Tilting Functors and Stable Equivalences for Selfinjective Algebras*

Hiroyuki Tachikawa and Takayoshi Wakamatsu

Institute of Mathematics, The University of Tsukuba, 305 Ibaraki, Japan
Communicated by Walter Feit
Received December 11, 1985

Introduction

Let A be a finite dimensional algebra over a basic field k and T a right A-module satisfying the following three conditions:
(1) $\operatorname{Ext}_{A}^{1}(T, T)=0$, (2) $\operatorname{Ext}_{A}^{2}(T,-)=0$, (3) There is a short exact sequence $0 \rightarrow A_{A} \rightarrow T_{A}^{\prime} \rightarrow T_{A}^{\prime \prime} \rightarrow 0$, with $T^{\prime}, T^{\prime \prime}$ being direct sums of summands of T. Then putting $B=$ End T_{A} we call (B, T, A) and $\operatorname{Hom}_{A}(T,-)$: $\bmod -A \rightarrow \bmod -B$ a tilting triple and a tilting functor, respectively.

Tilting functors have been introduced by Brenner and Butler [6] as a generalization of the Bernstein-Gelfand-Ponomarev's reflection functors [5]. They and Happel and Ringel [8] have proved that we have (usually nonhereditary) torsion theories $(\mathscr{T}, \mathscr{F})$ in $\bmod -A$ and $(\mathscr{X}, \mathscr{Y})$ in $\bmod -B$, where $\mathscr{T}=\left\{X \in \bmod -A \mid \operatorname{Ext}_{A}^{1}(T, X)=0\right\}$ and $\mathscr{X}=\left\{Y \in \bmod -B \mid Y \otimes_{B} T=0\right\}$, and the tilting functor and $\operatorname{Ext}_{A}^{1}(T,-)$ give category-equivalences between \mathscr{T} and \mathscr{Y} and between \mathscr{F} and \mathscr{X}, respectively.

These equivalences give us, however, no information about indecomposable A-modules and B-modules which do not belong to the above subcategories $\mathscr{F}, \mathscr{F}, \mathscr{X}$, and \mathscr{Y}. The purpose of this paper is to point out that there is a method to enlarge our view by which we can supply the lack of information.

Let us consider trivial extension algebras $R=A \times D A$ and $S=B \times D B$ of A and B by $D A$ and $D B$ respectively, where ${ }_{A} D A_{A}=\operatorname{Hom}_{k}(A, k)$ and ${ }_{B} D B_{B}=\operatorname{Hom}_{k}(B, k)$ are injective cogenerator bimodules. In this case R and S are selfinjective (more precisely symmetric) algebras and mod- A and mod- B are naturally embedded into projectively stable categories mod $-R$ and mod- S. Then our main theorem states that for any tilting triple

[^0](A, T, B) there exists always a stable equivalence $\mathscr{P}: \bmod -R \rightarrow \bmod -S$ such that the restriction of \mathscr{S} to the torsion class \mathscr{F} coincides with the tilting functor $\operatorname{Hom}_{A}(T,-)$.

In fact this stable equivalence \mathscr{S}° is a generalization of S_{k}^{+}which was introduced by one of the authors [11] for a trivial extension of a pathalgebra of an oriented tree Q and a reflection functor s_{k}^{+}with respect to a sink vertex of Q. And it is to be noted that Assem and Iwanaga [1], and Wakamatsu [15] also proved the existence of such stable equivalence for the following special cases, respectively,
(1) $R=A \ltimes D A$ is of finite representation type,
(2) $\operatorname{Hom}_{A}(T,-)$ is a partial coxeter functor in the sense of Auslan-der-Platzeck-Reiten [4].

Here it is not too much to say that our theorem is fairly general because it needs no restriction for the representation type of A and the torsion theories induced by T. Even in the case where A and hence R are of infinite representation type \mathscr{S} teaches us concretely not only the correspondence between many connected components of Auslander-Reiten quivers of R and S but also the correspondence of (stable) homomorphisms between indecomposable modules which belong not necessarily to the same connected component of Auslander-Reiten quivers (cf. Examples in Sect. 3).

Our proof is also available to artin algebras provided we replace $D=\operatorname{Hom}_{k}(-, k)$ by $\operatorname{Hom}_{C}(-, E(C / \mathrm{rad} C))$ where C are centers of algebras and $E(C / \mathrm{rad} C)$ are injective envelopes of $C / \mathrm{rad} C$.

In Section 1 we shall introduce the notion of torsion resolutions of A-modules and using them we shall define the stable functor \mathscr{P}. The proof for \mathscr{S} to be stable equivalence is reduced to the proofs of the commutativities of great many diagrams and will be given in Section 2. In Section 3 we give remarks and examples in which Auslander-Reiten quivers of A, B, R and S, and correspondences defined by $\operatorname{Hom}_{A}(T,-), \operatorname{Ext}_{A}(T,-)$ and \mathscr{S} will be explicitly given.

Throughout this paper unless otherwise specified modules are unital finitely generated right modules, but homomorphisms operate from the left hand. $[X, Y]_{A}$ denotes $\operatorname{Hom}_{A}(X, Y)$ for A-modules X and Y.

