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Let n#4”(86+7) be an integer. We deal with the problem of the solvability of 
the equation n = .x: + xi + x$ in integers x,, x2, .xj prime to n. By a theorem of Vila 
(Arch. Math. 44 (1985), 424437), the existence of such a solution implies that every 
central extension of the alternating group A,,, for n = 3 (mod 8), can be realized as 

a Galois group over Q. c? 1987 Academic Press. Inc. 

Let n # 4”(86 + 7) be an integer and let I(n) be the maximum value of I 
such that there exists a representation of n as a sum of 3 integral squares 
with I summands prime to n. Clearly I(n) < 3 for all n (by definition) and 
I(n) Q 2 for all n not prime to 10 (because the sum of 3 squares prime to 2 
is odd and the sum of 3 squares prime to 5 is &O (mod 5)). 

The purpose of this paper is the determination of Z(n). Our main result, 
Theorem 3, shows that for all but finitely many of the integers n all of 
whose prime factors belong to a fixed finite set of prime numbers, one has: 

l(n)= z 
i 

if g.c.d.(n, lo)= 1, 
if g.c.d.(n, 10) # 1. 

That is, the above inequalities are equalities when n increases keeping its 
radical fixed. 

The proof of the theorem relies on an asymptotic evaluation of the num- 
ber of solutions of the equation 

n=x:+x;+x:, 

which are of a suitable type. 
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The main term in the evaluation of l(n) is obtained recursively, by apply- 
ing Siegel’s formula on the average number of representations of an integer 
by a quadratic form. It is relevant for our purposes to have an exact 
knowledge of all the p-adic densities involved. Those corresponding to 
prime numbers which divide the determinant of the form are calculated in 
Proposition 3, since they are not covered by Siegel. 

Recent results of SchulzeePillot [S] allow to relate the main term to 
Fourier coefficients of Eisenstein series of weight $, and the error term to 
Fourier coefficients of cusp forms of the same weight. 

Since all integers with a given radical fall into finitely many quadratic 
families {n0s2}, Shimura’s theory on liftings of modular forms from half- 
integral to integral weight is applicable and the error term can be con- 
trolled. Clearly, the estimation of the error term becomes important only 
when n increases in such quadratic classes. For this reason the square-free 
case was handled separately in a previous paper [ 11. 

Finally, we give an application to Galois theory which was the main 
motivation for the study of the problem: By Vila’s results [8], it is now an 
immediate consequence of Theorem 3 that the universal central extension 
of the alternating group A,, can be realized as a Galois group over Q(T) for 
n = 3 (mod 8), and n large enough, in the above sense. 

The authors want to express their gratitude to E. Nart and to the 
referees to their careful reading and improvements of an earlier version of 
this paper. 

1. THE MAIN TERM IN THE DETERMINATION OF I(n) 

As in [ 11, given a positive integer n f 0, 4, 7 (mod 8), we define the 
level of n as the maximum value of I such that there exists a representation 
of n as a sum of three integer squares with I summands prime to n. It will 
denoted by I(n). 

We consider also the functions 

h(n) g,(n) =- 46 I,)’ 

g2(n) = 
sz(n) - 2+(n) 

f-h 1,) ’ 

where 

g,(n) = sl(n) - s2(n) + h(n) 
r(n, I,) ’ 

si(n)=piC(--l)i~(a,)~L(a,)~(a,)r(n, <$~434>)5 

(1) 
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for i = 1, 2, 3. The sum (1) is taken over those square-free positive integers 
uj, j=l,2,3, such that l<ujln for j<i and uj=l for j>i. We take 
pi = 3 - 2[i/3]. 

We recall [ 1, Proposition l] that Z(n) > i is equivalent to g,(n) < 1. 
Let f= (a:, a:, a$) be a quadratic form such that r(n, f) # 0, and where 

the uis are assumed to be square-free positive integers dividing n. Let 

d, = g.c.d.(u,, a,), l<&j63,i#j, 

423 = g.c.d.(a,, ~2, a,), 

d= d,:4,4A. 

The possible common factors of the uis can be avoided by setting 

where bi= d,~‘d,;‘d,,,u,, for i= 1, 2, 3. In particular we have 
g.c.d.(bi, b,) = 1, for if j and g.c.d.(d, bi) = 1, for i= 1, 2, 3. 

Throughout this paper, ui, b;, for i= 1, 2, 3, and d will have the meaning 
just explained. 

