(m), R(m)},

etc. The optional m denotes a constant number of machines; otherwise, its absence means that the number of machines
is part of the problem’s instance.

Moreover, in the case of parallel machine environments we might have multiprocessor jobs, where a job can (or need
to) be executed simultaneously by several machines. In these case the second field describes also how such jobs can be
executed. Thus, the notation fixj is used for the variant where each job requires the simultaneous use of a prespecified set
of machines and the notation sizej for the variant where each job requires any set of machines of a given cardinality. In
the general variant denoted by setj , each job has a number of processing modes, each one defined by a set of machines
and a processing time on this set of machines.

Although, intuitively, might be already understood what is a feasible schedule (e.g., one that does not assign two
different jobs on the same machine at the same time), the following is a formal definition. A schedule is, for each job,

F. Afrati, I. Milis / Discrete Applied Mathematics 154 (2006) 622–639 625

an allocation of one or more time intervals to one or more machines. A schedule is feasible if (i) no two time intervals
overlap in the same machine, (ii) no two time intervals allocated to the same job overlap (unless it is a multiprocessor
job), and (iii) it satisfies the given processing restrictions and constraints. A feasible schedule is optimal if it minimizes
the given optimization criterion. The objective value of an optimum solution is denoted by OPT.

2.2. Algorithms for simple cases

In this subsection we give simple algorithms (polynomial, constant approximation factor and PTAS) to familiarize
the reader with known techniques.

2.2.1. Polynomial algorithms
Some simple variants of the scheduling problem have polynomial algorithms. For a thorough listing of complexity

results on scheduling problems the reader is referred to the book and a web page of Brucker [5]. We discuss here such
a simple polynomial algorithm.

Example: 1|| ∑ wjCj

The polynomial algorithm that finds an optimal schedule is known as Smith’s rule: it schedules according to the
rule, “shortest ratio ratioj = pj/wj ” first [50]. That is, the algorithm sorts the jobs in non-decreasing order of their
ratios and then schedules the jobs on the machine according to this order.

The proof that this algorithm finds an optimal schedule is simple. Let S be an optimal schedule which violates this
rule. Suppose the first time the rule is violated is when job i was executed before job j whereas ratioi > ratioj . By
moving job j to be executed before job i the cost is changed from A + wipi + wjpi + wjpj (before the moving) to
A + wipi + wipj + wjpj (after the moving), where A is a quantity which remains the same in the two schedules.
Thus, the cost is decreased by wjpi − wipj , hence by swapping jobs i and j, we get a better schedule; contradiction.

2.2.2. Constant ratio approximation algorithms
A standard technique to obtain a constant time approximation algorithm is to formulate first a (polynomial-time

solvable) relaxation of the problem. The relaxations used include preemptive schedules and various linear and convex
programs.

Example: 1|rj | ∑ Cj

In the following we present how a preemptive relaxation can be used to approximate the problem 1|rj | ∑ Cj . This
result is due to Philips et al. [31]. The problem is first relaxed to its preemptive variant 1|rj , pmtn| ∑ Cj , which is
known to be solvable in polynomial time by the shortest remaining processing time (SRPT) rule, i.e. at any point in
time, schedule an available job with the least amount of remaining processing time. Let C̃j be the completion time of
job j in this preemptive schedule. A non-preemptive schedule can be obtained by the following heuristic: schedule the
jobs in order in which they complete in an optimal preemptive schedule, i.e. in non-decreasing order of C̃j ’s. Consider
now the derived non-preemptive schedule and let Cj be the completion time of job j. For simplicity assume also that
the jobs have been scheduled in the order 1, 2, . . . , n. For each job j, let Ij be the total amount of idle time before
the completion of job j and Pj be the total amount of processing time before the completion of job j. It clearly holds:
Cj = Ij + Pj . Now, this quantity can be bounded as follows:

Cj = Ij + Pj � max
k � j

rk +
∑
k � j

pk �C̃j + C̃j = 2C̃j .

Therefore,
∑

j Cj �2
∑

j C̃j �2OPT.

2.2.3. PTAS
Example: 1|pj = p, rj �plogn| ∑ Cj

This is a motivating example which is somewhat contrived for the sake of simplicity. We consider the problem
1|pj = p, rj �plogn| ∑ Cj , i.e., (i) all n jobs are identical with processing time p and (ii) all release dates are less
than plogn. In fact, the more general problem 1|prec, pj =p, rj | ∑ Cj is polynomially solvable [5]. However, in order
to make several useful points on the techniques used for PTASs in Section 6, we give the following simple PTAS for
1|pj = p, rj �plogn| ∑ Cj .

626 F. Afrati, I. Milis / Discrete Applied Mathematics 154 (2006) 622–639

Algorithm.

1. If n�(1/�)2, then by exhaustive search find the best schedule.
2. If n > (1/�)2, then schedule all jobs after time plogn at any order.

Analysis of the Algorithm: The cost of any optimal schedule is greater than the cost of the schedule S0 where all
release dates are equal to 0. In this case, as jobs are identical, we schedule them in any order without idle time and the
cost is: Cost0 = ∑n

j=1 Cj = ∑n
j=1 jp = n(n + 1)/2p.

The schedule produced by the algorithm is no worse than adding log n additional jobs in the end of schedule S0.
In this case the additional cost is: �Cost = log n max Cj + log n(log n + 1)/2p. However, max Cj = np, hence the
algorithm produces a schedule which is worse at most by a ratio:

�Cost

Cost0
�2 log n

2

n + 1
< 5�

(Here is a detailed but obvious analysis of the very last inequality. Towards contradiction, suppose that 5� < log n/(n+1).
This implies � < log n/n which implies n/(1/�) < log n which implies log n − log(1/�) < log log n, hence 1

2 log n <

log n − log log n < log(1/�), hence log n < 2 log(1/�) or n < (1/�)2, contradiction.)
Motivated by this example, we can gain some intuition on how we could move jobs around in a schedule without

degrading the cost very much. E.g., in the schedule S0 of the jobs in the above analysis, we can (a) Take any job and
move it to the end, thus degrading the cost only by an added factor O(Cj), hence by a ratio 2/(n + 1), or (b) Take
log n jobs and move them to the end, thus degrading the cost only by an added factor O(Cj log n), hence by a ratio
log n(2/n + 1).

So, in the general case, we have reason to expect that the following strategy would work: we can shuffle jobs in
an “orderly way” without increasing the cost very much, e.g., move a few jobs within the time horizon where jobs of
comparable size are executed. We will build on this intuition to solve more complicated problems in Section 6.

3. Constant approximation algorithms

Although a FPTAS for Pm| | ∑ wjCj (due to Sahni [37]) was known since 1976, only a few approximation algorithms,
for a MIN-SUM scheduling problem, have been proposed for some fifteen years. Gonzalez and Sahni in 1978 have
proposed approximation results for MIN-SUM shop scheduling problems [18], while Kawaguchi and Kyan in 1986
have shown an 1.21-approximation algorithm for P | | ∑ wjCj [24].

The next non-trivial approximation results were anO(log n log
∑

j wj)-approximation algorithm for 1|prec| ∑ wjCj ,
obtained by Ravi et al. [36], in 1991, which improved to an O(log n log log

∑
j wj) one by Even et al. [14], in 1995.

In fact, these results were implied by a general approach proposed in [36] and [14] to build approximation algorithms
for ordering problems. Note also that some of these algorithms are still the best known for some ordering problems.

However, little was known about the approximability of MIN-SUM scheduling problems even until 1995, despite
the fact that there was an extensive literature on their polyhedral structure (especially of single machine problems). In
fact, several linear programming formulations have been considered but they were only exploited either to characterize
polynomial solvable special cases or to obtain strong lower bounds allowing the optimal solution of moderate sized
problems using enumerative methods (see Queyranne and Schulz [34] for a thorough survey of this research area).