1. Torsion Resolutions and Stable Extensions

Let (B, T, A) be a tilting triple. For the definition sce Introduction. Let $(\mathscr{T}, \mathscr{F}),(\mathscr{X}, \mathscr{Y})$ be the corresponding torsion theories in mod- A and $\bmod -B$. That is, T_{A} is a tilting module, $B=$ End T_{A} and $A=\operatorname{End}{ }_{B} T$;

$$
\mathscr{T}=\left\{X \in \bmod -A \mid \operatorname{Ext}_{A}^{1}(T, X)=0\right\}=\operatorname{Gen}\left(T_{A}\right)
$$

and

$$
\mathscr{F}=\left\{X \in \bmod -A \mid \operatorname{Hom}_{A}(T, X)=0\right\}=\operatorname{Cog}\left(\tau_{A}(T)\right),
$$

where $\tau_{A}=D \mathrm{Tr}$ is the Auslander-Reiten translation, and $\operatorname{Gen}\left(T_{A}\right)$ (resp. $\operatorname{Cog}\left(\tau_{A}(T)\right)$ is a subcategory of mod- A consist of all modules which are homomorphic images (resp. submodules) of direct sums (resp. products) of copies of $T_{A}\left(\right.$ resp. $\left.\tau_{A}(T)\right)$;

$$
\mathscr{Y}=\left\{Y \in B-\bmod \mid \operatorname{Tor}_{1}^{B}(Y, T)=0\right\}
$$

and

$$
\mathscr{X}=\{Y \in B-\bmod \mid Y \otimes T=0\} .
$$

Lemma 1.1. For any A-module X there is an exact sequence

$$
0 \longrightarrow X \xrightarrow{\alpha_{X}} V(X) \xrightarrow{\beta_{X}} T(X) \longrightarrow 0
$$

such that $V(X) \in \mathscr{T}, T(X)=P \otimes T \in \operatorname{add}-T$, where P is a projective cover of right B-module $\operatorname{Ext}_{A}^{1}(T, X)$.

Proof. For $X \in \mathscr{T}$ we can take $V(X)=X$ and $T(X)=0$. Hence we divide the proof into the following two cases:
(i) Let X belong to \mathscr{F}. Take the projective cover $P \rightarrow{ }^{\rho} \operatorname{Ext}_{A}^{1}(T, X)$ of $\operatorname{Ext}_{A}^{1}(T, X)$ and denote Ker ρ by K.

Apply $\left(-\otimes_{B} T\right)$ to

$$
0 \longrightarrow K \longrightarrow P \longrightarrow \operatorname{Ext}_{A}^{1}(T, X) \longrightarrow 0 .
$$

Then

$$
\begin{aligned}
0 & \rightarrow \operatorname{Tor}_{1}^{B}\left(\operatorname{Ext}_{A}^{1}(T, X), T\right) \rightarrow K \otimes T \\
& \rightarrow P \otimes T \rightarrow \operatorname{Ext}_{A}^{1}(T, X) \otimes T \rightarrow 0 \quad \text { is exact. }
\end{aligned}
$$

However $\operatorname{Tor}_{1}^{B}\left(\operatorname{Ext}_{A}^{1}(T, X), T\right) \simeq X$ and

$$
\operatorname{Ext}_{A}^{1}(T, X) \otimes T=0 \quad \text { for } X \in \mathscr{F} .
$$

So we can take $K \otimes T$ and $P \otimes T$ as $V(X)$ and $T(X)$, respectively.
(ii) Let X be an A-module which is not necessarily torsion free. Let us consider the exact sequence

$$
0 \rightarrow t(x) \rightarrow X \rightarrow X / t(X) \rightarrow 0
$$

as an element of $\operatorname{Ext}_{A}^{1}(X / t(X), t(X))$, where $t(X)$ is the torsion part of X with respect to $(\mathscr{T}, \mathscr{F})$.

By (i) there is an exact sequence

$$
0 \rightarrow X / t(X) \rightarrow V(X / t(X)) \rightarrow T(X / t(X)) \rightarrow 0
$$

with $V(X / t(X)) \in \mathscr{T}$ and $T(X / t(X)) \in$ add- T.
Applying $\operatorname{Ext}_{A}^{1}(-, t(X))$ we have an isomorphism 0 : Ext $_{A}^{1}$ $(V(X / t(X)), t(X)) \rightarrow \operatorname{Ext}_{A}^{1}(X / t(X), t(X))$ because $\operatorname{Ext}_{A}^{1}(T(X / t(X)), t(X))=0$ and $\operatorname{Ext}_{A}^{2}(T(X / t(X)), t(X))=0$. Thus we have the following commutative diagram

where the first column is considered as E and the second column is considered as $\theta^{-1}(E)$. Now from $t(X), V(X / t(X)) \in \mathscr{T}$ it follows $V \in \mathscr{T}$ and $T^{\prime} \simeq T(X / t(X)) \in$ add $-T$. Because $T(X / t(X)) \cong P \otimes T$ where P is the projective cover of $\operatorname{Ext}_{A}^{1}(T, X / t(X))_{B}$ but $\operatorname{Ext}_{A}^{1}(T, X)_{B} \simeq \operatorname{Ext}_{A}^{1}(T, X / t(X))_{B}$. This completes the proof.