Next, we introduce the average alternating sums 

for i = 1, 2, 3. The sum (1) and pi are defined as for s,(n). Here gen f stands 
for the genus of the quadratic form f (see [7]). 

Note that if n is square-free, the average alternating sums S,(n) are equal 
to the ones introduced in [l]. 

Now we define, as in [ 11, 

S;(n) = r(n, I,)- l Si(rz), i = 1, 2, 3. 

We make the convention that S:( 1) = 0, for i = 1,2,3. 

PROPOSITION 1. Z’ n f 0, 4, 7 (mod 8) then 

for i = 1, 2, 3, where q runs over all prime factors of a, a2u3, and a4 stands 
for the q-udic density (see [7]). 

Proof: It suffices to apply Siegel’s formula [7] and observe that 

a,(nd-2, (b:, b:, b:)) = a&, I,), 
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for all prime q not dividing u1u2u3 and that 

am(ndp2, (bi, b& b:)) .am(n, I,)-’ = n q-l, 
4lalcP3 

for q prime. 
The preceding formulae allow to extend the definition of the S:(n) to 

those integers n E 7 (mod 8). This extension will be needed later in an 
inductive step. 

We define the main term G,(n) in the determination of the level of n as 

G,(n) = S;(n), 

G,(n) = S;(n) -2&(n), 

G,(n) = S;(n) - S;(n) + S;(n). 

Since the evaluation of the main term leads to consider quotients of 
densities a,(ndP2, (b:, bz, b:)) .a,(~, 13))1, we begin by studying these 
densities first. 

We denote by o,(n) the p-adic valuation of n. 

DEFINITION. Let n & 0, 4 (mod 8) be a positive integer and let p be a 
prime such that u,(n) = a > 0. Writing n = mp”, we introduce the following 
notation: 

a,(mp” d-2, (b:, b;, b:)) a@, 4 if plbi for exactly one i, 

P a,(mpa, 1,) +(m, a) if pJd. 

That is, the above quotient is denoted by a;(m, a) if p divides exactly one 
a,, and by +(m, g) if p divides more than one ui. 

From the definition of p-adic density (cf. [7]) it follows immediately that 

(i) a;(m, 4 = a,(4 <P’, 1, 1 H/P aP(4 I,), 
(ii) +(m, 4 = apw2, M/P a,(n, 4). 

Siegel in his paper [7] about representations of positive integers n by 
integral quadratic forms f gave formulae to calculate the p-adic densities 
ap(n, f) when p j 2 det f: In the case f = I,, we get 

PROPOSITION 2. Let n be u positive integer such that 4 1 n. Let p be a 
prime such that v,(n) = a > 0 and write n = mp”. Then: 

(i) if cl=2p+1, 
(1+p-1)(1-p~8)+(p2-l)pp-(B+2){1-(-m/p)p-’}-1 

if a = 28, 
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for p # 2. 

I 

312 if n=1,2,5,6 (mod8), 

(ii) f3,(n, Z3)= 1 if n-3 (mod8), 

0 if ns7 (mod8). 

ProoJ: (i) This is an immediate consequence of [7, (Hilfssatz 16)]. 
(ii) az(n, Z3) is reduced to count rz3(n, Z3), from which the result follows. 

Next, we explicit the values of a&n, ( p2, 1, 1)) when u,(n) > 0. 
For a positive integer n let E, = 1 if n = 1 (mod 4), and E, = i if n = 3 

(mod 4). 
The densities appearing in the next proposition are not covered by 

Siegel. 

PROPOSITION 3. Let n be a positive integer such that 4 1 n. Let p be a 
prime such that u,(n) = CI > 0 and write n = mp”. Then: 

(i) a,(4 (P’, 1, 1)) 

2+&;(1 -p-‘)-p-W +p-1) if cr=2/?+1, 

2+&;(l-p-‘)- (1 -(-m/p)}p-P if ci=2fl, 

for p # 2. 

1 

312 if n=1,5 (mod8), 

(ii) d,(n, (22, 1, l))= 1 if n-2,6 (mod8), 

0 if n-3,7 (mod8). 

Proof. (i) In order to calculate these densities we 
following Gauss-Weber sums associated to a quadratic 
fbl? x2, x3), 

consider the 
ternary form 

for m E (Z/p”Z)*. 
Each c E Q,/Z,, < # 0 admits a unique representative in Q, of the form 

w  + with 0 <m < p’, g.c.d.(m, p) = 1. This allows us to define 

QL f) = P-3seps(m, f). 