Philips et al. [31], in 1995, gave the first constant approximation algorithms for a number of problems including
(8 + �)-approximation algorithms for both 1|rj , pmtn| ∑ wjCj and P |rj , pmtn| ∑ wjCj), a (16 + �)-approximation
algorithm for 1|rj | ∑ wjCj and a (24 + �)-approximation algorithm for P |rj | ∑ wjCj . Subsequently, Hall et al. in
[22] and its journal version [21], improved dramatically the known approximation factors and gave algorithms for
many new variants. Their results, some of which are the best known even today (see Table 1 below), were motivated by
the successful work done on polyhedral structure of scheduling problems and build on earlier research on computing
near-optimum solutions for MIN-MAX scheduling problems, by rounding optimum solutions to linear relaxations.
In view of future results, the most important point of their work was the introduction of a time-interval indexed LP
formulation, since it was proven later very fruitful for designing PTASs for many MIN-SUM problems.

F. Afrati, I. Milis / Discrete Applied Mathematics 154 (2006) 622–639 627

Table 1
Overview of results

Problem Best known � (F)PTAS or Lower bound

1|rj | ∑ Cj 1.58 [11] PTAS [1]
1|rj | ∑ wj Cj 1.69 [17] PTAS [1]
1|rj , pmtn| ∑ wj Cj 4/3 [41] PTAS [1]
1|prec| ∑ wj Cj 2 [10,12,21,28]

1|interval order| ∑ wj Cj
1+√

5
2 + � [55]

1|convex bipartite order| ∑ wj Cj
1+√

5
2 + � [55]

1|rj , prec| ∑ wj Cj e + � [39]
1|rj , prec, pmtn| ∑ wj Cj 2 [21]
1|rj | ∑ Fj O(n1/2) [25] �(n1/2−�) [25]
1|rj , pmtn| ∑ wj Fj 2 + � [9]a quasi-PTAS [8]b

Pm|| ∑ wj Cj FPTAS [37]
P || ∑ D2

i
1.04 [27] PTAS [4]

P |prec, pj = 1| ∑ Cj 8/7 [23]
P |prec| ∑ Cj 4/3 [23]
P || ∑ wj Cj 1.21 [24] PTAS [49]
P |rj | ∑ wj Cj 2 [40] PTAS [1]
P |rj , pmtn| ∑ wj Cj 2 [40] PTAS [1]
P |rj , prec| ∑ wj Cj 4 [29]
P |rj , prec, pmtn| ∑ wj Cj 3 [21]
P |rj | ∑ Fj O(

√
n/m log n/m) [26] �(n1/3−�) [26]

P |rj , pmtn| ∑ Fj O(log min{n/m, log P }) [26]
P 2|fixj | ∑ Cj 2 [6] PTAS [2]
Pm|fixj , pmtn| ∑ Cj PTAS [2]
Pm|fixj , rj | ∑ wj Cj PTAS [15]
P |fixj , pj = 1| ∑ Cj �(m1/2−�) [15]
Pm|sizej , rj | ∑ wj Cj PTAS [15]
P |sizej | ∑ Cj 32 [52]
Pm|setj | ∑ wj Cj PTAS [16]
Qm|| ∑ wj Cj FPTAS [54]
Q|rj | ∑ wj Cj 2 + � [40] PTAS [7]
Q|rj , pmtn| ∑ wj Cj PTAS [7]
Rm|| ∑ wj Cj 3/2 [46,48] PTAS [3,1]
Rm|rj | ∑ wj Cj 2 [47,48] PTAS [1]
Rm|rj , pmtn| ∑ wj Cj 3 [47,48] PTAS [1]
R|| ∑ wj Cj 3/2 [43,46,48] MAXSNP-hard [23]
R|rj | ∑ wj Cj , R|rj | ∑ Cj 2 [47,48] MAX SNP-hard [23]
R|pmtn| ∑ wj Cj , R|pmtn| ∑ Cj 2 [47,48]
R|rj , pmtn| ∑ wj Cj 2 + � [35]

aQuasi-polynomial algorithm for poly-bounded P.
bFor poly-bounded P or W .

The general idea of time indexed LP formulation was used in the past in several forms. Potts [32] used decision
variables �ij , where �ij implies that job i precedes job j in the schedule. Dyer and Wolsey [13] used variables xjt , where
xjt =1 means that job j completes its execution at time t. Wolsey [56] and Queyranne [33] used as decision variables the
completion times Cj of jobs themselves. Hall et al. [22] adopted this last formulation to obtain their results for single
machine problems and proposed a different, more compact linear time-interval indexed LP formulation: subdivide the
time horizon into the intervals [1, 1], (1, 1 + �], (1 + �, (1 + �)2], . . ., where � is an arbitrary small positive constant.
Then, the linear program only specifies the interval in which the job is completed and since all completion times within
an interval are within a (1+ �) factor of each other, the relative schedule within an interval will be of little consequence.
This was the first use of time partitioning.

After the results of Hall et al. [22,21] there has been an explosion of research in this area with new algorithms
of successively smaller approximation factors as well as with algorithms for new variants of MIN-SUM scheduling
problems. Most of these algorithms follow the general and successful idea of problem relaxation: first an optimum

628 F. Afrati, I. Milis / Discrete Applied Mathematics 154 (2006) 622–639

solution to a relaxation of the original problem is polynomially obtained and then this solution is used to obtain an
approximate solution to this problem. Types of relaxations can be distinguished into two broad classes: preemptive
scheduling relaxations and several linear and convex programming relaxations. The preemptive scheduling relaxations
consist of solving polynomially the preemptive variant of a non-preemptive problem, while the linear and convex
programming relaxations consist of relaxing the integer constraints of an integer programming formulation of the
problem. The solution of the relaxed problem is then used either to order the jobs in time (in one machine problems) or
to assign the jobs to machines (in many machines problems). A series of ideas have been used for such a construction
of a solution to the original problem including scheduling by completion times, scheduling by �-points as well as
deterministic and randomized rounding methods. As this paper focuses on PTASs design, we summarize, in Table 1,
only the best known constant approximation algorithms. Clearly we omit a large body of important work on constant
approximation algorithms, but the reader can acquire an accurate view of the results in this area by considering the
references given in Table 1. The reader is also referred to [44] for a elegant survey on several linear programming
relaxation algorithms mainly for 1|prec| ∑ wjCj .

Although there is practical evidence [38,53] that linear programming relaxations can provide very good approximate
solutions, all algorithms based on such relaxations suffer from a major drawback: the solution to a problem is compared
to the solution of the relaxed one and, unfortunately, there is an integrality gap between these two solutions. Thus,
comparing any solution of such an algorithm to a fractional one, inherits this gap. Hall et al. [21], Schulz and Skutella [39]
and Chekuri and Motwani [10] argue on the fact that several relaxation methods for 1|prec| ∑ wjCj can not improve
on the best known 2-approximation algorithm. Moreover, Torng and Uthaisombut [51] have shown that any preemptive
relaxation for 1|rj | ∑ Cj , that uses the SRPT rule to solve the relaxed problem, can not led to an approximation factor
better than e/(e−1), that matches the best known factor of 1.58 [11]. It seems therefore, that the relaxation approaches
can not yield a PTAS for MIN-SUM scheduling problems.

4. Polynomial time approximation schemes

Sahni [37] has proposed in 1976, the first FPTAS, based on dynamic programming, for the weakly NP-hard problem
Pm| | ∑ wjCj . However, no other PTAS or FPTAS was known for MIN-SUM scheduling problem before late 90’s,
when, Woeginger [54] proposed a FPTAS for Qm| | ∑ wjCj , based also on dynamic programming, and Alon et al. [4]
obtained a PTAS for P | | ∑ D2

i (Di denotes the time by which machine i completes the execution of all jobs assigned
to it).

