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a b s t r a c t

We first prove that a graded, connected, free and cofree Hopf algebra is always self-dual.
Then, we prove that two graded, connected, free and cofree Hopf algebras are isomorphic
if and only if they have the same Poincaré–Hilbert formal series. If the characteristic of the
base field is zero, we prove that the Lie algebra of the primitive elements of such an object is
free, and we deduce a characterization of the formal series of free and cofree Hopf algebras
by a condition of growth of the coefficients. We finally show that two graded, connected,
free and cofree Hopf algebras are isomorphic as (nongraded) Hopf algebras if and only if
the Lie algebras of their primitive elements have the same number of generators.

© 2011 Elsevier B.V. All rights reserved.

0. Introduction

The theory of combinatorial Hopf algebras has undergone significant development in the last decade. It turns out that an
important part of the Hopf algebras studied in this theory are both free and cofree, for example:

1. The Hopf algebra FQSym of free quasi-symmetric functions [14,15,20], also known as the Malvenuto–Reutenauer Hopf
algebra.

2. The Hopf algebra PQSym of parking functions [18,19].
3. The Hopf algebra on set compositions, called PΠ in [1] and NCQSym in [4].
4. The isomorphic Hopf algebras RΠ and SΠ on pairs of permutations of [1].
5. The Loday–Ronco Hopf algebra HLR of planar binary trees [12] and its dual YSym [3].
6. The Hopf algebras of planar rooted trees [7,11], also known as the non-commutative Connes–Kreimer Hopf algebra

HNCK , and its decorated versions.
7. The Hopf algebra of double posets HDP [16].
8. The Hopf algebra of ordered forests Ho and its subalgebra of heap-ordered forests Hho [10].
9. The free 2-As algebras [13].

10. The Hopf algebra of uniform block permutations HUBP [2].
11. And, if the characteristic of the base field K is zero, the Hopf algebra K [X].

Note that the space of generators and the space of cogenerators are not the same in these examples, except for K [X].
It also turns out that some of these objects are self-dual. The self-duality is proved by the construction of a more or less

explicit pairing for FQSym, the Connes–Kreimer Hopf algebras, the Hopf algebra of posets and K [X]. In the case of PQSym
or the Hopf algebra of ordered forests, the self-duality and the cofreeness are proved by the construction of a non-explicit
isomorphism with a Connes–Kreimer Hopf algebra, using non-associative products and coproducts and a rigidity theorem
[8,9]. It can similarly be proved that the Hopf algebra of double posets is isomorphic to a Connes–Kreimer Hopf algebra. As a
corollary, any two of these objects with the same formal series are isomorphic, and their Lie algebras of primitive elements
are free if the characteristic of the base field is zero. Note that the self-duality of RΠ and SΠ and the freeness of their Lie
algebras of primitive elements were not proved yet and are implied by Theorem 5 and Corollary 13 of the present text.
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In this context, the following questions are natural:
1. Is a free and cofree Hopf algebra always self-dual?
2. Are two free and cofree Hopf algebras with the same formal series always isomorphic?
3. What can be said of the structure of the Lie algebra of the primitive elements of a free and cofree Hopf algebra?

We here give a positive answer to questions 1 and 2 and prove for question 3 that these Lie algebras are free if the
characteristic of the base field is 0. We first prove that any free and cofree Hopf algebra H can be given a non-degenerate,
symmetric Hopf pairing, so is self-dual. More precisely, if g is the Lie algebra of the primitive elements of H and H+ is the
augmentation ideal of H , then any non-degenerate symmetric pairing on the space of indecomposable primitive elements

g

g∩H+2 can be (not uniquely) extended to a non-degenerate, symmetric Hopf pairing on H (Theorem 5). We then deduce that
two free and cofree Hopf algebras H and H ′ are isomorphic as graded Hopf algebras if and only if H and H ′ have the same
Poincaré–Hilbert formal series (Theorem 8).

Restricting us to a base field of characteristic zero, we characterize the formal series of free and cofree Hopf algebras. We
first prove that the Lie algebra g is free, answering question 3 (Corollary 13). We deduce in Proposition 14 relations between
the coefficients of the following formal series:

R(h) =

∞−
n=0

dim(Hn)hn, P(h) =

∞−
n=1

dim(gn)hn, S(h) =

∞−
n=1

dim


g

g ∩ H+2


n


hn.

Using non-commutative Connes–Kreimer Hopf algebras, we prove that the formal series S(h) can be arbitrarily chosen
(Corollary 17). As a consequence, the formal series of free and cofree Hopf algebras are characterized by growth conditions
of the coefficients, expressed in Corollary 19. As the growth condition characterizing the formal series of non-commutative
Connes–Kreimer Hopf algebras is distinct (Theorem 21), this implies that there exists free and cofree Hopf algebras that are
neither K [X] nor Connes–Kreimer Hopf algebras.

Let H and H ′ be two graded, connected, free and connected Hopf algebras. Are they isomorphic as (non-graded) Hopf
algebras? In order to answer this question, we first refine their graduation into a bigraduation in the last section of this text.
We then prove that H and H ′ are isomorphic if and only if g

[g,g]
and g′

[g′,g′]
have the same dimension. As a corollary, FQSym,

PQSym,NCQSym, RΠ , SΠ ,HLR, YSym,HNCK and its decorated versionHD
NCK for any non-empty graded setD ,HDP ,Ho,Hho,

the free 2-As algebras, and HUBP are isomorphic.
Notations.

1. In the whole text, K is a commutative field of characteristic ≠2. Any algebra, coalgebra, Hopf algebra. . .of the text will be
taken over K .

2. If H is a Hopf algebra, we denote by H+ its augmentation ideal and by Prim(H) or by g if there is no ambiguity the
Lie algebra of its primitive elements. Moreover, H+ inherits a coassociative, noncounitary coproduct ∆̃ defined by
∆̃(x) = ∆(x) − x ⊗ 1 − 1 ⊗ x for all x ∈ H+. The square product H+2 of the ideal H+ by itself is called the space
of decomposable elements [17]; the quotients H+

H+2 and g

g∩H+2 are respectively called the space of indecomposable elements
and of indecomposable primitive elements.

1. Free and cofree Hopf algebras are self-dual

1.1. Hopf pairings

We first recall the following definition:
Definition 1. 1. Let H,H ′ be two graded, connected Hopf algebras. A homogeneous Hopf pairing is a bilinear form ⟨−, −⟩ :

H × H ′
−→ K such that:

(a) For all x ∈ H , x′
∈ H ′, ⟨x, 1⟩ = ε(x) and ⟨1, x′

⟩ = ε(x′).
(b) For all x, y ∈ H , y′, z ′

∈ H ′, ⟨xy, z ′
⟩ = ⟨x ⊗ y, ∆(z ′)⟩ and ⟨x, y′z ′

⟩ = ⟨∆(x), y′
⊗ z ′

⟩.
(c) If x, x′ are homogeneous of different degrees, then ⟨x, x′

⟩ = 0.
2. LetH be a graded, connected Hopf algebra.We shall say thatH is self-dual if it can be given a non-degenerate Hopf pairing

⟨−, −⟩ : H × H −→ K .
Note.As all theHopf pairings considered here are homogeneous,we shall simplywrite ‘‘Hopf pairings" for ‘‘homogeneous

Hopf pairings" in this text.
Let ⟨−, −⟩ be any pairing on H × H ′. It is a Hopf pairing if and only if the following map is a morphism of graded Hopf

algebras:
H −→ H ′∗

x −→ ⟨x, −⟩,

where H ′∗ is the graded dual of H ′. Moreover, if the pairing is non-degenerate, then this map is an isomorphism. Conversely,
any morphism of graded Hopf algebras φ : H −→ H ′∗ gives a Hopf pairing, defined by ⟨x, x′

⟩ = φ(x)(x′). As a consequence,
a graded, connected Hopf algebra H is self-dual in the sense of Definition 1 if and only if it is isomorphic to H∗ as a graded
Hopf algebra; moreover, symmetry of the pairing is equivalent to self-duality of the isomorphism.
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Lemma 2. Let H,H ′ be two graded, connected Hopf algebras, and let ⟨−, −⟩ be a Hopf pairing on H × H ′. Let us fix n ≥ 1. If
⟨−, −⟩|Hk×H ′

k
is non-degenerate for all k < n, then in H ′

n, ((H
+2)n)

⊥
= Prim(H ′)n.

Proof. Let z ∈ H ′
n. For any x ∈ Hk, y ∈ Hn−k, 1 ≤ k ≤ n − 1:

⟨xy, z⟩ = ⟨x ⊗ y, ∆(z)⟩
= ⟨x ⊗ y, 1 ⊗ z + z ⊗ 1 + ∆̃(z)⟩
= ε(x)⟨y, z⟩ + ε(y)⟨x, z⟩ + ⟨x ⊗ y, ∆̃(z)⟩
= ⟨x ⊗ y, ∆̃(z)⟩.