For any $X \in \bmod -A$ we shall call an exact sequence

$$
0 \rightarrow X \rightarrow V_{1} \rightarrow V_{2} \rightarrow 0
$$

a torsion resolution of X if

$$
V_{1} \in \mathscr{T} \quad \text { and } \quad V_{2} \in \operatorname{add}-T .
$$

Proposition 1.2. For any torsion resolution of X,

$$
0 \rightarrow X \rightarrow V^{\prime} \rightarrow T^{\prime} \rightarrow 0
$$

there is an isomorphic torsion resolution such that

$$
0 \longrightarrow X \xrightarrow{\binom{\alpha x}{0}} V(X) \oplus T_{0} \xrightarrow{\left(\begin{array}{cc}
\beta_{X} & 0 \\
0
\end{array}\right)} T(X) \oplus T_{0} \longrightarrow 0,
$$

where $T_{0} \in \operatorname{add}-T$ and $\alpha_{X}, \beta_{X}, V(X), T(X)$ are same as in Lemma 1.1.
Proof. From $\quad V^{\prime}, \quad V(X) \in \mathscr{T} \quad$ it follows $\quad \operatorname{Ext}_{A}^{1}\left(T, V^{\prime}\right)=0 \quad$ and $\operatorname{Ext}_{A}^{1}(T, V(X))=0$. Thus there are \mathcal{A}-homomorphisms f, g, h, k such that

is commutative.
Here it is to be noted that

is commutative and $\operatorname{Hom}_{A}(T, k h)$ is an isomorphism, for by Lemma 1.1 rows are the projective covers of $\operatorname{Ext}_{A}^{1}(T, X)$.

However $\operatorname{Hom}_{A}(T,-)$ gives an equivalence between \mathscr{T} and \mathscr{Y}. Thus $k h$ and $g f$ are isomorphisms and we can conclude our proof by a routine calculation.

Dually for $Y \in B$-mod we shall call an exact sequence

$$
0 \rightarrow W^{\prime} \rightarrow V^{\prime} \rightarrow Y \rightarrow 0
$$

a torsion free resolution if $V^{\prime} \in \mathscr{Y}$ and $W^{\prime} \in$ add- $D T_{B}$

Proposition 1.3. For a right B-module Y
(1) there is a torsion free resolution

$$
0 \longrightarrow W(Y) \xrightarrow{\lambda_{Y}} U(Y) \xrightarrow{\gamma_{Y}} Y \longrightarrow 0
$$

such that $0 \rightarrow \operatorname{Tor}_{1}^{B}(Y, T) \rightarrow W(Y) \otimes T$ is the injective envelope of $\operatorname{Tor}_{1}^{B}(Y, T)$.
(2) for any torsion free resolution of Y there is an isomorphic torsion free resolution such that

$$
0 \longrightarrow W(Y) \oplus W_{0} \xrightarrow{\left(\begin{array}{cc}
\lambda_{y} & 0 \\
0 & 1
\end{array}\right)} U(Y) \oplus W_{0} \xrightarrow{(\gamma \gamma, 0)} Y \longrightarrow 0 .
$$

Let R and S be trivial extensions of A and B by injective cogenerators $D A$ and $D B$, respectively. Then there are full embeddings of $\bmod -A \subset$
 $X, Y \in \bmod -A$. Assume f is factored through a projective R-module $\left(P \oplus P \otimes D A,\left(\begin{array}{cc}0 & 0 \\ 1_{P \otimes D A} & 0\end{array}\right)\right)$ such that

$$
f=\left(X \xrightarrow{f_{1}} P \oplus P \otimes D A \xrightarrow{f_{2}} Y\right) .
$$

Then $\operatorname{Im} f_{1} \subset(0 \oplus P \otimes D A)$ and $\operatorname{Ker} f_{2} \supset(0 \oplus P \otimes D A)$, since X and Y are annihilated by ideal $(0, D A)$ of R, and hence f is the zero map. This implies $\bmod -A \subset \bmod -R$ is a full embedding, and similarly $\bmod -B \subset \underline{\bmod -S}$ is a full embedding.

In the case where A and B are hereditary and $\operatorname{Hom}_{A}(T,-)$ gives the Bernstein-Gelfand-Ponomarev's reflection functor, one of the authors [11] proved that there exists a stably equivalent functor between mod- R and mod $-S$ which extends $\operatorname{Hom}_{A}(T,-)$. It seems to us that the result is interesting because A and B are not only of finite representation type but also of infinite representation type (depending on neither tame nor wild type). The main purpose of this paper is to prove the following more general result:

Theorem 1.4. For any tilting triple (B, T, A)
(1) there is a stable functor \mathscr{S} from $\bmod -R$ to $\bmod -S$ such that $\mathscr{H} \mid \mathscr{T}=\operatorname{Hom}(T,-)$.
(2) \mathscr{S} is always a stable equivalence.