Subsequently, Skutella and Woeginger [49] realized that this last result implies also a PTAS for P |wj/pj =
R| ∑ wjCj and then in a first step they generalized this to a PTAS for wj/pj ratios within a constant range. In a
second step they obtained the first PTAS for a strongly NP-hard MIN-SUM problem (P | | ∑ wjCj). Their main idea
was ratio partitioning, i.e. the partitioning of the jobs into subsets such that the ratios wj/pj of all the jobs in each
subset are within a constant range. Then, using the first step, near optimum solutions are computed for all subsets.
Finally, these schedules are concatenated in order of nonincreasing ratios in each machine.

Subsequently, Afrati et al. [3] used also ratio partitioning to develop a PTAS for Rm| | ∑ wjCj . However, the
concatenation of schedules that is used in ratio partitioning technique can not be applied in the presence of release
dates. Thus the time partitioning technique was recalled by several researchers and it was proven powerful enough to
yield PTASs for a variety of MIN-SUM scheduling problems in the presence of release dates. Several groups obtained,
independently, PTASs for several variants of the average weighted completion time problem. All these results merged
in to single article by eleven authors [1], where PTASs were obtained for scheduling jobs with release dates on a
single machine, on identical parallel machines and on a constant number of unrelated machines in both preemptive
and non-preemptive models. These results were a substantial progress in resolving the approximability question of
MIN-SUM problems and it seems that the ideas proposed will influence the design of PTASs for other variants.

Indeed, based also on time partitioning technique and building on the ideas proposed in [1], Afrati et al. presented
PTASs for P 2|fixj |

∑
Cj and Pm|fixj , pmtn| ∑ Cj in [2], and Fishkin et al. presented PTASs for Pm|fixj , rj |

∑
wjCj

and Pm|sizej , rj | ∑ wjCj in [15] and Pm|setj | ∑ wjCj in [16]. Moreover, Chekuri and Khanna using some non-trivial
extensions to the ideas introduced in [1], obtained PTASs for Q|rj | ∑ wjCj and Q|rj , pmtn| ∑ wjCj [7].

However, it seems that it is difficult to extend the techniques for approximating the average weighted completion
time in the case of average weighted flow time (recall that the flow time Fj for each job is defined as Fj = Cj − rj).

F. Afrati, I. Milis / Discrete Applied Mathematics 154 (2006) 622–639 629

When computing optimal solutions, minimizing the average weighted completion time is equivalent to minimizing the
average weighted flow time, since

∑
rj is determined by the input. However, these two objective functions behave quite

differently when we look for approximate solutions. Recently, Chekuri et al. [9] proposed initially a quasi-polynomial
2 + �-approximation algorithm for 1|rj , pmtn| ∑ wjFj , in the special case where the ratio of the largest job processing
time over the smallest one, P =maxj pj /minj pj , is polynomially bounded in n. After this result, Chekuri and Khanna
[8] gave a quasi-PTAS for the same problem, in the case where either P is polynomially bounded or the ratio of the
largest job weight over the smallest one, W = maxj wj/minj wj , is polynomially bounded. They also proved that
this last quasi-PTAS becomes a PTAS in the cases where (i) both P and W are bounded, (ii) P is bounded and W is
unrestricted and (iii) for each job its weight is the inverse of its processing time, i.e. pj = 1/wj (also known as stretch
metric).

In the third column of Table 1 we give a summary of existing (F)PTASs. We present there either the existence of
a (F)PTAS or known inapproximability results in terms of either MAX SNP-hardness or existing lower bounds on the
variant’s approximation factor.

4.1. Geometric rounding and time stretching

PTASs that are based on ratio partitioning and time partitioning analyze the problem by using a combination of
elementary and well understood combinatorial ingredients: partitioning, grouping, geometric rounding, enumeration
and dynamic programming. The approach taken, in these PTASs, is to sequence several transformations of the input
problem. Some transformations are actual changes to simplify the input, while others are applied as thought experiments
to the optimum solution to prove there is a near-optimum solution with nice structure. Each transformation potentially
increases the objective value by only 1+O(�), that is, it produces 1+O(�) loss. Besides problem-variant-specific trans-
formations, some general transformations are used in these techniques. Such transformations are geometric rounding
and time stretching.

Geometric rounding is a simplification on the given data for each job, e.g., the processing times. It creates a well-
structured set of a limited number of distinct processing times (and other data such as release dates): It rounds each
processing time (and release date) to integer powers of 1 + �.1 By this simplification, we degrade the cost by at most
a factor of 1 + �. To prove, we change the values in two steps. First multiply every release date and processing time by
1 + �; this increases the objective value by 1 + �. Then decrease each date and time to the next lower integer power of
1 + � (which is still greater than the original value). This can only improve things for the problems considered in this
paper.

The second simplification, time stretching, creates idle time gaps evenly spread along the schedule. These gaps will
be used conveniently in later transformations to accommodate jobs that we are moving around in order to prove that
there is a near-optimum schedule with nice structure.2 Often, we will use time stretching to add an idle amount of
�pj time units before every job j. This will increase each completion time (and hence their sum) by a factor of 1 + �.
According to this last transformation, we may also assume that the starting time of each job j is Sj ��pj : If job j
completed at time t > pj then it now completes at time (1 + �)t and therefore does not start until time �t ��pj .

5. Ratio partitioning

In this section, we want to find a PTAS for the problem R2|| ∑ wjCj . First, we observe that we only need to decide
on which machine each job will be executed. This is so, because, if we know that, then the optimum schedule on each
machine is given by Smith’s rule (see Section 2.2.1). The structure of this section is as follows. Before we present the
algorithm, we show that certain simplifying assumptions can be done to the problem without affecting its cost very
much. In fact, it is easy to see that these assumptions apply to a more general variant, i.e., in the case we have any
constant number of machines.

1 In the rest of the paper, as we are only discussing PTASs, we use the given approximation factor � as one of the given parameters of the problem.
2 Recall also the discussion in Section 2.2.3.

630 F. Afrati, I. Milis / Discrete Applied Mathematics 154 (2006) 622–639

We make the following simplifying assumptions:
(a) For a job with its processing times far apart, we can immediately decide on which machine the job will be executed

with negligible loss.
(b) It is easy to see that we can view the calculation of the objective function as the sum of products, each product

being essentially the contribution to the cost of the interaction between pairs of jobs. Then, we can observe that pairs
of jobs with very different ratios do not contribute much to the cost function, hence such contributions can be equated
to zero with negligible loss.

(c) Summing up assumptions (a) and (b) and adding geometric rounding and grouping, we observe that only a
constant number of pairs of jobs affect each other, namely the ones with comparable ratios. This leads to a dynamic
programming algorithm.

Before we move on with discussing the above assumptions in quantitative terms and in order to facilitate this
discussion we define a partitioning of the range of ratios into disjoint windows such that the ith window consists of
ratios in the range Fi = (ai

maxR, ai−1Rmax], where Rmax = maxi,j {wj/p
(i)
j } and a = �4. For the same reason, we

define a job-type TR,R′ as the set of jobs having the same pair of ratios, i.e. TR,R′ = {j |R(1)
j =R and R

(2)
j =R′}, where

R
(i)
j = wj/p

(i)
j .

Now, we can repeat our three assumptions in a bit more quantitative (yet not formal) terms:

(a) We can think of each job as having its two ratios either in the same window or in adjacent windows.
(b) “Very different” job types do not affect each other.
(c) We can bound the number of jobs within each job-type by a constant number.

In the following three subsections we state and prove formally these three simplifying assumptions.