If z is primitive, then ∆̃(z) = 0, so ⟨xy, z⟩ = 0 and z ∈ ((H+2)n)
⊥. Conversely, if z ∈ ((H+2)n)

⊥, then ∆̃(z) ∈ ((H+
⊗H+)n)

⊥.
As the pairing is non-degenerate in degree < n:

((H+
⊗ H+)n)

⊥
=


n−1−
k=1

Hk ⊗ Hn−k

⊥

= (0),

so z is primitive. �

As a consequence, if H is a graded, connected, self-dual Hopf algebra, any non-degenerate Hopf pairing on H induces a
non-degenerate, homogeneous pairing on g

g∩H+2 , where g is the Lie algebra Prim(H). This pairing will be called the induced
pairing on g

g∩H+2 .

Lemma 3. Let H be a graded, connected, self-dual Hopf algebra, with a symmetric, non-degenerate Hopf pairing ⟨−, −⟩. Let us
fix n ∈ N. Let hn be a complement of (g ∩H+2)n in gn and let mn be a complement of (g ∩H+2)n in H+2. Then hn is non-isotropic,
that is to say the restriction ⟨−, −⟩|hn×hn is non-degenerate. There exists a complement wn of gn + H+2

n in Hn, such that, in Hn:

• w⊥
n = wn ⊕ hn ⊕ mn and the restriction of the pairing to (g ∩ H+2)n × wn is non-degenerate.

• h⊥
n = (g ∩ H+2)n ⊕ mn ⊕ wn and the restriction of the pairing to hn × hn is non-degenerate.

• m⊥
n = (g ∩ H+2)n ⊕ hn ⊕ wn and the restriction of the pairing to mn × mn is non-degenerate.

• ((g ∩ H+2)n)
⊥

= (g ∩ H+2)n ⊕ mn ⊕ hn and the restriction of the pairing to wn × (g ∩ H+2)n is non-degenerate.

Proof. By Lemma 2, gn ∩ g⊥
n = (g ∩ H+2)n and H+2

n ∩ (H+2
n )⊥ = (g ∩ H+2)n. Hence, hn andmn are non-isotropic subspaces

of Hn. Moreover:

((g ∩ H+2)n)
⊥

= g⊥

n + ((H+2)n)
⊥

= H+2
n + gn = (g ∩ H+2)n ⊕ mn ⊕ hn.

Let us choose any complement wn of gn + H+2
n in Hn. As the pairing is non-degenerate:

dim(gn) = dim(Hn) − dim(g⊥

n )

dim(gn) = dim(Hn) − dim(H+2)n

dim((g ∩ H+2)n) + dim(hn) = dim(Hn) − dim((g ∩ H+2)n) − dim(mn)

dim((g ∩ H+2)n) + dim(hn) = dim(hn) + dim(wn),

so dim(wn) = dim((g ∩ H+2)n). Moreover, (g ∩ H+2)⊥n = gn ⊕ (H+2)n by Lemma 2, so wn ∩ ((g ∩ H+2)n)
⊥

= (0) by choice
of wn. Hence, the restriction of the pairing to (g ∩ H+2)n × wn is non-degenerate. We finally obtain a decomposition:

Hn = (g ∩ H+2)n ⊕ mn ⊕ hn ⊕ wn.

Let us choose an adapted basis of Hn: (xi)i∈I ∪ (yj)j∈J ∪ (zk)k∈K ∪ (ti)i∈I (we can choose the same set of indices for the bases
of (g ∩ H+2)n and wn, as they have the same dimension). In this basis, the matrix of the pairing has the following form: 0 0 0 C

0 A 0 D
0 0 B E
CT DT ET F

 ,

where A, B are symmetric, invertiblematrices, and C is an invertiblematrix. Changing the basis ofwn so that (xi)i∈I and (ti)i∈I
are dual, we can assume that C is an identity matrix. Let Aj be the j-th column of A, Bk the k-th column of B, and so on. As A
and B are invertible, there exists scalars λ

(i)
j and µ

(i)
k such that:

Di =

−
j∈J

λ
(i)
j Aj, Ei =

−
k∈K

µ
(i)
k Bk.

We then put:

t ′i = ti −
−
j∈J

λ
(i)
j yj −

−
k∈K

µ
(i)
k zk −

−
i′∈I

fi,i′
2

xi′ .
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An easy computation proves that t ′i is orthogonal to yj, zk, and t ′i′ for all j, k, i
′. Taking the vector space w′

n generated by the
t ′i , we obtain a complement of gn +H+2

n such that in an adapted basis of Hn = (g ∩H+2)n ⊕mn ⊕ hn ⊕ w′
n, the matrix of the

pairing has the following form: 0 0 0 C
0 A 0 0
0 0 B 0
CT 0 0 0

 ,

where A and B are symmetric, invertible matrices and C is an invertible matrix. The assertions on the orthogonals are then
immediate. �

Remark. As a consequence, choosing bases of (g∩H+2)n andwn in duality, the matrix of the pairing has the following form:0 0 0 I
0 A 0 0
0 0 B 0
I 0 0 0

 ,

where A and B are symmetric, invertible matrices and I is an identity matrix.

1.2. Self-duality of a free and cofree Hopf algebra

Lemma 4. Let H be a graded, connected, free and cofree Hopf algebra. Then, for all n ≥ 1:

dim(gn) = dim


H+

H+2


n


.

Proof. AsH is free, there exists a graded subspace V ⊆ H , such thatH ≈ T (V ) as an algebra.We shall consider the following
formal series:

R(h) =

∞−
k=0

dim(Hk)hk, P(h) =

∞−
k=0

dim(gk)hk, G(h) =

∞−
k=0

dim(Vk)hk.

As H ≈ T (V ) as an algebra, H+
= V ⊕ H+2, so for all n ≥ 1, dim(Vn) = dim


H+

H+2


n


. Moreover R(h) =

1
1−G(h) or

equivalently G(h) = 1 −
1

R(h) .
As H is cofree, it is isomorphic as a coalgebra to coT (g), the tensor coalgebra cogenerated by g (that is to say T (g) as a

vector space, with the deconcatenation product). So R(h) =
1

1−P(h) or equivalently P(h) = 1 −
1

R(h) = G(h). Hence, for all
n ≥ 1, dim(gn) = dim(Vn). �

Theorem 5. Let H be a graded, connected, free and cofree Hopf algebra. Let us choose a non-degenerate, homogeneous pairing on
g

g∩H+2 . There exists a non-degenerate Hopf pairing ⟨−, −⟩ on H, inducing the chosen pairing on g

g∩H+2 . Moreover, if the pairing
on g

g∩H+2 is symmetric, then we can assume that the pairing on H is symmetric.

Proof. For all n ≥ 1, let us choose a complement mn of (H+2
∩ g)n in (H+2)n, a complement hn of (H+2

∩ g)n in gn, and a
complement wn of (H+2

+ g)n in Hn. Hence:

Hn = (H+2
∩ g)n ⊕ mn ⊕ hn ⊕ wn.

Note that hn is isomorphic, as a vector space, with


g

g∩H+2


n
. Hence, there is a pairing ⟨−, −⟩ on hn, making the restriction

to hn of the canonical projection onto


g

g∩H+2


n
an isometry.

We put Vn = hn ⊕wn; for all n ≥ 1, Vn is a complement of (H+2)n in Hn. We denote by H⟨n⟩ the subalgebra of H generated
by H0 ⊕ · · · ⊕ Hn. Then H⟨n⟩ is freely generated by V1 ⊕ · · · ⊕ Vn. Moreover, for all k ≤ n:

∆(Hk) ⊆

k−
i=0

Hi ⊗ Hk−i ⊆ H⟨n⟩ ⊗ H⟨n⟩,

so H⟨n⟩ is a Hopf subalgebra of H .
We construct by induction on n a homogeneous injective Hopf algebra morphism φ(n) from H⟨n⟩ to H∗ such that:

1. for all x, y ∈ hn, φ(n)(x)(y) = ⟨x, y⟩.
2. φ

(n)
|H⟨n−1⟩

= φ(n−1).
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We first define φ(0) by φ(0)(1) = ε = 1H∗ . Let us assume that φ(n−1) is constructed.