Now it needs to introduce several notations: For C-algebras E and F, and an E - F-bimodule U and an F - E-bimodul V we denote by η_{W}^{U} the map: $\bmod -E \ni W \ni w \mapsto(t \rightarrow w \otimes t) \in\left[U_{F}, W \otimes_{E} U_{F}\right] \in \bmod -E$ and by ε_{Z}^{V} the map: $\bmod -F \ni\left[V_{E}, Z_{E}\right] \otimes{ }_{F} V_{E} \ni h \otimes t \mapsto h(t) \in Z \in \bmod -E$. In the case of $V={ }_{B} T_{A}$ we abbreviate η_{W}^{T} and ε_{Z}^{T} to η_{w} and ε_{Z}, respectively. Denote by i_{U} the adjunction, $\left[-\otimes_{E} U,-\right]_{F} \rightarrow\left[-,[U,-]_{F}\right]_{E}$.

We use also isomorphisms $\delta_{A}:{ }_{A} D T \otimes{ }_{B} T_{A} \rightarrow D \operatorname{Hom}_{B}(T, T)=D A$ and $\delta_{B}: T \otimes{ }_{A} D T \rightarrow D \operatorname{Hom}_{B}(T, T)=D B$, and sometimes we identify $D T \otimes T$ (resp. $T \otimes D T$) with $D A$ (resp. $D B$) by δ_{A} (resp. δ_{B}).

For a B-module W (resp. A-module Z) we can define an S-module
$\left(W \oplus W \otimes D B,\left(\begin{array}{cc}\begin{array}{c}0 \\ 1 W \otimes D B\end{array} & 0 \\ 0\end{array}\right)(W \oplus W \otimes D B) \otimes D B \rightarrow W \oplus W \otimes D B\right)$ (resp. an R-module $\left(Z \oplus Z \otimes D A,\left(\begin{array}{cc}0 & 0 \\ 1_{Z \otimes D A} & 0\end{array}\right)\right.$) and we denote this module by

Proposition 1.5. Let $\left(X, \phi: X \otimes D A_{A} \rightarrow X_{A}\right)$ be a right R-module and

$$
0 \longrightarrow X \xrightarrow{\alpha_{X}} V(X) \xrightarrow{\beta_{X}} T(X) \longrightarrow 0
$$

the minimal torsion resolution of a right A-module X. Since $V(X) \in \mathscr{T}$, $\varepsilon_{V(X)}:[T, V(X)] \otimes T \rightarrow V(X)$ is an isomorphism. We can define a B-homomorphism

$$
\Phi_{X}: X \otimes D T \rightarrow[T, V(X)] \oplus[T, V(X)] \otimes D B
$$

by

$$
\binom{\left[T, \alpha_{X}\right] \cdot[T,-\phi] \cdot\left[T, X \otimes \delta_{A}\right] \cdot \eta_{X \otimes D T}}{[T, V(X)] \otimes \delta_{B} \cdot \varepsilon_{V(X)}^{-1} \otimes D T \cdot \alpha_{X} \otimes D T}
$$

and denote $\operatorname{Cok} \Phi_{X}$ by $\mathscr{F}(X)$. Then it holds that
(1) $X \otimes D T$ is right S-module by
$-\phi \otimes D T \cdot X \otimes \delta_{A} \otimes D T \cdot X \otimes D T \otimes \delta_{B}^{-1}: \quad X \otimes D T \otimes D B \rightarrow X \otimes D T$.
(2) Φ_{X} can be considered as an S-homomorphism:

$$
X \otimes D T_{S} \rightarrow \underbrace{[T, V(X)]}_{[T, V(X)] \otimes D B_{S}} \text {. }
$$

(3) If X is a torsion right A-module, then $\mathscr{S}(X) \simeq \operatorname{Hom}_{A}(T, X)$.
(4) If X is a projective R-module, i.e., projective and injective R-module, then $\mathscr{P}(X)$ is a projective S-module.

Proof. (1) It follows by the equality

$$
\begin{aligned}
&\left(-\phi \otimes D T \cdot X \otimes \delta_{A} \otimes D T \cdot X \otimes D T \otimes \delta_{B}^{-1}\right) \\
& \cdot\left(\left(-\phi \otimes D T \cdot X \otimes \delta_{A} \otimes D T \cdot X \otimes D T \otimes \delta_{B}^{-1}\right) \otimes D B\right) \\
&=\left(-\phi \cdot-\phi \otimes D A \cdot X \otimes D A \otimes \delta_{A}\right) \otimes D T \cdot X \otimes \delta_{A} \otimes D T \otimes D B=0
\end{aligned}
$$

(2) It follows from the commutativity of the following diagram

(3) Since T is a tilting left B-module the torsion class $D \mathscr{Y}=\operatorname{Gen}_{B} T$ and ${ }_{B} D(B) \in \operatorname{Gen}_{B} T, \operatorname{Tor}_{1}^{A}(T, D T) \simeq \operatorname{Tor}_{1}^{A}\left(T_{A},\left[{ }_{B} T,{ }_{B} D(B)\right]\right)=0$. It follows that

$$
0 \longrightarrow X \otimes D T \xrightarrow[\alpha_{X} \otimes D T]{ } V(X) \otimes D T \xrightarrow[\beta_{X} \otimes D T]{ } T(X) \otimes D T \longrightarrow 0
$$

is exact. But from the assumption $X \in \mathscr{T}$ it follows $T(X)=0$ and $\varepsilon_{V(X)}^{-1} \otimes D T \cdot \alpha_{X} \otimes D T$ is an isomorphism.

