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Abstract

The Conjugate Orthogonal Conjugate Gradient (COCG) method has been recognized as an attractive Lanczos-type Krylov
subspace method for solving complex symmetric linear systems; however, it sometimes shows irregular convergence behavior in
practical applications. In the present paper, we propose a Conjugate A-Orthogonal Conjugate Residual (COCR) method, which can
be regarded as an extension of the Conjugate Residual (CR) method. Numerical examples show that COCR often gives smoother
convergence behavior than COCG.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

We consider the solution of nonsingular complex symmetric linear systems of the form Ax = b, where A is an
N × N non-Hermitian but symmetric matrix (A �= ĀT, A = AT). Such systems arise in many important applications
such as numerical computations in quantum chemistry, eddy current problems, and numerical solutions of the complex
Helmholtz equation. Hence, there is a strong need for the fast solution of complex symmetric linear systems. For solving
such systems efficiently, van derVorst and Mellissen [12] proposed the conjugate orthogonal conjugate gradient (COCG)
method, which is regarded as an extension of the Conjugate Gradient (CG) method [8]. Relatively complicated but
robust algorithms such as QMR [6], CSYM [3], and Bi-CGCR [4] are also useful. QMR is derived from the complex
symmetric Lanczos algorithm, CSYM is obtained from the idea of QMR and tridiagonalization of A by Householder
reflections, and Bi-CGCR is derived from a particular case in Bi-CG [5] for solving non-Hermitian linear systems.

In the present paper, we extend the conjugate residual (CR) method described in [7,10] to complex symmetric linear
systems based on an observation of deriving CG, CR, and COCG. Since CR holds a minimal residual property, the
extended algorithm, named COCR, can be expected to give smoother convergence behavior than COCG in the residual
norm. From a more general point of view, the algorithm of COCR is also obtained from a particular case in Bi-CR [11]
which has been proposed for solving non-Hermitian linear systems, and this is similar to the relation between COCG
and Bi-CG. This paper is organized as follows: in the next section, first, we observe a way to derive the algorithms of
CG, CR, and COCG. Second, we derive COCR from the observation, and its orthogonality properties are discussed.
In Section 3, we report some numerical examples. Finally, we make some concluding remarks in Section 4.
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In the paper, the symbol (x, y) denotes the inner product given by
∑N

i=0 x̄iyi , and the symbol Kn(A, r0) denotes the
n-dimensional Krylov subspace given by span{r0, Ar0, . . . , A

n−1r0}.

2. An extension of CR to complex symmetric linear systems

2.1. An observation of deriving CG, CR, and COCG

In this subsection, we discuss a way to obtain CG, CR, and COCG. Let xn be the nth approximate solution in the
methods. Then, the corresponding nth residual vector rn(:= b−Axn) and search direction pn are given by the following
coupled two-term recurrences:

r0 = b − Ax0, p0 = r0, (1)

rn = rn−1 − �n−1Apn−1, (2)

pn = rn + �n−1pn−1, for n = 1, 2, . . . . (3)

The differences among the algorithms of three methods are computational formulas of �n−1 and �n−1 in the recurrences
(2)–(3), and these parameters are determined by the following orthogonality conditions:

rn ⊥ W and Apn ⊥ W . (4)

When A is Hermitian (positive definite),

• W = Kn(A, r0) leads to CG;
• W = AKn(A, r0) leads to CR.

When A is complex symmetric,

• W = Kn(Ā, r̄0) leads to COCG.

2.2. A derivation of COCR

In this subsection, we derive the algorithm of COCR, and discuss its orthogonality properties.
Let rn and pn be the nth residual vector and search direction of COCR, and also given by the recurrences (1)–(3) as

well as the three methods. Then, rn and pn can be computed by determining �n−1 and �n−1. Hence, as we see in (4), a
choice of subspace W is needed to determine these parameters. Compared with the subspaces for CG and COCG, the
main difference is the complex conjugate, and thus it is natural from the subspace for CR that we take the following
choice:

• W = ĀKn(Ā, r̄0).

Hence, the following orthogonality conditions are chosen for COCR:

rn ⊥ ĀKn(Ā, r̄0) and Apn ⊥ ĀKn(Ā, r̄0). (5)

Now, we show a process for obtaining �n−1 and �n−1 using the recurrences (1)–(3) and the orthogonality conditions
(5). For determining �n−1, it follows from (2) that the inner product of Ānr̄0 and rn is computed as

(Ānr̄0, rn) = (Ānr̄0, rn−1) − �n−1(Ā
nr̄0, Apn−1).
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Since Ānr̄0 belongs to ĀKn(Ā, r̄0), it follows (Ānr̄0, rn) = 0 from the conditions (5). Hence, we obtain

�n−1 = (Ānr̄0, rn−1)

(Ānr̄0, Apn−1)
. (6)

Next, for determining �n−1 it follows from (3) that the inner product of Ānr̄0 and Apn is computed as

(Ānr̄0, Apn) = (Ānr̄0, Arn) + �n−1(Ā
nr̄0, Apn−1).