• for v ∈ Vi, i ≤ n − 1, φ(n)(v) = φ(n−1)(v). This is an element of H∗

i , by homogeneity of φ(n−1).
• for v ∈ hn, φ(n)(v) ∈ H∗

n is defined by:

φ(n)(v)(x) =

⟨v, x⟩ if x ∈ hn,

0 if x ∈ H+2,
0 if x ∈ wn,

where ⟨−, −⟩ is the pairing on hn defined earlier.
• for v ∈ wn, we define φ(n)(v) ∈ H∗

n by

φ(n)(v)(x) =

0 if x ∈ hn,
0 if w ∈ wn,
(φ(n−1))⊗k

◦ ∆̃(k−1)(v)

(v1 ⊗ . . . ⊗ vk) if x = v1 . . . vk,

where v1, . . . , vk are homogeneous elements of V1 ⊕ . . . ⊕ Vn−1, k ≥ 2. As H+2
n = (H⟨n−1⟩)n = T (V1 ⊕ . . . ⊕ Vn−1)n, this

perfectly defines φ(v).

AsH⟨n⟩ is freely generated by V1 ⊕· · ·⊕Vn, we extend φ(n) to an algebramorphism fromH⟨n⟩ toH∗. As φ(n) sends an element
of Vi to an element of H∗

i for all i ≤ n, φ(n) is homogeneous. It clearly satisfies the two points of the induction hypothesis.
It remains to prove that it is an injective Hopf algebra morphism. Let us first prove that φ(n) is a Hopf algebra morphism. It
is enough to prove that for v ∈ V1 ⊕ . . . ⊕ Vn,


φ(n)

⊗ φ(n)

◦ ∆(v) = ∆ ◦ φ(n)(v). Using the induction hypothesis, we can

restrict ourselves to v ∈ Vn = hn ⊕wn, and finally to v ∈ hn or v ∈ wn. If v ∈ hn, then, by definition, φ(n)(v) is orthogonal to
H+2, so φ(n)(v) is primitive by Lemma 2, with H ′

= H∗. As v is also primitive, the required assertion is proved in this case.
If v ∈ wn, let x = v1 . . . vk and y = vk+1 . . . vk+l, where v1, . . . , vk+l are homogeneous elements of V1 ⊕ . . . ⊕ Vn−1. Then:

∆̃ ◦ φ(n)(v)

(x ⊗ y) = φ(n)(v)(xy)

=

(φ(n−1))⊗k+l

◦ ∆̃(k+l−1)(v)

(v1 ⊗ . . . ⊗ vk+l)

=

(φ(n−1))⊗k+l

◦

∆̃(k−1)

⊗ ∆̃(l−1)
◦ ∆̃(v)


(v1 ⊗ . . . ⊗ vk+l)

=


∆̃(k−1)
◦ φ(n−1)

⊗

∆̃(l−1)

◦ φ(n−1)
◦ ∆̃(v)


(v1 ⊗ . . . ⊗ vk+l)

=


φ(n−1)
⊗ φ(n−1)

◦ ∆̃(v)

(x ⊗ y)

=


φ(n)
⊗ φ(n)

◦ ∆̃(v)

(x ⊗ y).

We used the induction hypothesis for the fourth equality. This proves the required assertion, so φ(n) is a Hopf algebra
morphism.

Let us now prove the injectivity of φ(n). Let x ∈ Vn, such that φ(n)(x) ∈ H∗+2. Let us prove that x = 0. By homogeneity,
φ(n)(x) ∈


H∗+2

n. As φ(n−1) is injective, comparing the dimension of the homogeneous component of degree i of H⟨n−1⟩ and
H∗ for all i ≤ n − 1, we deduce that H∗

i ⊆ Im(φ(n−1)) if i ≤ n − 1. So

H∗+2

n ⊆ Im(φ(n−1)). Hence, there exists y ∈ H⟨n−1⟩,
homogeneous of degree n − 1, such that φ(n)(x) = φ(n−1)(y). So y ∈ (H⟨n⟩)

+2 and x − y ∈ Ker(φ(n)). By the induction
hypothesis, φ(n) restricted to the homogeneous components of degree ≤ n − 1 is injective, so if x − y ≠ 0, it is a non-zero
element of Ker(φ(n)) of minimal degree: as φ(n) is a Hopf algebra morphism, x − y is primitive. So x − y ∈ hn ⊕ (g ∩ H+2)n.
Moreover, y ∈ (H+2)n, so x ∈ (hn ⊕ (g ∩ H+2)n ⊕ mn) ∩ (hn ⊕ wn) = hn. As the pairing on hn × hn is non-degenerate, if
x ≠ 0, there exists z ∈ hn, such that φ(n)(x)(z) = ⟨x, z⟩ ≠ 0, so φ(n)(x) /∈ g⊥

= H∗+2: contradiction. So x = 0.
This proves that φ(n)(Vn) ∩ H∗+2

= (0) and φ
(n)
|Vn is injective. As φ(n−1) is an injective Hopf algebra morphism, we deduce

that φ(n)(Vk) ∩ H∗+2
= (0) and φ

(n)
|Vk

is injective for all k ≤ n. As H is cofree, H∗ is free, so φ(n)(V1 ⊕ . . . ⊕ Vn) generates a

free subalgebra of H∗. As φ
(n)
|V1⊕...⊕Vn is injective and H⟨n⟩ is freely generated by V1 ⊕ . . . ⊕ Vn, φ(n) is injective.

Conclusion. Let x ∈ H .We putφ(x) = φ(n)(x) for any n ≥ deg(x). By the second point of the induction, this iswell-defined.
As φ(n) is an injective and homogeneous Hopf algebra morphism for all n, φ also is. Comparing the formal series ofH andH∗,
φ is an isomorphism. So it defines a non-degenerate, homogeneous Hopf pairing on H . By the first point of the induction, it
implies the chosen pairing on g

g∩H+2 .
Let us finally prove the symmetry of this pairing if the pairing on g

g∩H+2 is symmetric. Let x, y ∈ Hn, let us prove that
⟨x, y⟩ = ⟨y, x⟩ by induction on n. As H0 = K , it is obvious if n = 0. If n ≥ 1, then ⟨x, y⟩ = φ(n)(x)(y). It is then enough to
prove this for x, y ∈ hn, or wn, or (H+2)n.

First case. If x ∈ (H+2)n, let us put x = x1x2, where x1, x2 are homogeneous, of degree < n. Then, by the induction
hypothesis:

⟨x, y⟩ = ⟨x1 ⊗ x2, ∆(y)⟩ = ⟨x1 ⊗ x2, ∆̃(y)⟩ = ⟨∆̃(y), x1 ⊗ x2⟩ = ⟨y, x⟩.
The proof is similar if y ∈ (H+2)n.
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Second subcase. If x ∈ wn and y ∈ hn or wn, then by definition of φ(n), ⟨x, y⟩ = ⟨y, x⟩ = 0. The proof is similar if y ∈ wn
and x ∈ hn or wn.

Last subcase. If x, y ∈ hn, then ⟨x, y⟩ = ⟨y, x⟩ as the pairing on g

g∩H+2 is symmetric. �

Remark. It is possible to extend a symmetric pairing on g

g∩H+2 to a non-symmetric, non-degenerate Hopf pairing on H: it is
enough to arbitrarily change the values of φ(n)(v)(x) for v ∈ hn and x ∈ wn, or v ∈ wn and x ∈ hn.

Corollary 6. Let H be a graded, connected Hopf algebra, free and cofree. Then it is self-dual.

Proof. It is enough to choose a non-degenerate, homogeneous pairing on g

g∩H+2 and then to apply Theorem 5. �

1.3. Isomorphisms of free and cofree Hopf algebras

Proposition 7. Let H and H ′ be two free and cofree Hopf algebras, both with a symmetric, non-degenerate Hopf pairing, such
that


g

g∩H+2


n
and


g′

g′∩H ′+2


n
, endowed with the pairings induced from the Hopf pairings, are isometric for all n ≥ 1. Then there

exists a Hopf algebra isomorphism from H to H ′ which is an isometry.

Proof. We inductively construct a homogeneous isomorphism φ(n)
: H⟨n⟩ −→ H ′

⟨n⟩, such that:

1. φ
(n)
|H⟨n−1⟩

= φ(n−1) if n ≥ 1.
2. ⟨φ(n)(x), φ(n)(y)⟩ = ⟨x, y⟩ for all x, y ∈ H⟨n⟩.

We define φ(0)
: H⟨0⟩ = K −→ H ′

⟨0⟩ by φ(0)(1) = 1. Let us assume that φ(n−1) is constructed. We choose a decomposition
Hn = (g∩H+2)n⊕mn⊕hn⊕wn as in Lemma3. Asφ(n−1) is a Hopf algebra isomorphism,φ(n−1)((H⟨n−1⟩)n) = φ(n−1)(H+2)n =

(H ′

⟨n−1⟩)n = H ′+2
n . As a consequence, φ(mn) = m′

n is a complement of (g′
∩H ′+2

)n in H ′+2
n . Moreover, as the isometry φ(n−1)

sends (H⟨n−1⟩)n = H+2
n to (H ′

⟨n−1⟩)n = H ′+2
n , it induces an isometry from (g ∩ H+2)n to (g′

∩ H ′+2
)n and frommn to m′

n.
Let us choose a complement hn of (g ∩ H+2)n in gn and a complement h′

n of (g′
∩ H ′+2

)n in g′
n. As hn is isometric with

g

g∩H+2


n
and h′

n with


g′

g′∩H ′+2


n
, there exists an isometry φ : hn −→ h′

n.