On the other hand, $\left[T, \alpha_{X}\right] \cdot[T,-\phi] \cdot\left[T, X \otimes \delta_{A}\right] \cdot \eta_{X \otimes D T}=0$ since $\phi=0$. Hence by the definition of $\mathscr{S}(X), \mathscr{S}(X) \simeq \operatorname{Hom}_{A}(T, X)$.
(4) Let e be a primitive idempotent of A. Then e is also a primitive idempotent in R and

$$
e R=\underbrace{e A}_{e A \otimes D A} .
$$

Let $0 \rightarrow e A \rightarrow{ }^{\alpha_{e A}} V(e A) \rightarrow{ }^{\beta_{e A}} T(e A) \rightarrow 0$ be the minimal torsion resolution of $e A$. Then $V(e A), T(e A) \in \operatorname{add} T_{A}$. And Φ is given by

Here $\varepsilon_{e A \otimes D A}^{-1} \cdot 1_{e A \otimes D A \otimes D T}: e A \otimes D A \otimes D T \rightarrow[T, e A \otimes D A] \otimes D B$ is an isomorphism and

$$
\left[T, 1_{e A \otimes D A}\right] \otimes \eta_{e A \otimes D T}: \quad e A \otimes D T \rightarrow[T, e A \otimes D A]
$$

is also an isomorphism as a component of

Hence

$$
\operatorname{Cok} \Phi \simeq \underbrace{[T, V(e A)]}_{[T, V(e A)] \otimes D B}
$$

but $[T, V(e A)]$ is a projective B-module and $\operatorname{Cok} \Phi$ is a projective S-module.

Proof of Theorem 1.4. (1) Let ($X, \phi: X \otimes D A \rightarrow X$) and (X_{1}, ϕ_{1} : $X_{1} \otimes D A \rightarrow X_{1}$) be R-modules and f an R-homomorphism of X to X^{\prime}.

Then f is associated with

and by the property of torsion resolution there are A-homomorphisms f_{V}, f_{T} such that

is commutative. Therefore the commutativity holds for each square of the following diagram:

where we abbreviate isomorphisms

$$
\left[T, X \otimes \delta_{A}\right], \quad\left[T, X_{1} \otimes \delta_{A}\right], \quad[T, V(X)] \otimes \delta_{B}, \quad \text { and } \quad\left[T, V\left(X_{1}\right)\right] \otimes \delta_{B}
$$

Thus we have an S-homomorphism f^{*} :

$$
\mathscr{S}(X) \rightarrow \mathscr{S}\left(X_{1}\right), \quad \text { though } f^{*} \text { depends upon } f_{V}
$$

In the following we shall prove that f_{V} is uniquely determined modulo morphisms which factor through projective S-modules.

Assume $\delta=0$. Then there is an A-homomorphism δ such that the triangle in

is commutative. And in the following diagram it holds $\kappa \lambda=$ $\left({ }^{\left[T, f_{v}\right]} \underset{\left[T, f_{v}\right] \otimes D B}{0}\right)$ and $\lambda \Phi_{X}=0$:

 cokernels of Φ_{X} and $\Phi_{X_{1}}$, respectively. Therefore we have an S-homomorphism θ such that $f^{*} \cdot \rho_{X}=\rho_{X_{1}} \kappa \theta \rho_{X}$. Hence $f^{*}=\rho_{X_{1}} \lambda \theta$, and

$$
\overbrace{[T, T(X)] \oplus D B}^{[T, T(X)]}
$$

is a projective S-module.
Now for $f \in \operatorname{Hom}_{R}\left(X, X_{1}\right), g \in \operatorname{Hom}_{R}\left(X_{1}, X_{2}\right)$ it is clear that $(g \cdot f)^{*} \equiv g^{*} \cdot f^{*}$ modulo S-homomorphisms which factor through projectives.

2. $\mathscr{S}: \underline{\bmod } A \times D A \rightarrow \underline{\bmod } B \ltimes D B$ is an Equivalence

Torsion free resolution of $\mathscr{S}(X)$
Let $(Y, \psi: Y \rightarrow[D B, Y])$ be a right S-module and

$$
0 \longrightarrow W(Y) \xrightarrow{\lambda_{Y}} U(Y) \xrightarrow{\gamma_{Y}} Y \longrightarrow 0
$$

a minimal torsion free resolution of a right B-module Y.
Since $U(Y) \in \mathscr{Y}$ and $\eta_{U(Y)}$ is an isomorphism, we can define an A-homomorphism $\Psi_{Y}:[D A, U(Y) \otimes T] \oplus U(Y) \otimes T \rightarrow[D T, Y]$ by

$$
\begin{aligned}
& \left(\left[D T, \gamma_{Y}\right] \cdot\left[D T, \eta_{U(Y)}^{-1}\right] \cdot l_{T} \cdot\left[\delta_{A}, U(Y) \otimes T\right],\right. \\
& \left.\quad \varepsilon_{[D T, Y]} \cdot i_{D T} \cdot\left[\delta_{B}, Y\right]^{-1} \otimes T \cdot-\psi \otimes T \cdot \gamma_{Y} \otimes T\right) .
\end{aligned}
$$