Then, one can see (cf. [a]) that 

~,hS)= 1 e(5,f)<5v -n>, 
c E Qp& 

where ( , ) denotes the usual pairing between Z, and Q,/Z,. 
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Let 

B,hf)= c e(53fKr2 -n>. i E QplZp 
u,(5) = --.v 

From now on, f will be the quadratic form (p*, 1, 1). Then, for any 
m E wP”z)*, 

Therefore 

Ops(m, f) = pQpsh, 1,) if ~33. 

for ~23. 

so 

~,hf’)= c N,h z,)+Bz(n,f)+B,(n,f)+B,(n,f). 
s > 2 

Taking into account well-known results about the values taken for the 
ordinary Gauss sums (cf. [4, Chap. 7]), it is easy to evaluate the sums 
B,(n, f ). They are given by: 

if sdcl 

if s=a+l 

s even, 2 2. 

(ii 

if s>cr+l, 

if s<s 

P 
- a/2 if s=a+l 

if s>a+ 1, 

s odd, 33. 
To achieve the asserted results, it suffices now to substitute these values 

in the expression of a,(n, f ). (ii) If p = 2, the calculation of a,(n, f) can be 
reduced to that of r23(n, f). 

If n f 0, 4 (mod 8) is a positive integer, we consider a prime p dividing n 
such that v,(n) = c( > 0 is even if not all the exponents in the factorization of 
n are odd. We can further assume that p # 2 (unless n = 2, in which case the 
values of aP(2, f ), for f = 1, or (2’, 1, 1 ), were already calculated). We 
shall write n = mp”. Under this convention we have 
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LEMMA 1. With our previous notations, if q is a prime dividing a1a2a3, 
q # p, it holds: 

6) a&w, b) = a,@, M 

(ii) ay(mpT2, (hf, hi, bz)) 

a,(md-‘, (b;, b;, b:) if p j ala2a3, 

= a,(mdP2, (b:p-2, b;, hi)) if’ PIa,, pka2a3, 
a,(md-‘p”, (b:, b$, bi)) if p”\a,a,. 

Proof. (i) This follows, under our convention on p”, immediately from 
Proposition 2. 

(ii) Let us suppose that p j a,a?a,. 

If q divides exactly one ai, say a,, then, as is easily seen 

d,(mp”d-*, (b:, b:, b:N=d,(mp”, (q*, 1, 1 >I. 

Similarly, a,(md-*, (bf, b:, bz))= a&m, (q*, 1, 1)). Applying now 
Proposition 3, under the convention made on p’, we get 

a,(mp’, (92, 1, W=a,(m, (4*, 1, 1)). 

If q divides more than one a,, then 

a,(,np”&‘, (b:, b;, b:))=2,(mp’d-*, Z,) 

and 

a,(md- 2, (b:, b:, 6:)) = d,(md- 2, I,). 

By Proposition 2, account being taken of the convention made on p’, we 

get 

a,(mp*d-*, I,) = d,,(md-‘, I,). 

This proves the first case of (ii). 
The other two cases of (ii) can be proved in a similar manner. 

If one substitutes all the values obtained in Propositions 2 and 3 in the 
corresponding expressions of the main term, there appear rather com- 
plicated alternating sums. However, the preceding lemma allows to simplify 
most of the densities by comparing Gi(n) with G,(m), m =np -‘. In this 
way, we obtain the following recursive formulae for the evaluation of the 
main term. 
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THEOREM 1. Let n be a positive integer such that 4 1 n and write n = mp”, 
with M = v,(n) >O. We assume that a is even if not all the exponents 
occurring in the factorization of n are odd. Then: 

(i) G,(n) = G,(m) + db(m, a)(Gz(m) - G,(m)) 

+ a;4m, a)( 1 - Gdm)), 

(ii) G,(n) = Cl(m) + 2d;(m, x)(G,(m) - G,(m)) 

+ $(m, a)( 1 + GAm) - .W,(m)), 

(iii) G,(n) = G,(m) + (3a;(m, a) - 28;2(m, a))( 1 - G,(m)). 

ProoJ Let us consider the sums S:(n). We break them up into partial 
sums according to the number of a,‘s such that p/a,. 