Using Lemma 3, there exists a basis (xi)i∈I ∪ (yj)j∈J ∪ (zk)k∈K ∪ (ti)i∈I adapted to the decomposition Hn = (g ∩ H+2)n ⊕

mn ⊕ hn ⊕ wn, and a basis (φ(n−1)(xi))i∈I ∪ (φ(n−1)(yj))j∈J ∪ (φ(zk))k∈K ∪ (t ′i )i∈I , such that the matrices of the pairing of Hn
and H ′

n in these bases are both equal to:0 0 0 I
0 A 0 0
0 0 B 0
I 0 0 0

 .

We then define φ(n) on H0 ⊕ . . . ⊕ Hn by putting φ(n)(x) = x if x ∈ H⟨n−1⟩, φ(n)(x) = φ(x) if x ∈ hn and φ(n)(ti) = t ′i for all
i ∈ I . As H⟨n⟩ is freely generated by h1 ⊕w1 ⊕ . . .⊕ hn ⊕wn, φ(n) is extended to an algebra morphism from H⟨n⟩ to H ′

⟨n⟩. As its
image contains h′

1 ⊕ w′

1 ⊕ . . . ⊕ h′
n ⊕ w′

n, which freely generates H ′

⟨n⟩, it is surjective. As φ(n) induces a linear isomorphism
from h1 ⊕ w1 ⊕ . . . ⊕ hn ⊕ wn to h′

1 ⊕ w′

1 ⊕ . . . ⊕ h′
n ⊕ w′

n, φ
(n) is an isomorphism. By construction (for i = n) and by the

induction hypothesis (for i < n), φ(n)
|Hi

is an isometry from Hi to H ′

i for all i ≤ n.
Let us prove that φ(n) is a Hopf algebra isomorphism. It is enough to prove that ∆ ◦ φ(n)(x) = (φ(n)

⊗ φ(n)) ◦ ∆(x) for
x ∈ h1 ⊕ w1 ⊕ . . . ⊕ hn ⊕ wn. If x ∈ h1 ⊕ w1 ⊕ . . . ⊕ hn−1 ⊕ wn−1, this comes from the induction hypothesis. If x ∈ hn, then
both x and φ(n)(x) ∈ h′

n are primitive, so the result is obvious. Let us assume that x ∈ wn. Let us take y′
∈ H ′

k, z
′
∈ H ′

l , with
k + l = n. As φ(n)(Hi) = H ′

i if i ≤ n, we put y′
= φ(n)(y) and z ′

= φ(n)(z):

⟨(φ(n)
⊗ φ(n)) ◦ ∆(x), y′

⊗ z ′
⟩ = ⟨(φ(n)

⊗ φ(n)) ◦ ∆(x), φ(n)(y) ⊗ φ(n)(z)⟩
= ⟨∆(x), y ⊗ z⟩
= ⟨x, yz⟩
= ⟨φ(n)(x), φ(n)(yz)⟩
= ⟨φ(n)(x), φ(n)(y)φ(n)(z)⟩
= ⟨∆ ◦ φ(n)(x), φ(n)(y) ⊗ φ(n)(z)⟩
= ⟨∆ ◦ φ(n)(x), y′

⊗ z ′
⟩.

By homogeneity, we deduce that (φ(n)
⊗φ(n))◦∆(x)−∆◦φ(n)(x) ∈ (H ′

⊗H ′)⊥ = (0), as the pairing ofH ′ is non-degenerate.
It remains to show that φ(n) is an isometry: let us prove that ⟨x, y⟩ = ⟨φ(n)(x), φ(n)(y)⟩, for x, y ∈ H⟨n⟩. We can assume

that x is homogeneous of degree k. If k ≤ n, by homogeneity of φ(n) and the pairing, this is true as φ
(n)
|Hn

is an isometry from
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Hn to H ′
n. If k > n, as H⟨n⟩ us generated by elements of degree ≤ n, we can assume that x = x1 . . . xk, with xi homogeneous

of degree ≤ n for all i. Then:

⟨φ(n)(x), φ(n)(y)⟩ = ⟨φ(n)(x1) . . . φ(n)(xk), φ(n)(y)⟩
= ⟨φ(n)(x1) ⊗ . . . ⊗ φ(n)(xk), ∆(k−1)

◦ φ(n)(y)⟩
= ⟨φ(n)(x1) ⊗ . . . ⊗ φ(n)(xk), (φ(n)

⊗ . . . ⊗ φ(n)) ◦ ∆(k−1)(y)⟩
= ⟨x1 ⊗ . . . ⊗ xk, ∆(k−1)(y)⟩
= ⟨x1 . . . xk, y⟩
= ⟨x, y⟩.

Conclusion. We define φ : H −→ H ′ by φ(x) = φ(n)(x) for all x ∈ H⟨n⟩. By the first point of the induction, this does not
depend of the choice of n. Moreover, φ is clearly an isomorphism of Hopf algebras and an isometry. �

Remark. Note that the pairings used in Proposition 7 are any Hopf pairings, not necessarily the Hopf pairings obtained by
extension of a non-degenerate bilinear form on g

g∩H+2 in Theorem 5.

Theorem 8. Let H and H ′ be two connected, graded Hopf algebras, both free and cofree. The following conditions are equivalent:
1. H and H ′ are isomorphic graded Hopf algebras.
2. g

g∩H+2 and g′

g′∩H ′+2 are isomorphic graded spaces.
3. H and H ′ have the same Poincaré–Hilbert formal series.
Proof. Clearly, 1 =⇒ 2, 3.

2 =⇒ 1. We choose non-degenerate, symmetric, isometric pairings on


g

g∩H+2


n
and


g′

g′∩H ′+2


n
for all n ≥ 1. By

Theorem 5, there exists symmetric, non-degenerate Hopf pairings on H and H ′, and inducing the chosen pairings on g

g∩H+2

and g′

g′∩H ′+2 . By Proposition 7, H and H ′ are isomorphic.

3 =⇒ 2. We proceed by contraposition: let us assume that g

g∩H+2 and g′

g′∩H ′+2 are not isomorphic graded spaces. There

exists an integer n, such that


g

g∩H+2


i
and


g′

g′∩H ′+2


i
are isomorphic spaces if i < n and


g

g∩H+2


n
and


g′

g′∩H ′+2


n
are not

isomorphic spaces. We choose non-degenerate isometric pairings on


g

g∩H+2


i
and


g′

g′∩H ′+2


i
for all i < n. From the proof

of Theorem 5, we can extend them to pairings on H⟨n−1⟩ and H ′

⟨n−1⟩. From the proof of Proposition 7, H⟨n−1⟩ and H ′

⟨n−1⟩ are
isomorphic Hopf algebras. As a consequence:

dim(H+2
n ) = dim((H⟨n−1⟩)n) = dim((H⟨n−1⟩)n) = dim(H ′+2

n ),

dim(g ∩ H+2
n ) = dim((g ∩ H⟨n−1⟩)n) = dim((g′

∩ H⟨n−1⟩)n) = dim(g′
∩ H ′+2

n ).

Using a decomposition of Lemma 3 for H , we deduce:

dim(Hn) = dim(H+2
n ) + dim(hn) + dim(wn)

= dim(H+2
n ) + dim


g

g ∩ H+2


n


+ dim((g ∩ H+2)n).

Using a decomposition of Lemma 3 for H ′ and combining the different equalities, we obtain:

dim(Hn) − dim(H ′

n) = dim


g
g ∩ H+2


n


− dim


g ′

g′ ∩ H ′+2


n


.

So this is not zero: H and H ′ do not have the same formal series. �

Remark. This result immediately implies that FQSym and Hho are isomorphic, proving again a result of [10]. Similarly,
PQSym and Ho are isomorphic, as proved in [9]; RΠ and SΠ are isomorphic, as proved in [1].

2. Formal series of a free and cofree Hopf algebra in characteristic zero

In all this section, we assume that the characteristic of the base field is 0.

2.1. General preliminary results

We first put here together several technical results.
Notations. Let A be a graded connected Hopf algebra.

• IA is the ideal of A generated by the commutators of A. The quotient Aab = A/IA is a graded, connected, commutative Hopf
algebra.