5.1. Ratios in adjacent windows

We prove that for each job, either we can tell in advance in which machine it will be scheduled (we say that it is
decided) or else its two ratios do not differ much. If the processing times of a job are very different on the two machines,
then we can directly decide to schedule it on the machine on which it has the shortest processing time. In quantitative
terms: we can assume that all jobs such that p

(1)
j < �p(2)

j are scheduled on M1 (we say that this job is M1-decided), and

that all jobs such that p
(2)
j < �p(1)

j are scheduled on M2 (we say that this job is M2-decided). To prove, we show that
by moving all such jobs to the machine with the small processing time, the cost does not increase much: we move each
such job j in the other machine so that it starts just before the earliest job which completes at time > Cj (the completion
time of the moved job in the original schedule). This affects the total cost by increasing the completion time of job j and
by delaying the jobs after j in the machine M1 (suppose we moved the job to M1). However, the new completion time
of job j is at most Cj + p

(1)
j < Cj + �p(2)

j < Cj (1 + �). The other jobs affected are the jobs in machine M1 which are
delayed. Each such job k is delayed by at most � times the sum of M2-processing times of moved jobs which completed
before time Ck in M2; but this is at most � times Ck . Thus, in this case, we can put p

(2)
j = ∞ or p

(1)
j = ∞ accordingly.

Moreover, for each undecided job we now know that p
(1)
j > �p(2)

j and p
(2)
j > �p(1)

j , that is � < R
(1)
j /R

(2)
j < 1/�. Hence,

each job is either decided or it has its two ratios either in the same window or in adjacent windows.

5.2. Job types not affecting each other

We want to prove that “very different” job types do not affect each other. To state formally, we rewrite the cost
function as

∑
j,k on M1

M1[j, k] +
∑

j,k on M2

M2[j, k],

F. Afrati, I. Milis / Discrete Applied Mathematics 154 (2006) 622–639 631

where

∀j, k ∈ J, Mi[j, k] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p
(i)
k wj if j = k,

1

2
p

(i)
k wj if j �= k and

wk

p
(i)
k

= wj

p
(i)
j

,

p
(i)
k wj if

wk

p
(i)
k

>
wj

p
(i)
j

,

0 otherwise.

Notice that an entry Mi[j, k] represents the contribution to the cost function of job j, due to job k.

Using this formulation of the cost function, we can prove that if the ratios of two jobs are very different, then we can
neglect their interaction:

(i) For every pair of jobs {j, k} such that R
(i)
j < �2R

(i)
k , we can replace Mi[j, k] by 0.

(ii) For i = 1, 2, and for every pair of jobs {j, k} such that j and k are either Mi-decided or undecided, and such that
R

(i)
j < �4R

(i)
k , we can replace both M1[j, k] and M2[j, k] by 0.

Proof of (i). We prove this in two steps: first for each k on M1, we look at the jobs j on M1 such that R(1)
j < �2R

(1)
k , and

whose completion times satisfy Ck < �Cj . The presence of k before such a j has only a marginal effect on j’s completion

time (easy to prove). Second, we look at the pairs {j, k} which are scheduled on M1, such that R
(1)
j < �2R

(1)
k , but whose

completion times satisfy Cj �Ck/�. The contribution to the cost function of those pairs is very little as compared to
wkCk: ∑

j on M1
Cj �Ck/�

wjp
(1)
k =

∑
j on M1
Cj �Ck/�

r
(1)
j p

(1)
j p

(1)
k < �2

∑
j on M1
Cj �Ck/�

wkp
(1)
j

= �2wk

∑
j on M1
Cj �Ck/�

p
(1)
j ��2wk max

j on M1
Cj �Ck/�

Cj ��2wkCk/� = �wkCk ,

Proof of (ii). Consider the case i=1. Because R
(1)
j < �2R

(1)
k , we can replaceM1[j, k] by 0–according to (i) above which

we just proved. If either job is M1-decided, then it will never be placed on M2 and so we can replaceM2[j, k] by 0. If both
are undecided, then we have: p

(2)
j > �p(1)

j and p
(2)
k < p

(1)
k /�. Thus: wj/p

(2)
j < (1/�)wj/p

(1)
j < (�4/�)wk/p

(1)
k < (�4/�)

(1/�)wk/p
(2)
k = �2(wk/p

(2)
k). Thus the condition in (i) is satisfied, hence, we can replace M2[j, k] by 0.

5.3. Constant number of jobs

We can bound the number of jobs within each job-type by a constant number. Consider a job-type TR,R′ and the
sum of the weights, WR,R′ , of jobs in TR,R′ . We group small jobs together to build larger compound jobs. Thus, we
can assume that every job of a job-type has weight at least �2WR,R′ , and hence each job-type has at most 1/�2 = O(1)

elements. More specifically, we group greedily so that the sum of weights of the tiny jobs in each group (which now
represents the weight of the compound job) is between �2WR,R′ and 2�2WR,R′ . There are two points to discuss:

(i) The cost does not change much by this grouping. For each group k (in machine i with ratio R say), the contribution
to the cost function before the grouping was

∑
m,n jobs in group k Rp

(i)
m p

(i)
n . This quantity, though, is bounded on both

sides by R(
∑

n job in group k p
(i)
n)2 and R 1

2 (
∑

n job in group k p
(i)
n)2 (upper and lower bound respectively). Hence

it is at most (4/R)�4W 2
R,R′ . Similarly the jobs in this job type contribute to the total cost by a quantity which is at

least (1/2R)W 2
R,R′ . There are at most 1/�2 compound jobs, hence the total shift from the original cost is at most

(4/�2R)�4W 2
R,R′ which is less than �(1/2R)W 2

R,R′ .
(ii) Clearly a schedule that uses the compound jobs results in a cruder fractioning of the jobs in the job type among

the machines. To take care of that we stretch time by 1+ � and this stretching is enough to accommodate the compound
jobs.

632 F. Afrati, I. Milis / Discrete Applied Mathematics 154 (2006) 622–639

5.4. Algorithm for R2|| ∑ wjCj

We first simplify the input of the problem by applying geometric rounding on the parameters defining the jobs. Then,
we identify the jobs which are M1-decided or M2-decided. We replace all irrelevant processing times (i.e. p

(2)
j if j is

M1-decided and p
(1)
j if j is M2-decided) by ∞, which means that the corresponding ratio becomes equal to 0. This

leaves us with undecided jobs that have their two ratios either in the same window or in adjacent windows.
Then we do all the simplifications of the previous subsection, namely calculating first the Mi[j, k] and then putting

accordingly some of them equal to 0.
Note that, the set of undecided jobs having at least one ratio in a specific window has size O(log2(1/�)/�2): Roughly,

because of geometric rounding, we have only a constant number of different ratios within a window and, because
undecided jobs have their ratios either in the same window or in adjacent windows, there is only a constant number of
job types that may contain a job of a particular ratio in one of the machines. Moreover, there is a constant number of
jobs within each job type.

Now, in deciding where to put optimally the undecided jobs, we have to calculate the cost of the schedule. In this
calculation, as we proved in Section 5.2, we sum up the contribution to the cost of all pairs of jobs and, moreover, we
can neglect with negligible loss the contribution of pairs with very different ratios. This means, in quantitative terms
that for such a pair of jobs j, k we set their contribution Mi[j, k] equal to zero.

Thus, summing up the above analysis, we have reduced the problem to a problem of scheduling jobs in two machines
under the following (convenient) constraints: (a) Each job type has the two ratios either in the same window or in
adjacent windows and (b) Job types affect each other only in the stretch of two windows and (c) there is a constant
number of undecided jobs with at least one of their ratios in a specific window. An immediate consequence of that is
dynamic programming with respect to the windows of ratios. In each stage i of the dynamic programming, we have
fixed the schedule for jobs with their both ratios in windows F1, . . . , Fi and keep all possible schedules of jobs with at
least one of their ratios in window Fi . Thus, each stage runs in O(1) time.

6. Time partitioning

In this section we want to find PTASs for the problems, 1|rj | ∑ Cj and P 2|fixj |
∑

Cj .
The complication in the first problem is that we have to deal with release dates too. In the absence of release

dates, the problem has a simple polynomial algorithm (the algorithm that schedules according to the SPT rule, see
Section 2.2.1).Also, the variant with release dates and preemption has a polynomial algorithm which solves it optimally.
It is again a simple algorithm which, now, schedules according to the shortest processing remaining time first (SPRT
rule). The PTAS that we will explain here is using this algorithm. It finds first a preemptive schedule, and then argues
that we can move jobs around so that most of them can be completed in a non preemptive manner with negligible
added cost.