From the conditions (5) it follows (Ānr̄0, Apn) = 0, thus we obtain

�n−1 = − (Ānr̄0, Arn)

(Ānr̄0, Apn−1)
= −�n−1

(Ānr̄0, Arn)

(Ānr̄0, rn−1)
. (7)

Here, let us consider obtaining practical formulas for �n−1 and �n−1 from (6) and (7). Note that from the recurrences
(1)–(3) two vectors Ār̄n−1 and Āp̄n−1 can be written as

Ār̄n−1 = c̄n−1Ā
nr̄0 + Āz̄1, Āz̄1 ∈ ĀKn−1(Ā, r̄0), (8)

Āp̄n−1 = c̄n−1Ā
nr̄0 + Āz̄2, Āz̄2 ∈ ĀKn−1(Ā, r̄0), (9)

where cn−1 = (−1)n−1 ∏n−2
i=0 �i . Then, from (8), (9), and the conditions (5), the formula �n−1 in (6) can be rewritten

by

�n−1 = (Ār̄n−1, rn−1) − (Āz̄1, rn−1)

(Āp̄n−1, Apn−1) − (Āz̄2, Apn−1)
= (Ār̄n−1, rn−1)

(Āp̄n−1, Apn−1)
. (10)

Similarly, the formula �n−1 in (7) can be rewritten by

�n−1 = (Ār̄n, rn)

(Ār̄n−1, rn−1)
. (11)

Finally, we give an update formula of the nth approximate solution xn. From the relation (2), and recall rn = b − Axn,
we obtain

xn = xn−1 + �n−1pn−1. (12)

From (1)–(3) and (10)–(12), the algorithm of COCR is obtained as follows:

Algorithm 1. COCR
x0 is an initial guess, r0 = b − Ax0,

set p−1 = 0, �−1 = 0,

for n = 0, 1, . . . , until ‖rn‖��‖b‖ do:

pn = rn + �n−1pn−1,

(Apn = Arn + �n−1Apn−1, )

�n = (r̄n, Arn)

(Āp̄n, Apn)
,

xn+1 = xn + �npn,

rn+1 = rn − �nApn,

�n = (r̄n+1, Arn+1)

(r̄n, Arn)
.
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Table 1
Summary of operations per iteration step, where AXPY: ax + y, IP: Inner product, MV: Matrix–vector product

Name IP AXPY MV

QMR 2 6 1
COCG 2 3 1
COCR 2 4 1

It follows from Algorithm 1 that we obtain the three results: first, it is clear that COCR is equivalent to CR when A
is real symmetric, and thus COCR can be considered as an extension of CR for symmetric linear systems to complex
symmetric ones; second, similar to COCG, COCR may break down, i.e., (Āp̄n, Apn)= 0 or (r̄n, Arn)= 0 with rn �= 0.
On the other hand, it is possible for QMR to evade such breakdowns by using look-ahead strategy [6, Section 4]; third,
if breakdown does not occur, COCR holds the following properties:

(r̄i , Arj ) = 0, i �= j , (13)

(Āp̄i , Apj ) = 0, i �= j . (14)

For the proof of (13) and (14), it is sufficient to consider the case j < i, and the proof is given by induction. Since the
trivial case is obvious, we assume that properties (13) and (14) hold for j < i�k. Then, we show

(r̄k+1, Arj ) = 0, (15)

(Āp̄k+1, Apj ) = 0. (16)

First, we show (15). For the case j < k it follows that (r̄k+1, Arj ) = (r̄k, Arj ) − �k(Āp̄k, Arj ) = −�k(Āp̄k, Arj ) =
−�k(Āp̄k, Apj − �j−1Apj−1) = 0 from the assumption. For the case j = k we obtain (r̄k+1, Ark) = (r̄k, Ark) −
�k(Āp̄k, Ark) = (r̄k, Ark) − �k(Āp̄k, Apk − �k−1Apk−1) = (r̄k, Ark) − �k(Āp̄k, Apk) = 0 from the formula of �k .

Next, we show (16). For the case j < k it follows that (Āp̄k+1, Apj ) = (Ār̄k+1 + �̄kĀp̄k, Apj ) = (Ār̄k+1, Apj ) =
(1/�j )(Ār̄k+1, rj − rj+1) = 0 from the first result of the proof. For the case j = k we obtain (Āp̄k+1, Apk) =
(Ār̄k+1, Apk)+�k(Āp̄k, Apk)=(1/�k)(Ār̄k+1, rk−rk+1)+�k(Āp̄k, Apk)=−(1/�k)(Ār̄k+1, rk+1)+�k(Āp̄k, Apk)=0
from the formulas of �k and �k .