• CA is the greatest cocommutative subcoalgebra of A. It is a graded, connected, cocommutative Hopf subalgebra of A.
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• Prim(A) is the Lie algebra of the primitive elements of A.
• coPrim(A) is the Lie coalgebra of A, that is to say A+

A+2 . The Lie cobracket is given by δ(x) = (π ⊗π)◦(∆̃−∆̃op)(x), whereπ

is the canonical projection from A+ to coPrim(A). Note that coPrim(A) is the space of indecomposable elements, denoted
by Q (A) in [17].

Let Prim(A)ab =
Prim(A)

[Prim(A),Prim(A)]
. As the Lie algebra of Prim(Aab) is abelian, there exists a natural map:

πA :


Prim(A)ab −→ Prim(Aab)

x + [Prim(A), Prim(A)] −→ x + IA.

The kernel of πA is IA∩Prim(A)

[Prim(A),Prim(A)]
.

Let coPrim(A)ab = {x ∈ coPrim(A) | δ(x) = 0}. As CA is cocommutative, the Lie coalgebra of CA is trivial; hence, there is a
natural map:

ιA :


coPrim(CA) −→ coPrim(A)ab

x + C+2
A −→ x + A+2.

This map is well-defined, as C+2
A ⊆ A+2. Its kernel is CA∩A+2

C+2
A

.

Let A∗ be the graded dual of A. Using the duality between A and A∗, it is easy to prove:

• I⊥A = CA∗ so Aab = CA∗ and C∗

A = (A∗)ab.
• Prim(A)⊥ = (1) + A∗+2, so Prim(A)∗ = coPrim(A∗). As a consequence of these two points, coPrim(CA)

∗
= Prim(C∗

A ) =

Prim((A∗)ab).
• [Prim(A), Prim(A)]⊥ = coPrim(A∗)ab, so (coPrim(A)ab)

∗
= Prim(A∗)ab.

Via these identifications, π∗

A = ιA∗ and ι∗A = πA∗ . So:

Lemma 9. 1. Let us fix an integer n. The following assertions are equivalent:
(a) πA is injective in degree n.
(b) ιA∗ is surjective in degree n.
(c) [Prim(A), Prim(A)]n = (Prim(A) ∩ IA)n.

2. Let us fix an integer n. The following assertions are equivalent:
(a) ιA is injective in degree n.
(b) πA∗ is surjective in degree n.
(c) (CA ∩ A+2)n = (C+2

A )n.

Lemma 10. (char(K) = 0). If A is cocommutative or commutative, then πA and ιA are isomorphisms.

Proof. Let us assume that A is cocommutative. As the characteristic of the base field is zero, by the Cartier–Quillen–Milnor–
Moore theorem, A is the enveloping algebra of Prim(A). Using the universal property of enveloping algebras, it is not difficult
to prove that Aab = U(Prim(A)ab) = S(Prim(A)ab)). As Prim(U(Prim(Aab))) = Prim(Aab), πA is clearly bijective. As A is
cocommutative, CA = A and coPrim(A)ab = coPrim(A). So ιA is the identity of coPrim(A).

Let us now assume that A is commutative. Then A∗ is cocommutative, so ιA∗ and πA∗ are bijective. Hence, their transposes
πA and ιA are bijective. �

Proposition 11. (char(K) = 0). Let A be any graded, connected Hopf algebra. Then Prim(A) ∩ A+2
= Prim(A) ∩ IA and

CA = U(Prim(A)). Moreover, the following assertions are equivalent:

1. πA is injective in degree n.
2. ιA∗ is surjective in degree n.
3. ιA is injective in degree n.
4. πA∗ is surjective in degree n.
5. (Prim(A) ∩ A+2)n = [Prim(A), Prim(A)]n.
6. (CA ∩ A+2)n = (C+2

A )n.

Proof. As IA∩A+2, Prim(A)∩ IA ⊆ Prim(A)∩A+2. Let x ∈ Prim(A)∩A+2. Then x+ IA ∈ Prim(Aab)∩A+2
ab . As Aab is commutative,

ιAab is a bijection, so CAab ∩ A+2
ab = C+2

Aab
. As x + IA is primitive, it belongs to CAab , so x + IA ∈ C+2

Aab
∩ Prim(Aab). By the Cartier–

Quillen–Milnor–Moore theorem, CAab is a symmetric Hopf algebra, so C+2
Aab

∩ Prim(Aab) = (0). So x ∈ Prim(A) ∩ IA.
As K +Prim(A) is a cocommutative subcoalgebra of A, it is included in CA. So Prim(CA) = Prim(A). By the Cartier–Quillen–

Milnor–Moore theorem, CA = U(Prim(A)).
By Lemma 9, 1, 2 and 5 are equivalent, and 3, 4 and 6 are equivalent. As CA = U(Prim(A)), C+

A = Prim(A) + C+2
A , so

coPrim(CA) =
Prim(A)

Prim(A)∩C+2
A

. As a consequence, the kernel of ιA is Prim(A)∩A+2

Prim(A)∩C+2
A

. Moreover, as CA is cocommutative, πA is bijective,

so Prim(A)∩C+2
A = Prim(A)∩ICA = [Prim(A), Prim(A)]. Finally, the kernel of ιA is Prim(A)∩A+2

[Prim(A),Prim(A)]
. So 3 and 5 are equivalent. �
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Remark. If the characteristic of the base field is a prime integer p, itmay be false that CA = U(Prim(A)). Theweaker assertion
telling that CA is generated by Prim(A), so is a quotient of U(Prim(A)), may also be false. For example, let us consider the
Hopf algebra of divided powers A, that is to say the graded dual of K [X]. This Hopf algebra as a basis (x(n))n≥0, the product
and coproduct are given by:

x(i)x(j)
=


i + j
i


x(i+j), ∆(x(n)) =

−
i+j=n

x(i)
⊗ x(j).

As A is cocommutative, CA = A. It is not difficult to see that Prim(A) = Vect

x(1)

, and the subalgebra generated by Prim(A)

is Vect(x(i), 0 ≤ i < p), so is not equal to CA.

2.2. Primitive elements of a free and cofree Hopf algebra

Proposition 12. (char(K) = 0). Let H be a graded, connected, free and cofree Hopf algebra. Then ιH and πH are isomorphisms.
Proof. Let us prove by induction on n that (CH ∩ H+2)n = (C+2

H )n. There is nothing to prove for n = 0. Let us assume the
result at all rank k < n.

AsH is free, let us choose a graded subspace V ofH , such thatH = T (V ) as an algebra. ThenH+
= V ⊕H+2, so coPrim(H)

is identified with V . For all k ∈ N, we denote by πk the projection on V k in H = T (V ). Then the Lie cobracket of V is given
by δ(v) = (π1 ⊗ π1) ◦ (∆ − ∆op)(v).

For any word w = v1 . . . vk in homogeneous elements of V , we put d(w) = (deg(v1), . . . , deg(vk)). We obtain in this
way a gradation of H , indexed by words in nonnegative integers. These words are totally ordered in the following way: if
w = (a1, . . . , am) and w′

= (a′

1, . . . , a
′
n) are two different words, then w < w′ if and only if, (m < n), or (m = n and there

exists an index i, such that a1 = a′

1, . . . , ai = a′

i , ai+1 < a′

i+1).
Let x ∈ (CH ∩ H+2)n. We can write:

x =

n−
k=2

−
(a1,...,ak)∈Nk

a1+...+ak=n

xa1,...,ak

  
xk

,

where xa1,...,ak is a linear span of wordsw such that d(w) = (a1, . . . , ak). Let us put In the set of words (a1, . . . , ak) such that
a1 + . . . + ak = n. This set is finite and totally ordered. Its greatest element is (1, . . . , 1). Let us proceed by a decreasing
induction on the smallest w = (a1, . . . , an) ∈ In such that xw ≠ 0. If w = (1, . . . , 1), then x is in the subalgebra generated
by H1. As H is connected, H1 ⊆ CH , so x ∈ C+2

H . Let us assume the result for all w′ > w = (a1, . . . , ak) in In. We first prove
that xa1,...,ak ∈ V k

ab. We put:

xk =

−
i

v
(i)
1 . . . v

(i)
k .

By minimality of (a1, . . . , ak), we obtain:

(πk ⊗ π1) ◦ (∆ − ∆op)(x) =

−
i

k−
j=1

v
(i)
1 . . .


v

(i)
j

′

. . . v
(j)
k ⊗


v

(i)
j

′′

,

with the notation δ(v) = v′
⊗ v′′ for all v ∈ V . As x ∈ CH , ∆(x) = ∆op(x), so this is zero. As H is freely generated by V , we

deduce:−
i

k−
j=1

v
(i)
1 ⊗ . . . ⊗


v

(i)
j

′

⊗ . . . ⊗ v
(j)
k ⊗


v

(i)
j

′′

= 0.