The complication in the second problem is that we have multiprocessor jobs. In particular, the variant that we consider
here deals with dedicated jobs, i.e., each job j requires for its execution the simultaneous availability of a prespecified
subset of machines �j = {M1, . . . , Mm} for pj time units. The set �j is called the type of job j. We restrict attention
here to the case with two machines. The methods and techniques though extend easily to the case of any fixed number
of machines. For this problem, we have two kinds of monoprocessor jobs, the 1-jobs and the 2-jobs dedicated to run
on machine M1 and M2, respectively. Biprocessor 12-jobs are dedicated to both machines. Again the variant of the
problem where preemption is allowed has a polynomial algorithm that solves it optimally [6].

Now we explain time partitioning and in the next subsection, we show how we may assume some structure in the
near-optimal schedule. Then, we discuss the algorithms for each problem separately.

6.1. Simple properties of time partitioning

We partition the time axis in intervals as follows. For an arbitrary integer x, we define Rx = (1 + �)x . We partition
the time interval (0, ∞) into disjoint intervals Ix = [Rx, Rx+1). We will use Ix to refer to both the interval and the size
(Rx+1 − Rx) of the interval. We will often use the fact that Ix = �Rx , i.e., the length of an interval is � times its start
time. We consider an optimum schedule and focus on the schedule of one machine. The reason this time partitioning

F. Afrati, I. Milis / Discrete Applied Mathematics 154 (2006) 622–639 633

is useful is that each interval can be used to accommodate jobs of relatively small size and thus we can assume that, in
a near-optimal schedule, finishing up jobs on a preemptive schedule comes at negligible cost. To argue that intervals
accommodate small jobs, we show that moving around jobs (from smaller intervals to intervals comparable to their
size), does not degrade the cost very much. In a way, this generalizes the intuition discussed in Section 2.2.3.

Now, we make it formal. The following are easy to prove useful facts:

(a) By time stretching we can create, in each interval an idle gap of size �Ix .
(b) Moving a job j inside the interval in which it runs produces a 1 + O(�) loss because it will only increase its

completion time by at most Ix which is less than �Rx+1, consequently less than �Cj .
(c) A job can not be “arbitrarily large”, i.e., it crosses a constant number of intervals. In quantitative terms, we argue

as follows. In the worst case, a job starts at time �pj and completes at time �pj + pj , hence, it crosses at most
s = �log1+�((�pj + pj)/�pj)	 = �log1+�(1 + 1/�)	 intervals.

(d) If a job j crosses several intervals, we know that it crosses at most s intervals, and then we can accumulate idle
time for all s intervals in the beginning of job j, and we know that the relative size of the 1st interval to the size of
the s-th interval is �Ix/(Ix+s) = 1/(1 + �)s−1 = �.

6.2. Large and small jobs

In many cases, jobs that are much smaller than the interval in which they run are essentially negligible and easy to
deal with. The difficulty comes from jobs that are large—taking up a substantial portion of the interval.3

We assume, here, that small jobs are defined to be those with pj < �Ix , where Ix is the interval where job j runs. Jobs
that do not have this property are called large. The following are to prove facts:

(a) We may restrict attention to schedules in which no small job crosses an interval: By time stretching, add in each
interval a gap of �Ix and finish the single small job that may be crossing an interval.

(b) There is a constant number of large jobs in an interval, namely at most 1/�.

Interestingly, we can almost get rid altogether of large jobs in all intervals, except a constant number of them. I.e., we
can put structure in a near-optimal schedule so that all jobs are small in the interval they run except a constant number
of them in the entire schedule, which we call huge jobs. Thus, the huge jobs are large jobs that we can not move in
larger intervals without a considerable degradation of the cost. We can enforce such a structure by moving most large
jobs in larger intervals without much degrading the quality of the schedule. Thus, we end up with an overall constant
number of huge jobs. As expected the huge jobs are the ones whose starting time Sj is very close to the optimum cost
OPT:

Lemma 1. With a 1 + O(�) loss, we assume

(i) For each job j, Sj � min{pj

�2 , �7OPT}.
(ii) All jobs are small in the intervals they run except at most 1/�7.

Proof. The proof of (ii) follows from (i): Note that Sj �pj/�2 means that job j is small in the interval it runs. Also, all
jobs starting after time �7OPT are at most 1/�7. The small jobs trivially satisfy this condition in (i). We move around
large jobs in larger intervals so that they are now small in the interval that they run. We do that only for large jobs that
complete before �7OPT.

We move a job that completes before time (1 + 1
�2)pj in the first gap after time t = Cj/�4. We have to worry about

three considerations:
(a) There is space large enough to accommodate all jobs that are landed on a particular gap. This is so because the

gap at time t is equal to �2t , that is at least equal to Cj and hence it accommodate all jobs which complete before
time Cj .

3 Small jobs are a lot like fractional jobs in linear relaxation methods, and fractional solutions are usually easier to find.

634 F. Afrati, I. Milis / Discrete Applied Mathematics 154 (2006) 622–639

(b) There is not some hugely long crossing job in this interval. This is guaranteed by the fact that any crossing job
may cross at most s intervals. Thus, we put the moved job in the beginning of the crossing job and still it is in an interval
where it is considered small. This is so because the intervals that a job crosses differ in size by a factor at most 1/�.

(c) The added cost is not too much: We need to bound the added cost of the large jobs we moved forward. The last
interval from which we advance jobs ends at time t = �7OPT. Thus the total completion time of the advanced jobs is∑

Rx<t (1/�)((1 + �)Rx /�4)(�)t/�5)
∑

i �0 1/(1 + �)i = (t/�5)((1 + �)2/�) = �OPT(1 + �)2 �2�OPT as desired. �

6.3. Algorithm for 1|rj | ∑ Cj

We first simplify the input of the problem by applying geometric rounding on the parameters. Thus, jobs are released
only in the end of intervals. Now, we use the simplifications that, as we proved in the previous subsections of this
section, do not degrade much the quality of the schedule. Before we present the algorithm that solves the problem
in the general case we treat an easy subcase. Suppose that, in the near optimal schedule of the preemptive problem,
all jobs are small in the interval they run. Then the following simple algorithm finds a near optimal solution: Step 1:
We set release dates equal to max{rj , pj /�2}. According to Lemma 1, this does not change the feasibility of a nearly
optimum schedule. Step 2: We use SPRT rule to obtain an optimum preemptive schedule and then stretch each interval
by �Ix and use the extra space to accommodate the tails of the preempted jobs. Step 2, however, is equivalent to running
SPT rule.

Now in the general case, we also have the huge jobs to accommodate. I.e., the optimum schedule may require some
jobs to run in intervals such that they are large. By Lemma 1, however, there is still a nearly optimum solution with
only a constant number of large jobs. Hence we find an optimum schedule of them by exhaustive enumeration and
schedule the small jobs around them as we explained above.

6.4. Algorithm for P 2|fixj |
∑

Cj

For this case, we need some more discussion to explain how we deal with multiprocessor jobs. We use again a
relaxation to the preemptive case. The analysis goes through for any fixed number of machines M, only that, for M > 2
the preemptive case is not polynomial and is solved by a PTAS too.

6.4.1. Parallel running jobs have comparable processing times
Besides geometric rounding, we need some more transformations. We begin with the following lemma which states

that jobs scheduled to run in parallel have comparable processing times.

We first state a few useful facts:

(a) If pmax is the maximum processing time of a set of jobs and � and C is the length and the cost respectively of a
schedule of this set of jobs, then, � < 2

√
pmaxC. At least �/2pmax jobs will be executed after time �/2, hence the

cost is at least: C�(�/2pmax)�/2, hence the inequality.
(b) Suppose each processing time is < �10, then the makespan is � < 2

√
pmaxC < 2

√
�10C2, hence � < 2�5C.