Denote Ker Ψ_{Y} by $\mathscr{2}(Y)$.
Further $[D T, Y]$ becomes a right R-module by

$$
\begin{gathered}
{[D T, Y] \xrightarrow{[D T,-\psi]}[D T,[D B, Y]] \xrightarrow{\left[D T,\left[\delta_{B, Y} Y\right]\right.}[D T,[T \otimes D T, Y]]} \\
\quad \simeq[D T \otimes T,[D T, Y]] \xrightarrow{\left[\delta_{A},[D T, Y]\right]}[D A,[D T, Y]]
\end{gathered}
$$

and Ψ_{Y} is natural as an R-homomorphism:

$$
\begin{aligned}
& {[D A, U(Y) \otimes T]} \\
& \text { คนานกตน } \rightarrow[D T, Y] \text {. }
\end{aligned}
$$

$$
U(Y) \otimes T
$$

So $2(Y)$ is a right R-module and by a dual argument to the preceding section we have a stable functor $2: \bmod -S \rightarrow \bmod -R$.

Now let ($X, \phi: X \otimes D A \rightarrow X$) be a right A-module and

$$
0 \longrightarrow X \xrightarrow{\alpha_{X}} V(X) \xrightarrow{\beta_{X}} T(X) \longrightarrow 0 \quad \text { a minimal torsion resolution of } K .
$$

We shall seek a torsion free resolution of $\mathscr{S}(X)_{B}$.
Let $P_{0} \rightarrow^{\rho_{0}} V(X) \rightarrow 0$ be a projective cover of $V(X)$. Then we have a commutative diagram with exact rows:

where $\beta=\beta_{X} \cdot \rho_{0}$ and P_{1} is projective as proj. $\operatorname{dim} T(X) \leqslant 1$.

It follows further the commutative diagram:

where

$$
\begin{aligned}
& t_{1}=\left[T, \alpha_{X}\right][T,-\phi]\left[T, X \otimes \delta_{A}\right] \eta_{X \otimes D T} \rho_{1} \otimes D T, \\
& t_{2}=\left[T, \alpha_{X}\right][T,-\phi]\left[T, X \otimes \delta_{A}\right] \eta_{X \otimes D T}, \\
& s_{1}=\left[T, P_{0} \otimes \delta_{A}\right] \eta_{P_{0} \otimes D T} \otimes D T, \\
& s_{2}=[T, V(X)] \otimes \delta_{B} \varepsilon_{V(X)} \otimes D T \alpha_{X} \otimes D T,
\end{aligned}
$$

and

$$
\kappa=[T, V(X)] \otimes \delta_{B}\left(\varepsilon_{V(X)}^{-1} \otimes D T\right) \rho_{0} \otimes D T\left(\eta_{P_{0} \otimes D T}\right)^{-1}\left[T, P \otimes \delta_{A}^{-1}\right]
$$

because from $\operatorname{Tor}_{1}^{A}(T(X), D T) \simeq D \operatorname{Ext}_{A}^{1}(T(X), T)=0 \quad$ it follows the exactness of two rows of the commutative diagram

 $\operatorname{Ker} \kappa \simeq \operatorname{Ker}\left(\rho_{0} \otimes D T\right) \simeq \operatorname{Ker}\left(\rho_{1} \otimes D T\right)$ we know $\operatorname{Coker}\left(t_{1}, s_{1}\right) \simeq \mathscr{S}(X)$ by the snake lemma.

Now from the fact that $P_{1} \otimes D T \in$ add $D T_{B}$ and $[T, V(X)] \oplus$ $\left[T, P_{0} \otimes D A\right] \in \mathscr{Y}$ it follows that the upper row in (1) together with $\operatorname{Coker}\left(t_{1}, s_{1}\right)$ can be considered as a torsion free resolution of $\mathscr{S}(X)$.

Hereafter we shall denote by (x, \hat{y}) the pair of B-homomorphisms: $[T, V(X)] \oplus\left[T, P_{0} \otimes D A\right] \rightarrow \mathscr{P}(X)$ in the above torsion free resolution. Then

is commutative.