Considering the terms of this sum of the form v1 ⊗ . . . ⊗ vk+1, with deg(v1) + deg(vk+1) minimal, we obtain that:−
(b1,...,bk)∈In

b1=a1

xb1,...,bn ∈ VabV k−1.

Considering the terms of the form v1 ⊗ . . . ⊗ vk+1, with deg(v1) = a1 and deg(v2) + deg(vk+1) minimal, we obtain that:−
(b1,...,bk)∈In
b1=a1, b2=a2

xb1,...,bn ∈ V 2
abV

k−2.

Iterating the process, we finally obtain that xa1,...,ak ∈ V k
ab.

We now put:

xa1,...,ak =

−
i

w
(i)
1 . . . w

(i)
k ,
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where the w
(i)
j belong to (Vab)ai . As k ≥ 2, a1, . . . , ak < n. By the induction hypothesis, ιH is bijective in degree ai for all i. So

there exists x(i)
j in Prim(H)aj , such that x(i)

j − w
(i)
j ∈ H+2. We consider the following element:

y = x −

−
i

x(i)
1 . . . x(i)

k  
in(C+2

H )n

.

As the x(i)
j are primitive, y ∈ (CH ∩ H+2)n. Moreover, ya1,...,ak = 0 by definition of the x(i)

j . If yb1,...,bl ≠ 0, then xb1,...,bl ≠ 0
or l > k. By definition of the order on the words, the smallest (b1, . . . , bl) such that yb1,...,bl ≠ 0 is strictly greater that
(a1, . . . , ak): as a consequence, y ∈ (C+2

H )n. So x ∈ (C+2
H )n.

Conclusion. So assertion 6 of Proposition 11 is satisfied for all n. Hence, for all n, ιH is injective in degree n and ιH∗ is
surjective in degree n. By Corollary 6, H∗ is isomorphic to H . So ιH is surjective in degree n. A similar proof holds for πH . �

Corollary 13. (char(K) = 0). Let H be a graded, connected, free and cofree Hopf algebra. Then [g, g] = g ∩ H+2. Let h be a
graded subspace of H such that g = [g, g] ⊕ h.

1. Then h freely generates the Lie algebra g. The subalgebra generated by h is a free Hopf subalgebra of H, isomorphic to U(g).
2. The graded Hopf algebra Hab is isomorphic to the shuffle algebra coT (h).

Proof. 1. By Proposition 11, as πH is injective by Proposition 12, [g, g] = g ∩ H+2. As g = [g, g] + h, h generates the Lie
algebra g. Moreover, h ∩H+2

⊆ h ∩ g ∩H+2
= h ∩ [g, g] = (0), so h generates a free algebra K⟨h⟩. As h ⊆ g, K⟨h⟩ is clearly a

cocommutative Hopf subalgebra of H . As h generates the Lie algebra g, by the Cartier–Quillen–Milnor–Moore theorem, K⟨h⟩

is isomorphic to U(g). So the algebra U(g) is freely generated by h, which implies that the Lie algebra g is freely generated
by h.

2. AsH is self-dual, the Hopf algebrasU(g)∗ = (CH)∗, (H∗)ab andHab are isomorphic. By the first point,U(g) is isomorphic
to T (h), so Hab is isomorphic to T (h∗)∗ ≈ coT (h). �

Remarks.

1. Corollary 13 is false in characteristic p. Indeed, gp = Vect(xp | x ∈ g) ⊆ g∩H+2. It is also false that g∩H+2
= [g, g]+ gp.

For example, let us consider a free and cofree Hopf algebra H over K , such that g

g∩H+2 is one-dimensional, concentrated
in degree 1. So H1 is one-dimensional, generated by an element x, which is primitive. It is not difficult to show that
Hi = Vect(xi) if i < p. As a consequence, g1 = Vect(x) and gi = (0) if 2 ≤ i ≤ p − 1. As H is cofree, there exists y ∈ Hp,
such that:

∆(y) = y ⊗ 1 +

p−1−
i=1

xi

i!
⊗

xp−i

(p − i)!
+ 1 ⊗ y.

It is then not difficult to show that (xp, y) is a basis of Hp. So [g, g]p+1 = (0) and (gp)p+1 = (0). But xy − yx is a non-zero
element of (g ∩ H+2)p+1.

2. If H is a non-commutative Connes–Kreimer Hopf algebra, then Prim(H) is a free brace algebra; conversely, any free brace
algebra is isomorphic to the Lie algebra of a non-commutative Connes–Kreimer Hopf algebra [5,7,21]. One then recovers
the result of [6], telling that in characteristic zero, a free brace algebra is a free Lie algebra.

2.3. Poincaré–Hilbert series of H

Let H be a graded, connected, free and cofree Hopf algebra. We put:

R(h) =

∞−
n=0

dim(Hn)hn, P(h) =

∞−
n=1

dim(gn)hn, S(h) =

∞−
n=1

dim


g

g ∩ H+2


n


hn.

The coefficients of R(h), P(h) and S(h) will be respectively denoted by rn, pn and sn.

Proposition 14. (char(K) = 0). The following relations between R(h), P(h) and S(h) are satisfied:

1. R(h) =
1

1−P(h) and P(h) = 1 −
1

R(h)
.

2. 1 − S(h) =
∏

∞

n=1(1 − hn)pn .

Proof. 1. This comes from the cofreeness of H , see Lemma 4.
2. We use the notations of Corollary 13. Then h and g

g∩H+2 have the same Poincaré–Hilbert series. As U(g) is

freely generated by h, the Poincaré–Hilbert series of U(g) is 1
1−S(h) . By the Poincaré–Birkhoff–Witt theorem, 1

1−S(h) =∏
∞

n=1
1

(1−hn)pn . �
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The first point of Proposition 14 allows to compute rn in function of p1, . . . , pn and pn in function of r1, . . . , rn; the second
point allows to compute sn in function of p1, . . . , pn and pn in function of s1, . . . , sn. For example:

r1 = p1 p1 = r1
r2 = p2 + p21 p2 = r2 − r21
r3 = p3 + p31 + 2p2p1 p3 = r3 + r31 − 2r2r1

p1 = s1 s1 = p1

p2 = s2 +
s21
2

−
s1
2

s2 = p2 −
p21
2

+
p1
2

p3 = s3 −
s1
3

+ s1s2 +
s31
3

s3 = p3 +
p1
3

− p1p2 −
p21
2

+
p31
6

r1 = s1 s1 = r1

r2 = s2 +
3s21
2

−
s1
2

s2 = r2 −
3r21
2

+
r1
2

r3 = s3 −
s1
3

+ 3s1s2 − s21 +
7s31
3

s3 = r3 +
r1
3

− 3r1r2 −
r21
2

+
13r31
6

Remark. These formulas are false if the characteristic of the base field is not zero. For example, let us take S(h) = h. The
formulas of Proposition 14 gives then that p1 = 1 and pn = 0 if n ≥ 2, so P(h) = h and finally R(h) =

1
1−h : as a consequence,

H = K [h] as a Hopf algebra. If the characteristic of the base field is a prime integer p, then Prim(H) = Vect(Xpk
| k ∈ N), so

P(h) ≠ h: contradiction.
Here are several applications of these formulas, for the Hopf algebras of the introduction:

s1 s2 s3 s4 s5 s6 s7 s8
HLR or YSym or HNCK 1 1 1 3 7 24 72 242

2-As(1) 1 1 2 8 31 141 642 3070
FQSym or Hho 1 1 2 10 55 377 2892 25 007
PΠ or NCQSym 1 2 6 39 305 2900 31 460 385 080
PQSym or Ho 1 2 9 80 901 12 564 206 476 3918 025

HUBP 1 2 9 86 1083 17 621 353 420 8553 300
HDP 1 2 12 165 3545 116 621 5 722 481 412 795 614

RΠ or SΠ 1 3 26 467 12 518 471 215 23 728 881 1545 184 651

We here denote by 2-As(1) the free 2-As algebra on one generator. The third row is sequence A122826 of [22], whereas the
fifth row is sequence A122720.

Note that, for all n ≥ 1, sn = Sn(r1, . . . , rn) for particular polynomials Sn(R1, . . . , Rn) ∈ Q[R1, . . . , Rn]. We define these
polynomials here:

Definition 15. We put in the algebra Q[R1, . . . , Rn, . . .][[h]]:
∞−
n=1

Pn(R1, . . . , Rn)hn
= 1 −

1

1 +

∞∑
n=1

Rnhn
,

∞−
n=1

Sn(R1, . . . , Rn)hn
= 1 −

∞∏
n=1

(1 − hn)Pn(S1,...,Sn)

= 1 −

∞∏
n=1

∞−
k=0

Pn(R1, . . . , Rn) . . . (Pn(R1, . . . , Rn) − k + 1)
k!

hnk.

Examples.