Lemma 2. With a 1 + O(�) loss, we never have two jobs scheduled in parallel whose processing times differ by a
factor greater than 1/�5.

Proof. Let j be a job executed w.l.o.g. on machine M1, and let A be the set of jobs scheduled in parallel with j on machine
M2 with processing times < (1/�5)pj . Recall that, since the single-machine-jobs on each machine are scheduled in the
order of increasing processing times, all jobs in A run in a single consecutively.

The intuition of this proof is the following: We have two cases. Case (i): All jobs in A occupy when they run time
less than �pj . Then, by time stretching we move the job j by at most �pj and the additional cost is small compared to
the processing time pj of job j. Case (ii): All jobs in A occupy when they run more than �pj . Then, the number of jobs
in A is comparatively large, hence we move the job j in a larger interval and, by time stretching, the additional cost is
small compared to the sum of completion times of jobs in A. We argue now quantitatively on the two cases:

F. Afrati, I. Milis / Discrete Applied Mathematics 154 (2006) 622–639 635

Case (i):
∑

i∈A pi < �pj . We use time stretching to move starting time of j to Sj + �pj , thus jobs in A and job j do
not run in parallel any more.

Case (ii):
∑

i∈A pi ��pj . Put the job j so that it completes at time Cj/�2. Let Sj be the starting time of job j in
the initial schedule. Since for every i ∈ A, pi < �5pj , we get that at least 1/2�4 jobs in A complete in the time-
interval [Sj + �pj/2, Sj + �pj]. Then

∑
i∈A Ci > (Sj + �pj/2)(1/2 �4) > (�/2)(1/2�4)(Sj + pj) = (1/4�3)Cj . Thus,

(Cj/�2) < 4�
∑

i∈A Ci . Summing over all jobs j, we get an increase of at most 4�OPT. �

6.4.2. Gap in processing times
Suppose that there is a gap in the values of the processing times of the jobs in the sense that we can partition the set

of jobs into “long” and “short” jobs so that the processing times of all long jobs are much larger than any processing
time of a small job. Then the following lemma states that all short jobs are scheduled before any long job is scheduled.

Lemma 3. Suppose that the set of jobs T can be partitioned into subsets L and S such that maxj∈S pj < �5minj∈L pj .
Then, all jobs in S are scheduled before any job in L is scheduled with 1 + � loss.

Proof. Observe that, because of Lemma 2 above, we can view a near-optimal schedule as a series of time intervals,
each time interval accommodating either only jobs in L or only jobs in S. Suppose there are two consecutive time
intervals so that a subset L′ of L jobs is scheduled before a subset S′ of S. If we swap the schedules in those time
intervals so that S′ is scheduled before L′, then we get a better schedule. We compute the change in cost. Let S and L
are the length of the time interval in which the jobs in S′ and L′, respectively, are scheduled. The jobs of L′ are delayed
by S while the jobs of S′ are moved up by L. Thus the change of the cost is

S|L′| − L|S′|�
(

2

minj∈Lpj

− 1

maxj∈Spj

)
LS�

(
2 − minj∈Lpj

maxj∈Spj

)
LS

minj∈Lpj

.

By the hypothesis we have that minj∈Lpj/maxj∈Spj > 1/�5, hence the upper bound on the change of cost is a negative
number for � < 1

2 . �

However this lemma cannot be used unless there is such a gap. It turns out that there is an “almost gap”. Namely, a
separation result allows for partitioning the jobs into “long” jobs and “short” jobs with a few (negligible) “medium”
jobs in between. U denotes the upper bound to the optimal cost obtained by processing all jobs sequentially. Note that
this upper bound is within a factor of 2 of the optimal.

Definition. Let Li denote the set of jobs with processing time pj ��5i+5U , Mi denote the set of jobs j with processing
time �5i+10U�pj < �5i+5U , and Si denote the remaining jobs.

Lemma 4. If L1 �= ∅, then there is some i < log1+�
1

�10 such that OPT(Mi ∪ Li)�(1 + �2)OPT(Li). We call this i the
separation index.

Proof. The proof is a simple algebraic manipulation. Observe that Li = L1 ∪ M1 ∪ M2 ∪ · · · ∪ Mi−1. Taking the
inequality OPT(L1) > �10OPT, and i inequalities, one for each i: OPT(Mi ∪ Li) > (1 + �2)OPT(Li) or equivalently
OPT(L1 ∪ Mi ∪ M1 ∪ M2 ∪ · · · ∪ Mi−1) > (1 + �2)OPT(L1 ∪ M1 ∪ M2 ∪ · · · ∪ Mi−1) and multiplying the RHS parts
and the LHS parts yields the inequality: OPT > OPT(L1 ∪ M1 ∪ · · · ∪ Mi) > (1 + �2)i�10OPT, i.e. (1 + �2)i�10 < 1.
Consequently, i < log1+�2

1
�10 . �

Combining the results in Lemmas 3 and 4, we get the following:

Lemma 5. Let i be the separation index. Then, with a 1 + � loss, we schedule all jobs in Si before all jobs in Li ∪ Mi .

Proof. We will show that the cost does not increase much. By Lemma 3, we know that there is a schedule with a
1 + � loss from the optimal, which schedules first the jobs in Si and then the jobs in Li . The cost of this schedule is
C(Si ∪ Li) = OPT(Si) + OPT(Li) + MSi |Li | where MSi is the maximum makespan of the optimum schedule in Si .

636 F. Afrati, I. Milis / Discrete Applied Mathematics 154 (2006) 622–639

The cost of a schedule which schedules first Si and then M ∪ Li is OPT(Si) + OPT(Mi ∪ Li) + MSi |Mi ∪ Li |.
Since, we already know that OPT(Mi ∪ Li) < (1 + �)OPT(Li) (by Lemma 4), we need to bound MSi |Mi |.

Let p
Li

min be the shortest processing time of a job in Li , then:

|Li |2
4

pSi
max <

|Li |2
4

p
Li

min < OPT(Li) < �2OPT(Li).

Hence |Li | < 2�
√

OPT(Li)

p
Si
max

. From the observation in the beginning of this subsection MSi < 2
√

p
Si
maxOPT(Si), and thus

MSi |Li | is at most 2�OPT. �

The above transformations together with a polynomial algorithm for the preemptive variant [2] yield a PTAS for
this problem. We develop the algorithm in two stages. First suppose there are no jobs with processing time > �10OPT.
Then we get the algorithm:

(1) Solve the preemptive problem with at most 1 + � loss.
(2) Reorder jobs in each type by non-decreasing processing time.
(3) Reorder to obtain a schedule with at most one preemption per interval.
(4) Move large uniprocessor jobs in long intervals so that starting time for uniprocessor jobs is greater than (1/�2)pj ,

according to Lemma 1.
(5) Consider each preempted job, j, (it is always a single-machine job) and finish it at the time of preemption.

The analysis of this algorithm is straightforward from the above lemmas.

Now, the algorithm for the general case is:

(1) For every i < log1+�
1

�10 , partition the jobs into Li , Mi , Si .
(2) Construct a non-preemptive schedule of Si as above.
(3) Construct an optimal non-preemptive schedule of Li ∪ Mi by exhaustive search.
(4) Concatenate the schedule of Si and the schedule of Li ∪ Mi .
(5) Choose the best schedule over all choices of i.

7. Open questions

The recent activity on MIN-SUM scheduling problems has led to resolving many of the approximability questions
arising in this area as it is shown in Table 1. Several open questions can be picked up by looking at this table. Schuurman
and Woeginger in [42] provide also an excellent listing of ten open problems in scheduling theory, including MIN-SUM
scheduling problems. In [42], they also discuss related MIN-SUM scheduling problems that we do not address here
such as shop scheduling problems and scheduling problems with communication delays.