Applying the results of Lemma 1 and the definitions of aL(rn, a) and 
c$(m, a) we obtain 

S;(mp”) = S;(m) + a;(m, a)(3 - S;(m)), 

S;(mp*) = S;(m) + 2cYb(m, a)(S;(m) - S;(m)) 

+ a;+76 a)(3 -2$(m) + S;(m)), 

S;(mp”) = S;(m) + a;(m, a)(S$(m) - 3$(m)) 

+ Q(m, a)( 1 -S;(m) + 2&(m)). 

So, the assertion of the theorem follows from the definition of the main 
term. 

2. BOUND OF THE MAIN TERM 

In order to bound the main term we first bound the values of i$(m, a) 
and $(m, E). From Propositions 2 and 3, we get 

PROPOSITION 4. Let n & 0, 4 (mod 8) be a positive integer. Write 
n = mp”, with v,(n) = o! > 0 and p # 2. Then 

(i) t$(rn, a) = 
(2+&;)p~+‘-&;pfi-(p+l) 

(p+l)(pfl+‘--l) 
if a=28+1. 

(ii) db(m, cc) = 
(2+~~)pB-~~pB~‘-{l-(-m/p)} 

(P+ l)C(pB- I)+(1 -~~‘)(l -(-m/p)p-‘)-‘I 

if cr=28+1. (iii) 
pD-1 

a;+4 a) = pB+ 1 _ 1 
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(iv) +h a) = 

jf --m cl, 
( 1 P 

01=2/9, 

if -m 
( ) P 

= -1, a=2/l 

(vii) ifp=2, then 

&(m, 1) = f, &(m, 1) = 0. 

COROLLARY. Let n & 0, 4 (mod 8) be a positive integer. Write n = mp” 
with v,(n) = a > 0 and p # 2. Then. 

(i) OGa;(m, a)<$. 

(ii) 0 < Q(m, a) d p ~ ’ 

(iii) 0 d 3apz, a) - 2Q(m, a) < &, if Pf5, and 3&(m, a) - 
2d;z(m, a) = 1. 

(iv) 062a;(m,a)-Q(m,a)<$. 

Proof: The proof of the above statements is elementary. One needs only 
to consider the different cases: p z 1 or 3 (mod 4), a being odd or even, 
( -m/p) = 1 or - 1, and use the expressions of Proposition 4. 

THEOREM 2. Let n =p”;’ . .pF be a positive integer with 4 1 n. Then there 
exist constants ci = c,(p, . . .pk) such that 

G,(n) < CAPI ...pk) < 1, 

for i= 1, 2, 3 ifg.c.d.(n, lo)= 1; and i= 1, 2 ifg.c.d.(n, lO)# 1. In the fatter 
case we have G,(n) = 1. 

Proof. Let us suppose that g.c.d.(n, 10) = 1. We prove the assertion of 
the theorem by induction on the number of distinct prime factors of n. 

If p # 2, 5. Then, by the corollary of Proposition 4 we have 

G,(p*) = 3a;( 1, a) - 28>( 1, a) < & < 1; 

and we can take cJp) = &. Now, let n =p;’ . ..pp.;pT, with k > 1 and p; 
chosen as in Theorem 1, and write m =pq’ -.-pp:;. Then, we have, by 
virtue of Theorem 1, the corollary of Proposition 4 and the induction 
hypothesis, that 

G3(n)<G3(m)+i75(1 -G3(m))=&+& G3(m)<c3(pl ...Pk)< 1; 

with 

CAP, . ..Pk).=i?S+~C3(p1...pk~1). 
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By induction and applying again Theorem 1 and the corollary of 
Proposition 4, we get that 0 6 G,(n) d G*(n) < G,(n) < 1. Therefore, it 
s&ices to take c, = c? = c3. 

Let us now consider the case g.c.d.(n, 10) # 1. If 2 1 n, proceeding by 
induction on the number of distinct prime factors of n, and taking into 
account Theorem 1 and the corollary of Proposition 4, we get G,(n) = 1. 
On the other hand, in order to prove that there exist c,(p, . . .pk) such that 
G,(n) < c2 < 1, we write n =mpE in accordance with Theorem 1, where 
pk can be taken different from 2, unless n = 2 in which case 
G?(2) = a;~( 1, 1) = 0. The fact that G,(m) = 1, together again with 
Theorem 1 and the corollary of Proposition 4, allows us to estimate G,(n) 
also by induction as 

G,(n) = GAm) + (2dbk(m, xk)- ak(m, ak))( 1 - G,(m)) 

< G,(m) + $1 -G,(m)) < cApI . ..pk) < 1, 

with 

CAP, “.pk) :=;+f+(p, ‘..pk-,). 