S1(R1) = R1

S2(R1, R2) = R2 −
3R2

1

2
+

R1

2

S3(R1, R2, R3) = R3 +
R1

3
− 3R1R2 −

R2
1

2
+

13R3
1

6
.

Remark. It is not difficult to show that if ri ∈ Z for all 1 ≤ i ≤ n, then Pn(r1, . . . , rn), Sn(r1, . . . , rn) ∈ Z.
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2.4. Free and cofree Hopf subalgebras

Proposition 16. (char(K) = 0). Let H be a graded, connected, free and cofree Hopf algebra, with a non-degenerate symmetric
Hopf pairing. Let g′ be a graded, non-isotropic subspace of g

g∩H+2 . There exists a free and cofree Hopf subalgebra H ′ of H, such that

g′ =
g′

g′∩H ′+2 .

Proof. Let us choose a graded complement h of g∩H+2 in g. The canonical projectionπ from g to g

g∩H+2 induces an isometry

π from h to g

g∩H+2 . Let h′ be π−1
|h (g′): h′ is a subspace of h, isometric with g′. As g′ is non-isotropic, h′ is non-isotropic. Let

us put h′′
= h′⊥

∩ h. Then h′ and h′′ are graded subspaces of h and h = h′
⊕ h′′. By Corollary 13, h freely generates g as a

Lie algebra. We then denote by g′ the sub-Lie algebra of g generated by h′ and by g′′ the Lie ideal of g generated by h′′. Then
g = g′

⊕ g′′ and:

g ∩ H+2
= [g, g] = [g′, g′

] ⊕ [g, g′′
] = (g′

∩ H+2) ⊕ (g′′
∩ H+2).

We now construct by induction on n subspacesm′
n ⊕ m′′

n = mn and w′
n ⊕ w′′

n = wn of Hn, as in Lemma 3, such that:

1. The subalgebra H ′

⟨n⟩ generated by h′

1 ⊕ . . . ⊕ h′
n ⊕ w′

1 ⊕ . . . ⊕ w′′
n is a Hopf subalgebra.

2. Let I⟨n⟩ be the ideal of H generated by h′′

1 ⊕ . . . ⊕ h′′
n ⊕ w′′

1 ⊕ . . . ⊕ w′′
n . Then H ′

⟨n⟩ ⊥ I⟨n⟩.

For n = 0, all these subspaces are 0. Let us assume they are constructed at all rank < n. Let us choose a complement m′
n

of (g ∩ H ′+2
⟨n−1⟩)n in (H ′+2

⟨n−1⟩)n. As H⟨n−1⟩ is freely generated by h1 ⊕ . . . ⊕ hn−1 ⊕ w1 ⊕ . . . ⊕ wn, (H⟨n−1⟩)n = H+2
n =

(H ′

⟨n−1⟩)n ⊕ (I⟨n−1⟩)n. By the induction hypothesis, these subspaces are orthogonal. We can then choose a complement m′′
n

of m′
n ⊕ (g ∩ H+2)n in H+2

n included in (I⟨n−1⟩)n. As m′
n ⊆ H ′

⟨n−1⟩, m
′
n ⊥ m′′

n . We put mn = m′
n ⊕ m′′

n . We finally choose a wn
as in Lemma 3.

As a summary, we obtain a decomposition:

Hn = (g′
∩ H ′

⟨n−1⟩
+2

)n ⊕ g′′

n  
(g∩H+2)n

⊕m′

n ⊕ m′′

n  
mn

⊕ h′

n ⊕ h′′

n  
hn

⊕wn,

(H⟨n−1⟩)n =


g′

∩ H ′

⟨n−1⟩
+2

n
⊕ m′

n.

In a basis adapted to the decomposition, by Lemma 3 the matrix of the pairing has the form:

0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I
0 0 A′ 0 0 0 0 0
0 0 0 A′′ 0 0 0 0
0 0 0 0 B′ 0 0 0
0 0 0 0 0 B′′ 0 0
I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0


.

We naturally decompose wn as a direct sum w′
n ⊕ w′′

n , in order to split the last column and last row of the matrix. All
the required subspaces are now defined. A basis of (H ′

⟨n⟩)n is given by the blocks 1, 3, 5, 7 of the basis. A basis of (I⟨n⟩)n is
given by the blocks 2, 4, 6, 8 of the basis. It is matricially clear that (H ′

⟨n⟩)n ⊥ (I⟨n⟩)n. As these subspaces are in direct sum,
(H ′

⟨n⟩)
⊥
n = (I⟨n⟩)n in Hn.

Let us take x ∈ w′
n. If y ∈ (I⟨n⟩)k, z ∈ Hl, with k+l = n, then as yz ∈ (I⟨n⟩)n, 0 = ⟨x, yz⟩ = ⟨∆(x)y⊗z⟩. So∆(x) ∈ (I⟨n⟩⊗H)⊥n .

Similarly, ∆(x) ∈ (H ⊗ I⟨n⟩)⊥n . As (I⟨n⟩)⊥i = (H ′

⟨n⟩)i by the preceding remark if i = n and the induction hypothesis if i < n, we
deduce that ∆(x) ∈ H ′

⟨n⟩ ⊗ H ′

⟨n⟩. As H
′

⟨n−1⟩ is a Hopf subalgebra, we deduce that H ′

⟨n⟩ is a Hopf subalgebra.
Let us prove that (H ′

⟨n⟩)i ⊥ (I⟨n⟩)i for all i. We already prove it for i ≤ n. If i > n + 1, let us take x ∈ (H ′

⟨n⟩)i and y ∈ (I⟨n⟩)i.
As i > n, we can assume that y = y1y2y3, with y1, y3 ∈ H , y2 ∈ (I⟨n⟩)k with k ≤ n. Using the homogeneity of the pairing and
the property of orthogonality at rank k:

⟨x, y⟩ = ⟨∆(2)(x)  
∈H⊗3

⟨n⟩

, y1 ⊗ y2 ⊗ y3⟩ = 0,

as y2 ⊥ H⟨n⟩. This ends the induction.
Conclusion.We the take H ′ the subalgebra generated by h′

⊕w′ and I the ideal generated by h′′
+w′′. By construction, H ′

is a free Hopf algebra. As H is freely generated by h′
⊕ w′

⊕ h′′
⊕ w′′, H ′

⊕ I = H . Moreover H ′
⊥ I , so H ′

= I⊥, comparing
their formal series. As a conclusion, H ′ is a non-isotropic subspace of H , so has a non-degenerate, symmetric Hopf pairing.
By construction of h′, g′

g′∩H ′+2 is g′. �
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2.5. Existence of free and cofree Hopf algebra with a given formal series

Corollary 17. (char(K) = 0). Let V be a graded space such that V0 = (0), with a symmetric, homogeneous non-degenerate
pairing. There exists a graded, connected, free and cofree Hopf algebra H, with a symmetric, non-degenerate Hopf pairing, such
that g

g∩H+2 is isometric with V . Moreover, H is unique, up to an isomorphism.

Proof (Existence). Let us choose a basis (vd)d∈D formed by homogeneous elements of V , where D is a graded set, such that
deg(d) = deg(vd) for all d ∈ D . Let us consider the Hopf algebra HD

PR of plane trees decorated by D decorated by D: from
[6], it is free and cofree. Moreover, the plane trees q d , d ∈ D , are linearly independent, primitive elements of HD

PR , and the
space generated by these elements intersects (HD

PR)
+2 on (0). So the elements ( q d )d∈D are linearly independent elements of

g

g∩(HD
PR)+2 . The subspace of g

g∩(HD
PR)+2 generated by the q d is identified with V . The pairing of V can be arbitrarily extended to

g

g∩(HD
PR)+2 in a non-degenerate symmetric, homogeneous pairing. This pairing induces a pairing on HD

PR by Theorem 5. From

Proposition 16, HD
PR contains a graded, connected, free and cofree Hopf subalgebra H ′, such that g′

g′∩H ′+2 = V as a graded
quadratic space.

Unicity. Comes directly from Proposition 7. �

Corollary 18. (char(K) = 0). Let (sn)n≥1 be any sequence of integers. There exists a graded, connected, free and cofree, Hopf

algebra H such that dim


g

g∩H+2


n


= sn for all n ≥ 1. Moreover, it is unique, up to an isomorphism.

Proof. Existence. Let V be a graded space such that dim(Vn) = sn for all n ≥ 1. Let us choose a non-degenerate, homogeneous
symmetric pairing on V . Then Corollary 17 proves the existence of H .

Unicity. Comes directly from Theorem 8, 2 =⇒ 1. �

So graded, connected, free and cofree Hopf algebras are entirely determined by sequences of dimensions:

Corollary 19. (char(K) = 0). Let (rn)n≥1 be any sequence of integers. There exists a graded, connected, free and cofree Hopf
algebra H such that dim(Hn) = rn for all n ≥ 1 if and only if, Sn(r1, . . . , rn) ≥ 0 for all n ≥ 1 (recall that Sn(R1, . . . , Rn) is
defined in Definition 15).