Composition Length of $\mathscr{2 S}(X)$
Put an S-module

$$
\begin{aligned}
& {[D A,[T, V(X)] \otimes T] \oplus\left[D A,\left[T, P_{0} \otimes D A\right] \otimes T\right]}
\end{aligned}
$$

$$
\begin{aligned}
& {[T, V(X)] \otimes T \oplus\left[T, P_{0} \otimes D A\right] \otimes T}
\end{aligned}
$$

by L. Then by the torsion free resolution of $\mathscr{S}(X)$ which was obtained at (1)

$$
\begin{aligned}
& {[D A, \sigma(V(X))] \oplus\left[D A, \sigma\left(P_{0} \otimes D A\right)\right]}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma(V(X)) \oplus \sigma\left(P_{0} \otimes D A\right)
\end{aligned}
$$

is exact, where σ denotes the functor $[T,-] \otimes T$. Now $\sigma V(X) \cong V(X)$ and $\sigma\left(P_{0} \otimes D A\right) \cong P_{0} \otimes D A$ and hence

$$
|\mathscr{P} \mathscr{P}(X)|=|[D A, V(X)]|+\left|P_{0}\right|+|V(X)|+\left|P_{0} \otimes D A\right|-|[D T, \mathscr{S}(X)]| .
$$

However, we know

$$
|[D T, \mathscr{S}(A)]|=|[D A, V(X)]|+\left|P_{0}\right|-\left|P_{1}\right|
$$

and $\left|P_{0}\right|-\left|P_{1}\right|=|T(X)|=|V(X)|-|X|$, for the first equality follows from the exactness of

$$
\begin{aligned}
0 \rightarrow\left[D T, P_{1} \otimes D T\right] & \rightarrow[D T,[T, V(X)]] \oplus\left[D T,\left[T, P_{0} \otimes D A\right]\right] \\
& \rightarrow[D T, \mathscr{S}(X)] \rightarrow 0 .
\end{aligned}
$$

Hence $|\mathscr{Q} \mathscr{P}(X)|=\left|X \oplus P_{0} \otimes R\right|$.
Consequently we can prove

$$
\mathscr{V} \mathscr{P}(X) \simeq X \oplus \underbrace{P_{0}}_{P_{0} \otimes D A}
$$

as an R-module provided we can find an R-monomorphism θ :

$$
X \oplus P_{0} \otimes R \rightarrow L_{R}
$$

such that

$$
X \oplus P_{0} \otimes R \xrightarrow{\Theta} L_{R} \xrightarrow{\Delta}[D T, \mathscr{S}(X)]_{R}
$$

is the zero map, where $A=[D T,(x, \hat{y})]$.

Embedding $X \oplus P_{0} \otimes R \rightarrow L$
Let Θ_{1} and Θ_{2} be A-homomorphisms defined by

$$
\begin{aligned}
\Theta_{1}= & \left(\left[D A, \varepsilon_{V(X)}^{-1}\right]\left[D A, \alpha_{X}\right][D A, \phi] \eta_{X}^{D A}, \varepsilon_{V_{(X)}}^{-1} \alpha_{X}\right): \\
& X \rightarrow[D A,[T, V(X)] \otimes T] \oplus[T, V(X)] \otimes T \subset L
\end{aligned}
$$

and

$$
\begin{aligned}
\Theta_{2}= & \left(\begin{array}{cccc}
0 & \left.D T, \eta_{\left.T, P_{0} \otimes D A\right\lrcorner}\right] \eta_{p_{0}}^{D A} & \varepsilon_{(X)}^{-1} \rho_{0} & 0 \\
0 & 0 & 0 & \varepsilon_{P_{0}}^{-1} \otimes D A
\end{array}\right): \\
\rightarrow & P_{0} \oplus P_{0} \otimes D A \\
& \oplus[D A, T,(X)] \otimes T] \oplus\left[D A,\left[T, P_{0} \otimes D A\right] \otimes T\right] \\
& \left.\oplus[T, V(X)] \otimes T \oplus T, P_{0} \otimes D A\right] \oplus T
\end{aligned}
$$

Hereafter our main purpose is to show that the map $\left(\Theta_{1}, \Theta_{2}\right)$: $X \oplus P \oplus P_{0} \otimes D A \rightarrow L$ is the R-homomorphism Θ what we quoted before.

Each of Θ_{1} and Θ_{2} is monomorphism as $\varepsilon_{(X)}^{-1} \alpha_{X}$ and $\varepsilon_{P_{0} \otimes D A}^{-1}$ are monomorphisms.

The next Lemma 2.1 is necessary to the proof:
Lemma 2.1.

is a commutative diagram.
Proof. This follows immediately from the commutativity of

Now Lemma 2.1 induces the commutativity of

Further the last commutative diagram induces again the commutativity of

Since

$$
\varepsilon_{X}^{D A}[D A, \phi] \otimes D A \eta_{X}^{D A} \otimes D A=\phi
$$

it follows

$$
\varepsilon_{V(X)}^{-1} \alpha_{X} \phi=\varepsilon_{\left[T, V_{(X)]}^{D A}\right.}^{D} \otimes T\left(\left[D A, \varepsilon_{V_{(X)}^{-1}}^{-1}\right]\left[D A, \alpha_{X}\right][D A, \phi] \eta_{X}^{D A}\right) \otimes D A .
$$

This implies that θ_{1} is an R-homomorphism.
By Lemma 2.1 we have a commutative diagram

and similarly we obtain

$$
\left(\varepsilon_{P_{0} \otimes D A}\right)^{-1} \varepsilon_{P_{0} \otimes D A}^{D A}=\varepsilon_{\left[T, P_{0} \otimes D A\right]}^{D A}\left[D T, \eta_{\left[T, P_{0} \otimes D A\right]}\right] \otimes D A \eta_{P_{0}}^{D A} \otimes D A .
$$

This shows Θ_{2} is also an R-homomorphism.
Before proceeding to the proof of

$$
\left(X \oplus \underset{P_{0} \otimes D A}{P_{0}} \xrightarrow{\theta} L-\stackrel{\Delta}{\longrightarrow}[D T, \mathscr{S}(X)]\right)=0
$$

it is necessary to prove
Lemma 2.2.

is commutative

Proof. It is obtained by a routine calculation.