If 5 ) n, we proceed in an analogous way, distinguishing the case pk = 5 from 
the one in which pk # 5. 

By induction and applying again Theorem 1 and the corollary of 
Proposition 4, we get 0 ,< G,(n) < G,(n) < G,(n) = 1. Therefore, it suffices to 
take c, = c2. 

3. THE ERROR TERM IN THE DETERMINATION OF I(n). 
ASYMPTOTIC BEHAVIOUR OF f(n) 

In this section we first estimate the growth of r(n, f) - r(n, gen f). 

LEMMA 2. Let n = n,s’ be a positive integer, n f 0,4, 7 (mod 8), where 
n, is its square-free part. Let f = (hl, h:, bf ) be a quadratic form such that 
b, 1 n, g.c.d.(b,, 6,) = 1, for i # j, and 6, square-free for i = 1, 2, 3. Then 

r(n, f) - r(n, gen f) = 0,.no,~s”2+E), 

for evey 8 > 0. 

Proof: Under these conditions, the theta series 0(A z) associated to f 
belongs to the space M,(+, 4bfbzb:) of modular forms of weight + with 
respect to r,(4b:b:b$). Then, Theorem 4.6 of [3] implies that 
gen f = spn S, where spn f stands for the spinorial genus off: 
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By results of Schulze-Pillot [IS], we have that 19(f, z) - B(spn f, z) lies in 
U’, where U’ is the orthogonal complement, in the space of cusp forms 
&($, 46Tb$bz) of the space U= OU(n,), no square-free, with 

U(n,) = S,($, 4bib2,b:) n f(z) = f $(n) n exp(2ninon2z) , 
i n=l I 

with $(n) a character modulo an integer r such that r2nolb~b~b:. 
If n runs into a quadratic class n = nos2, then by Shimura’s no-lifting [6] 

and the theorem of Eichler-Igusa (i.e., Ramanujan-Petersson for weight 2), 
we know the growth of the Fourier coefficients a(n) of a cusp form g lying 
in U(n,)‘, in the sense that 

a(nos2) = Oe.n&“* + “), 

for every E > 0 (cf. [S, Hilfssatz 51). 
Therefore, it suffices to apply these results to the coefficients of 

KC z) - B(spn f, 2). 

THEOREM 3. Let n =n,,s’, n & 0, 4, 7 (mod 8), let m, = rad n be the 
product of the distinct prime factors of n. For every E > 0, we have 

for i= 1, 2, 3. 

Proof. Immediate from Lemma 2 if we bear in mind that all positive 
integers whose prime factors belong to a fixed finite set fall into finitely 
many quadratic families (nos2) and that for every E > 0, r(n, Z3)-l = 
OC(n-“*+‘). 

Let m, be a square-free positive integer. We define the following family 

F(m,) := (n f 0,4,7 (mod 8): rad n = m,}. 

THEOREM 4. Let n f 0,4,7 (mod 8) be a positive integer, let F(m,) be 
the family to which n belongs. There exists a constant c(mo) such that if 
n > c(m,), then 

if g.c.d.(n, 10) # 1, 
if g.c.d.(n, lo)= 1. 

Proof. From Theorems 2 and 3 it is obvious that for s large enough one 
has g,(n) < 1 and g3(n) -=c 1 according to whether g.c.d.(n, 10) is different 
from one or not. 



284 ARENASAND BAYER 

The following table, computed by P. Llorente, shows that the constants 
c(mO) are, in general, non-trivial. All non-square-free positive integers 
n < lo5 not contained in the table have the level expected from Theorem 2. 

TABLE 

F(Q) n l(n) C(h)2 

F(30) 90 = 2.5.3’ 1 90 

F( 390) 1170=2.5.13.3’ 1 1170 
F( 570) 1710 = 2.5.19.3’ 1 1710 
F( 1230) 3690 = 2.5.41.3’ 1 3690 
F(6630) 19890 = 2.5.13.17.32 1 19890 

Finally, we give an application to solve an embedding problem of Galois 
theory. 

COROLLARY. Let n E 3 (mod 8) be a positive integer such that 
n > c(m,,). Then, every central extension of the alternating group A,, can be 
realized as a Galois group over Q. 

Proof: One needs only to observe that all these integers have level 
equal to 3 and apply Theorem 5.1 of [8], (cf. also [9] ). 
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