Proof. =⇒. As Sn(r1, . . . , rn) = dim


g

g∩H+2


n


for all n ≥ 1.

⇐=. Let us put sn = Sn(r1, . . . , rn). From Corollary 18, there exists a graded, connected, free and cofree Hopf algebra H
such that dim


g

g∩H+2


n


= sn for all n ≥ 1. From Proposition 14, dim(Hn) = rn for all n ≥ 1. �

Remark. It is not difficult to show that Sn(R1, . . . , Rn)−Rn ∈ Q[R1, . . . , Rn−1]. So the condition on the rn of Corollary 19 can
be seen as a growth condition on the coefficients rn.

2.6. Noncommutative Connes–Kreimer Hopf algebras

When is a free and cofree Hopf algebra a noncommutative Connes–Kreimer Hopf algebra?

Definition 20. The family of polynomials Dn(R1, . . . , Rn) ∈ Q[R1, . . . , Rn] is defined by:

∞−
n=1

Dn(R1, . . . , Rn)hn
=

∞−
n=1

(−1)n+1n


∞−
k=1

Rkhk

n

=

∞∑
k=1

Rkhk
− 1

∞∑
k=1

Rkhk

2 .

Examples.

D1(R1) = R1

D2(R1, R2) = R2 − 2R2
1

D3(R1, R2, R3) = R3 − 4R2R1 + 3R2
1.

Theorem 21. Let H be a graded, connected, free and cofree Hopf algebra.We put rn = dim(Hn) for all n ≥ 1. Then H is isomorphic
to a noncommutative Connes–Kreimer Hopf algebra if and only if, Dn(r1, . . . , rn) ≥ 0 for all n ≥ 1.

Proof. =⇒. We assume that H is isomorphic to the Hopf algebra of planar trees decorated by D , here denoted by HD
NCK . Let

D(h) be the formal series of D . Then, from [6], D(h) =
R(h)−1
R(h)2

, so Card(Dn) = Dn(r1, . . . , rn) ≥ 0 for all n ≥ 1.
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⇐=. Let D be a graded set, such that Card(Dn) = Dn(r1, . . . , rn) for all n ≥ 1 (it is clear that Dn(r1, . . . , rn) is an integer).
The formal series of D is D(h) =

R(h)−1
R(h)2

, so the formal series of HD
NCK is:

1 −
√
1 − 4D(h)
2D(h)

= R(h).

By Theorem 8, H and HD
NCK are isomorphic. �

Remarks.
1. LetH be a free and cofree Hopf algebra, such that s1 = s2 = 1, s3 = 0. By Corollary 18, this exists. As s2 ≠ 0,H is not equal

to K [X]. By Proposition 14, r1 = 1, r2 = 2, r3 = 4. So D3(r1, r2, r3) = −1 < 0: H is not isomorphic to a non-commutative
Connes–Kreimer Hopf algebra.

2. However, at the exception of K [X], all the Hopf algebras of the introduction are isomorphic to a non-commutative
Connes–Kreimer Hopf algebra. Here are examples of dn = Card(Dn) for these objects.

d1 d2 d3 d4 d5 d6 d7 d8
HLR or YSym or HNCK 1 0 0 0 0 0 0 0

2-As(1) 1 0 1 4 17 76 353 1688
FQSym or Hho 1 0 1 6 39 284 2305 20 682
PΠ or NCQSym 1 1 4 28 240 2384 26 832 337 168
PQSym or Ho 1 1 7 66 786 11 278 189 391 364 8711

HUBP 1 1 7 72 962 16 135 330 624 8117 752
HDP 1 1 10 148 3336 112 376 5591 196 406 621 996

RΠ or SΠ 1 2 23 432 11 929 456 054 23 186 987 1518 898 380
The third line is sequence A122827 of [22], whereas the fifth line is sequence A122705.

3. Isomorphisms of free and cofree Hopf algebras

3.1. Bigraduation of a free and cofree graded Hopf algebra

Let V be a vector space. A bigraduation of V is a N2-graduation of V . If V =


(i,j) Vi,j is a bigraded space, the first induced
graduation of V is

∑
j≥0 Vi,j


i≥0

and the second induced graduation of V is
∑

i≥0 Vi,j

j≥0.

There is an immediate notion of bigraded Hopf algebra. A bigraded Hopf algebra H is connected if H0,0 = K and H0,j =

Hi,0 = (0) for all i, j ≥ 1. If H is a connected, bigraded Hopf algebra, then both induced graduation of H are connected.
Lemma 22. (Char(K) = (0)). Let H be a graded, connected, free and cofree Hopf algebra. Consider any bigradation of g

[g,g]
such

that:
1. The first induced graduation on g

[g,g]
by this bigraduation is the graduation induced by the graduation of H.

2. For all i, j ≥ 0,


g

[g,g]


i,0

=


g

[g,g]


0,j

= (0).

Then there exists a connected bigraduation of H, inducing this bigraduation on g

[g,g]
.

Proof. We choose a non-degenerate, homogeneous Hopf pairing on H Let us fix a decomposition H = [g, g] ⊕ m ⊕ h ⊕ w
of Lemma 3. Then h is identified with g

[g,g]
via the canonical projection. We then define a bigraduation on h, making the

canonical projection bihomogeneous. It is clear that the first induced graduation on h induced by this bigraduation is the
graduation of h. As g is freely generated by h, the bigraduation of h is extended to a graduation of the Lie algebra g = [g, g]⊕h.
As hi,0 = h0,j = 0 for all i, j, gi,0 = g0,j = (0) for all i, j.

We define Hm,n by induction onm such that:
1. gn is a bigraded subspace of Hn and this bigraduation is the same as the one defined just before.
2. For all i, j, k, l such that i + k = m, Hi,jHk,l ⊆ Hm,j+l.
3. For all x ∈ Hm,n:

∆(x) ∈

−
i+k=m,j+l=n

Hi,j ⊗ Hk,l.

For m = 0, it is enough to take H0,0 = K and H0,n = (0) if n ≥ 1. Let us assume the result at all ranks < m. As H is free, the
bigraduation ofH0⊕. . .⊕Hm−1 can be uniquely extended toH+2

m = [g, g]m⊕mm such that condition 2 is satisfied.Moreover,
this clearly extends the bigraduation of g and, for all x ∈ [g, g]m ⊕ mm ⊕ hm, the third point is satisfied, using the induction
hypothesis for y and z and the second point if x = yz ∈ H+2

m . It remains to define the bigraduation onwm, such that the third
point is satisfied for all x ∈ wm. Let us choose a basis (xi)i∈I of [g, g]m made of bihomogeneous elements. Let (ti)i∈I be the
dual basis (for the pairing of H) of wn. We give a bigraduation on wn, putting ti bihomogeneous of the same bidegree as xi
for all i. Then, for all i ∈ I , if y and z are such that yz is bihomogeneous of a different bidegree, ⟨∆(x), y ⊗ z⟩ = ⟨x, yz⟩ = 0.
So ∆(x) is bihomogeneous of the same bidegree as x: the third point is satisfied. �
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3.2. Isomorphisms of free and cofree Hopf algebras

Proposition 23. (Char(K) = 0). Let H and H ′ be two graded, connected, free and cofree Hopf algebra. They are isomorphic as
(non-graded) Hopf algebras if and only if, dim


g

[g,g]


= dim


g′

[g′,g′]


.

Proof. =⇒. Immediate. ⇐=. Let us put n = dim


g

[g,g]


= dim


g′

[g′,g′]


∈ N ∪ ∞. Let us choose a basis (ei)1≤i≤n be a basis

of g

[g,g]
made of homogeneous elements. We give g

[g,g]
a bigraduation, putting ei bihomogeneous of degree (deg(ei), i). By

Lemma 22, this bigraduation is extended to H . Considering the second induced graduation, H becomes a graded, connected
free and cofree Hopf algebra, such that the Poincaré–Hilbert series of g

[g,g]
is h−hn+1

1−h , with the convention h∞
= 0. The same

can be donewithH ′. By Theorem8,H andH ′ are isomorphic as graded (for the second induced graduation)Hopf algebras. �

Remark. As g is a free Lie algebra, dim


g

[g,g]


can be interpreted as the number of generators of g.

Corollary 24. The Hopf algebras FQSym, PQSym, NCQSym, RΠ , SΠ , HLR, YSym, HNCK and its decorated version HD
NCK for any

nonempty graded set D , HDP , Ho, Hho, the free 2-As algebras, and HUBP are isomorphic.

Proof. They are all graded, connected, free and cofree, with an infinite-dimensional g

[g,g]
. �
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