Since Algorithm 1 holds conjugate A-orthogonal property (13) and it is similar to the algorithm of CR, we named it
Conjugate A-Orthogonal Conjugate Residual (COCR) method. The computational cost for QMR, COCG, and COCR
at each iteration step is shown in Table 1.

At the end of this subsection, let us consider another set of formulas for �n and �n in Algorithm 1. From (13) and
(14), it is easily verified that �n = (Āp̄n, rn)/(Āp̄n, Apn) and �n = −(Āp̄n, Arn+1)/(Āp̄n, Apn). This set of formulas
leads to the algorithm of BiCGCR, but causes one more inner product per iteration step.

3. Numerical examples

In this section, we report some numerical examples with QMR, COCG, and COCR. We evaluate both two methods in
aspects of the number of iterations (Its) and log10 of true relative residual 2-norm (TRR) defined as log10 ‖b−Axn‖/‖b‖.
All tests were performed on an ALPHA work station with 750 MHz processor using double precision arithmetic. Codes
were written in Fortran 77 and compiled with the optimization option -O4. In all cases the iteration was started with
x0 = 0, and the stopping criterion was ‖rn‖/‖b‖�10−6. The preconditioner was IC(0) [9]. For the complex symmetric
structure of A, IC(0) produces LDLT. If the diagonal matrix D and the lower triangular matrix L are nonsingular, then the
preconditioned matrix D−1/2L−1AL−TD−1/2 is also a nonsingular complex symmetric matrix. Thus, in this case, we
can use LDLT as a preconditioner. The convergence plots show log10 of the relative residual 2-norm, log10 ‖rn‖/‖b‖,
(on the vertical axis) versus Its (on the horizontal axis).
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Table 2
Numerical results for Example 1, where N: order of matrix, Its: number of iterations, TRR: log10 of final true relative residual 2-norm

Matrix N Its TRR

QMR COCG COCR QMR COCG COCR

DWG961B 961 1523 1365 1388 −6.00 −6.10 −6.05
QC2534 2534 1008 628 403 −6.14 −6.06 −6.41
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Fig. 1. The convergence history of Example 1 (DW961B).

3.1. Example 1

In the first numerical example, we consider problems from NEP collection [1]. We chose two matrices from electrical
engineering (DWG961B) and quantum chemistry (QC2534). Numerical results for each test problem are given in
Table 2. The right-hand side b was chosen as (1 + i, . . . , 1 + i)T.

Convergence histories for DWG961B and QC2534 are shown in Figs. 1 and 2. We see from Fig. 1 that COCG and
COCR give similar convergence behavior, and the residual norm of COCR is often less than that of COCG and QMR at
each iteration step. On the other hand, QMR often gives much smoother convergence behavior than COCG and COCR;
however QMR requires a larger number of iterations than the other two methods. Fig. 2 shows that COCR converges
considerably faster than COCG and QMR. In the two cases, the three methods give almost the same accuracy on TRR
at each final iteration step (see Table 2).

3.2. Example 2

In the second numerical example, we consider a complex symmetric linear system arising from the 200×200 central
difference discretization of the Helmholtz equation described in [2]: uxx + uyy + �2u = 0 over [0, �] × [0, �], with

Dirichlet condition u = 0 along y = �, Neumann conditions ux = i

√
�2 − 1

4 cos(y/2) along x = 0 and uy = 0 along

y =0, and radiation condition ux − i

√
�2 − 1

4u=0 along x =�. This leads to a linear system with 201×200 unknowns.
Here, we consider the two cases of � = 2.0, 4.0. These numerical results are shown in Figs. 3 and 4.
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Fig. 2. The convergence history of Example 1 (QC2534).
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Fig. 3. The convergence history of Example 2 (� = 2.0).

From Figs. 3 and 4 we observe that COCR gives smoother convergence behavior than COCG in the early phase, and
then the two methods show similar convergence behavior. We also see that QMR has an advantage over COCG and
COCR in that its residual 2-norm decreases almost monotonically. In the two cases (�= 2.0, 4.0), they give almost the
same accuracy on TRR at each final iteration step (see Table 3).

4. Concluding remarks

In this paper, first, we observed a way for obtaining CG, CR, and COCG. Second, we derived the algorithm of
COCR from the observation and showed some orthogonality properties. From numerical examples we have learned
that COCR tends to give smoother convergence behavior than COCG, and it sometimes converges faster than QMR in
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Fig. 4. The convergence history of Example 2 (� = 4.0).

Table 3
Numerical results for Example 2, where N: order of matrix, Its: number of iterations, TRR: log10 of final true relative residual 2-norm

Matrix N Its TRR

QMR COCG COCR QMR COCG COCR

� = 2.0 40200 276 288 278 −6.01 −6.03 −6.04
� = 4.0 40200 453 473 458 −6.06 −6.01 −6.01

terms of the number of iterations. Hence, we conclude that COCR as well as QMR and COCG may become a useful
tool for solving complex symmetric linear systems.
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