However, we believe that some of the most interesting open questions can be classified into three directions.
(i) The variants with precedence constraints are still far from being resolved. Any �-approximation algorithm, with

� < 2 or any negative result for 1|prec| ∑ wjCj will be of great interest. Note that at least four different 2-approximation
algorithms are known (see Table 1) for this variant. Moreover, Woeginger [55], gave a proof that eight special cases
of 1|prec| ∑ wjCj (including 1|prec| ∑ Cj) all have the same approximation threshold. Thus, what we can, possibly,
expect is a negative result like the following.

Conjecture 1. There is no (2 − �)-approximation algorithm for 1|prec| ∑ Cj .

(ii) The unrelated machines case, with the number of machines as part of the problem’s instance, is also of interest.
We know that R|| ∑ wjCj as well as R|rj | ∑ Cj (and hence R|rj | ∑ wjCj) are MAXSNP-hard [23] and that they
can be approximated within a factor of 3

2 [43,46,48] and 2 [47,48], respectively. We also know that their preemptive
variants, i.e. R|pmtn| ∑ wjCj and R|rj , pmtn| ∑ wjCj , can be approximated within a factor of 2 [47,48] and 2 + �
[35] respectively. However, the existence of an approximation threshold (for the non-preemptive variants) and a PTAS

F. Afrati, I. Milis / Discrete Applied Mathematics 154 (2006) 622–639 637

(for the preemptive variants) are two major open questions. Last but not least note that the complexity of R|pmnt| ∑ Cj

was an longstanding open question and recently it was shown to be strongly NP-hard [45]. However, the existence of an
approximation result better than the one to its weighted variant is unknown. It follows, therefore, that there is enough
room for improvements here and that any conjecture will be very risky.

(iii) Neither PTASs nor constant approximation algorithms are known for the case with objective function the total
(weighted) flow time. Such a result is not however expected for the non preemptive variants due to known non-
approximability results [25,26]. Recent work in [9] and [8] (see the discussion in Section 3) for 1|rj , pmtn| ∑ wjFj

provides a strong evidence that the following conjecture holds.

Conjecture 2. There is a PTAS for 1|rj , pmtn| ∑ wjFj .

For the parallel machines preemptive unweighted variant P |rj , pmtn| ∑ Fj an O(log min{n/m, log P })
-approximation algorithm is known [26], whereas no negative result has been shown (recall that P refers to the ratio of
the largest job processing time over the smallest one, i.e. P = maxjpj /minjpj). It would be interesting to have either
better approximation factor or a negative result for this variant or even for P 2|rj , pmtn| ∑ Fj .

8. Conclusion

In this paper, we have discussed approximation algorithms for scheduling problems. We have presented a brief survey
on successful methods and techniques used for deriving constant ratio approximation algorithms. However, for a more
detailed exposition on this subject and especially on methods that use relaxation techniques on integer programming
formulations of the problem, the reader is asked to refer to surveys in the literature. We have focused in Polynomial
Time Approximation Schemes and we have presented an extended formal exposition of algorithms in the literature.
We presented PTAS algorithms for three problems: R2|| ∑ wjCj , 1|rj | ∑ Cj , and P 2|fixj |

∑
Cj . Finally note that it

was not our goal here to discuss variants of shop scheduling problem.

References

[1] F.Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis, M. Queyranne, M. Skutella, C. Stein, M. Sviridenko,Approximation
schemes for minimizing average weighted completion time with release dates, in: Proceedings of 40th FOCS, 1999, pp. 32–43.

[2] F.Afrati, E. Bampis,A.V. Fishkin, K. Jansen, C. Kenyon, Scheduling to minimize the average completion time of dedicated tasks, in: Proceedings
of 20th FSTTCS, 2000, pp. 454–464.

[3] F. Afrati, E. Bampis, C. Kenyon, I. Milis, Scheduling to minimize the weighted sum of completion times, J. Scheduling 3 (2000) 323–332.
[4] N. Alon, Y. Azar, G. J. Woeginger, T. Yadid, Approximation schemes for scheduling on parallel machines, in: Proceedings of Eighth SODA,

1997, pp. 493–500; J. Scheduling 1 (1998) 55–66.
[5] P. Brucker, Scheduling Algorithms, Springer, 1998, see also http://www.mathematik.uni-osnabrueck.de/research/OR/class/.
[6] X. Cai, C.Y. Lee, C.L. Li, Minimizing total completion time in two-processor task systems with prespecified processor allocations, Naval Res.

Logistics 45 (1998) 231–242.
[7] C. Chekuri, S. Khanna, A PTAS for minimizing weighted completion time on uniformly related machines, in: Proceedings of 28th ICALP,

2001, pp. 848–861.
[8] C. Chekuri, S. Khanna, Approximation schemes for preemptive weighted flow time, Electron. Colloq. Comput. Complexity 8 (2001) 65 in:

Proceedings of the 34th STOC, 2002, pp. 297–305.
[9] C. Chekuri, S. Khanna, A. Zhu, Algorithms for minimizing weighted flow time, in: Proceedings of 33rd STOC, 2001, pp. 84–93.

[10] C. Chekuri, R. Motwani, Minimizing weigthed completion time on a single machine, in: Proceedings of 10th SODA, 1999, pp. 873–874;
Discrete Appl. Math. 98 (1999) 29–38.

[11] C. Chekuri, R. Motwani, B. Natarajan, C. Stein, Approximation techniques for average completion time scheduling, in: Proceedings of Eighth
SODA, 1997, pp. 609–618; SIAM J. Comput. 31 (2001) 146–166.

[12] F.A. Chudak, D.S. Hochbaum, A half-integer linear programming relaxation for scheduling precedence-constrained jobs on a single machine,
Oper. Res. Lett. 25 (1999) 199–204.

[13] M.E. Dyer, L.A. Wolsey, Formulating the single machine sequencing problem with release dates as a mixed integer program, Discrete Appl.
Math. 26 (1990) 255–270.

[14] G. Even, J. Naor, S. Rao, B. Schieber, Divide-and-conquer approximation algorithms via spreading metrics, in: Proceeding of 36th FOCS,
1995, pp. 62–71; J. ACM 47 (2000) 585–616.

[15] A.V. Fishkin, K. Jansen, L. Porkolab, On minimizing average weighted time completion time of multiprocessor tasks with release dates, in:
Proceedings of 28th ICALP, 2001, pp. 875–886.

http://www.mathematik.uni-osnabrueck.de/research/OR/class/

638 F. Afrati, I. Milis / Discrete Applied Mathematics 154 (2006) 622–639

[16] A.V. Fishkin, K. Jansen, L. Porkolab, On minimizing average weighted time completion time: a PTAS for scheduling general multiprocessor
tasks, in: Proceedings of 13th FCT-Workshop on Efficient Algorithms (WEA), Lecture Notes in Computer Science, vol. 2138, 2001, pp.
495–507.

[17] M.X. Goemans, M. Queyranne, A.S. Shulz, M. Skutella, Y. Wang, Single machine scheduling with release dates, SIAM J. Discrete Math. 15
(2002) 165–192.

[18] T.F. Gonzalez, S. Sahni, Flowshop and jobshop schedules: complexity and approximation, Oper. Res. 26 (1978) 36–52.
[19] R.L. Graham, Bounds on certain multiprocessor anomalies, Bell Syst. Techn. J. 45 (1996) 1563–1581.
[20] R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Optimization and approximation in deterministic sequencing and scheduling,

Ann. Discrete Math. 5 (1979) 287–326.
[21] L.A. Hall, A.S. Schulz, D.B. Shmoys, J. Wein, Scheduling to minimize average completion time: on-line and off-line approximation algorithms,

Math. Oper. Res. 22 (1997) 513–544.
[22] L.A. Hall, D.B. Shmoys, J. Wein, Scheduling to minimize average completion time: on-line and off-line algorithms, in: Proceedings of Seventh

SODA, 1996, pp. 142–151.
[23] H. Hoogeveen, P. Schuurman, G.J. Woeginger, Non-approximability results for scheduling problems with minsum criteria, in: Proceedings of

6th IPCO, Lecture Notes in Computer Science, vol. 1412, 1998, pp. 353–366; INFORMS J. Comput. 13 (2001) 157–168.
[24] T. Kawaguchi, S. Kyan, Worst case bound of an LRF schedule for the mean weighted flow-time problem, SIAM J. Comput. 15 (1986)

1119–1129.
[25] H. Kellerer, T. Tautenhahn, G.J. Woeginger, Approximability and nonappproximability results for minimizing total flow time on a single

machine, in: Proceedings of 28th STOC, 1996, pp. 418–426; SIAM J. Comput. 28 (1999) 1155–1166.
[26] S. Leonardi, D. Raz, Approximating total flow time on parallel machines, in: Proceedings of 29th STOC, 1997, pp. 110–119.
[27] J.Y.T. Leung, W.D. Wei, Tighter bounds on a heuristic for a partition problem, Inform. Process. Lett. 56 (1995) 51–57.
[28] F. Margot, M. Queyranne, Y. Wang, Decompositions, network flows, and a precedence constrained single machine scheduling problem, Report

No. 2000-29, Department of Mathematics, University of Kentucky, Lexington.
[29] A. Munier, M. Queyranne, A.S. Schulz, Approximation bounds for a general class of precedence-constrained parallel machine scheduling

problems, in: Proceedings of Sixth IPCO, Lecture Notes in Computer Science, vol. 1412, 1998, pp. 367–382.
[30] C.H. Papadimitriou, Computational Complexity, Addison Wesley, Reading, MA, 1994.
[31] C. Philips, C. Stein, J. Wein, Scheduling jobs that arrive over time, in: Proceedings of Fourth WADS, Lecture Notes in Computer Science, vol.

955, 1995, pp. 290–301; Math. Programming B 82 (1998) 199–224.
[32] C.N. Potts, An algorithm for the single machine sequencing problem with precedence constraints, Math. Programming Stud. 13 (1980) 78–87.
[33] M. Queyranne, Structure of a simple scheduling polyhedron, Math. Programming 58 (1993) 263–285.
[34] M. Queyranne, A.S. Shulz, Polyhedral approaches to machine scheduling, Preprint No. 408/1994, Department of Mathematics, Technical

University Berlin, 1994.
[35] M. Queyranne, M. Sviridenko: A (2 + �)-approximation algorithm for the generalized preemptive open shop problem with minsum objective,

in: Proceedings of Eighth IPCO, Lecture Notes in Computer Science, vol. 2081, 2001, pp. 361–369; J. Algorithms 45 (2002) 202–212.
[36] R. Ravi, A. Agrawal, P. Klein, Ordering problems approximated: single processor scheduling and interval graph completion, in: Proceedings

of 18th ICALP, Lecture Notes in Computer Science, vol. 510, 1991 pp. 751–762.
[37] S. Sahni, Algorithms for scheduling independent tasks, J. ACM 23 (1976) 116–127.
[38] M.W.P. Savelsbergh, R.N. Uma, J.M. Wein, An experimental study of LP-based approximation algorithms for scheduling problems, in:

Proceedings of Ninth SODA, 1998, pp. 453–462.
[39] A.S. Schulz, M. Skutella, Random-based scheduling: new approximations and LP lower bounds, in: Proceedings of RANDOM’97, Lecture

Notes in Computer Science, vol. 1269, 1997, pp. 119–133.
[40] A.S. Schulz, M. Skutella, Scheduling-LPs bear probabilities: randomized approximations for min-sum criteria, in: Proceedings of Fifth ESA,

Lecture Notes in Computer Science, vol. 1284, 1997, pp. 416–429; SIAM J. Discrete Math. 15 (2002) 450–469.
[41] A.S. Schulz, M. Skutella, The power of alpha-points in preemptive single machine scheduling, J. Scheduling 5 (2002) 121–133.
[42] P. Schuurman, G.J. Woeginger, Polynomial time approximation algorithms for machine scheduling: ten open problems, J. Scheduling 2 (1999)

203–213.
[43] J. Sethuraman, M.S. Squillante, Optimal scheduling of multiclass parallel machines, in: Proceedings of 10th SODA, 1999, pp. 963–964.
[44] D.B. Shmoys, Using linear programming in the design and analysis of approximation algorithms: two illustrative problems, in: Proceedings of

APPROX’98, Lecture Notes in Computer Science, vol. 1444, 1998, pp. 15–32.
[45] R. Sitters, Two NP-hardness results for preemptive minsum scheduling of unrelated parallel machines, in: Proceedings of Eighth IPCO, Lecture

Notes in Computer Science, vol. 2081, 2001, pp. 396–405.
[46] M. Skutella, Semidefinite relaxations for parallel machine scheduling, in: Proceedings of 39th FOCS, 1998, pp. 472–481.
[47] M. Skutella, Convex quadratic programming relaxations for network scheduling problems. In Proceedings of Seventh ESA, Lecture Notes in

Computer Science, vol. 1643, 1999, pp. 127–138.
[48] M. Skutella, Convex quadratic and semidefinite programming relaxations in scheduling, J. ACM 48 (2001) 206–242.
[49] M. Skutella, G.J. Woeginger, A PTAS for minimizing the weighted sum of job completion times on parallel machines, in: Proceedings of 31st

STOC, 1999, pp. 400–407; Math. Oper. Res. 25 (2000) 63–75.
[50] W. Smith, Various optimizers for single-stage production, Naval Res. Logistics Quart. 3 (1956) 59–66.
[51] E. Torng, P. Uthaisombut, Lower bounds for SRPT-subsequence algorithms for nonpreemptive scheduling, in: Proceedings of 10th SODA,

1999, pp. 973–974.
[52] J. Turek, U. Schwiegelshohn, J.L. Wolf, P.S. Yu, Scheduling parallel tasks to minimize average response time, in: Proceedings of Fifth SODA,

1994, pp. 112–121.

F. Afrati, I. Milis / Discrete Applied Mathematics 154 (2006) 622–639 639

[53] R.N. Uma, J. Wein, On the relationship between combinatorial and LP-based approaches to NP-hard scheduling problems, in: Proceedings of
Sixth IPCO, 1998, pp. 394–408.

[54] G.J. Woeginger, When does a dynamic programming formulation guarantee the existence of an FPTAS? in: Proceedings of 10th SODA, 1999,
pp. 820–829; Electron. Colloq. Comput. Complexity 8 (2001) 84.

[55] G.J. Woeginger, On the approximability of average completion time scheduling under precedence constraints, in: Proceedings of 28th ICALP,
2001, pp. 887–897.

[56] L.A. Wolsey, Mixed integer programming formulations for production planning and scheduling problems, Invited talk at 12th International
Symposium on Mathematical Programming, MIT, Cambridge, 1985.

	Designing PTASs for MIN-SUM scheduling problems62626262
	Introduction
	Background and preliminaries
	Basic definitions
	Algorithms for simple cases
	Polynomial algorithms
	Constant ratio approximation algorithms
	PTAS

	Constant approximation algorithms
	Polynomial time approximation schemes
	Geometric rounding and time stretching

	Ratio partitioning
	Ratios in adjacent windows
	Job types not affecting each other
	Constant number of jobs
	Algorithm for R2"026A30C "026A30C wjCj

	Time partitioning
	Simple properties of time partitioning
	Large and small jobs
	Algorithm for 1"026A30C rj"026A30C Cj
	Algorithm for P2"026A30C =fixj"026A30C Cj
	Parallel running jobs have comparable processing times
	Gap in processing times

	Open questions
	Conclusion
	References