Lemma 2.3. For a given homomorphism $Z \otimes D \rightarrow{ }^{g} Y$,

is commutative.
The proof is also a routine calculation.
Now we begin the proof of $\left(X \rightarrow{ }^{\Theta_{1}} L \rightarrow{ }^{4}[D T, \mathscr{P}(X)]\right)=0$, that is,

$$
\begin{aligned}
& \varepsilon_{[D T,} \mathscr{S}_{(X)]}-\psi \otimes T x \otimes T \varepsilon_{V(X)}^{1} \alpha_{X} \\
& \quad+[D T, x]\left[D T, \eta_{[T . V(X)]}\right]\left[D A, \varepsilon_{V(X)}^{-1}\right]\left[D A, \alpha_{x}\right][D A, \phi] \eta_{X}^{D A}=0
\end{aligned}
$$

At first we introduce the following diagrams (2) and (3) in order to confirm the definitions of $\Theta=\left(\Theta_{1}, \Theta_{2}\right)$ and Δ and further to see the squares and triangulars for which we need to prove the commutativity

where $\quad L_{1}, \quad L_{2}, \quad L_{3}, \quad$ and $\quad L_{4} \quad$ denote $[D A,[T, V(X)] \otimes T]$, $\left[D A,\left[T, P_{0} \otimes D A\right] \otimes T\right],[T, V(X) \otimes T]$ and $\left[T, P_{0} \otimes D A\right] \otimes T$, respectively, and each \circ means the abbreviation of a corresponding module.

where L_{5} denotes $\lceil T, V(X)\rceil \otimes D B \otimes T$ and we express $\mathscr{S}(X)$ by $(\mathscr{S}(X)$, $\psi: \mathscr{S}(X) \rightarrow[D B, \mathscr{S}(X)]), \psi: \mathscr{S}(X) \otimes D B \rightarrow \mathscr{S}(X)$ is a corresponding. map of ψ in the adjoint relation $\left[\mathscr{P}(X) \otimes{ }_{B} D B, \mathscr{S}(X)\right]_{B} \simeq$ $\left[\mathscr{S}(X),[D B, \mathscr{S}(X)]_{B}\right]_{B}$. Each - also means the abbreviation of a corresponding module.

By the definitions of x, y, and $\mathscr{P}(X)$ we know the commutativity of

and

Further by Lemma 2.1 we have the commutativity

$$
\boldsymbol{t}_{7}\left[\delta_{A}^{-1}, V(X)\right]=\left[D T, \eta_{[T, V(X)]}^{-1}\right] \iota_{T}\left[\delta_{A},[T, V(X)] \otimes T\right]\left[D A, \varepsilon_{X}^{-1}\right]
$$

Hence taking those commutativities into consideration for the diagrams (2) and (3) we know that it is enough to prove the commutativity of the outer polygon of the following diagram:

By Lemma 2.2 and 2.3 , the quadrilateral (c) and pentagon (d) are commutative and by the naturality other quadrilaterals are commutative. And the inner pentagon is also commutative by the definition of $\mathscr{P}(X)$.

This completes the proof of $\left(X \rightarrow{ }^{\Theta_{1}} L \rightarrow{ }^{4}[D T, \mathscr{P}(X)]\right)=0$.

Since

$$
\overbrace{[T, V(X)] \otimes B}^{[T, V(X)]} \sim_{\sim}^{\binom{x}{y}} \mathscr{M}(X)
$$

is an S-homomorphism, $\psi y=0$. Then from the diagrams (2) and (3) it follows that $\left(P_{0} \otimes D A \rightarrow{ }^{\Theta_{2}} L \rightarrow{ }^{\Delta}[D T, \mathscr{S}(X)]\right)=0$.

Now it remains to prove that $\left(P_{0} \rightarrow^{\Theta_{2}} L \rightarrow{ }^{\Delta}[D T, \mathscr{S}(X)]\right)=0$. Looking at diagrams (2) and (3) we know that it is enough to prove the commutativity of the outer polygon of the folowing diagram:

Since $\kappa=\lceil T, V(X)] \otimes \delta_{B}\left(\varepsilon_{V(X)}^{-1} \rho_{0}\right) \otimes D T \eta_{P_{0} \otimes D T}^{-1}\left[T, P_{0} \otimes \delta_{A}^{-1}\right]$ the pentagon (B) is commutative.

By Lemma 2.2 the quadrilateral (e) is also commutative. Further by Lemma 2.3 the pentagon ($($) is commutative.
Then the naturality of morphism in other squares induces the conclusion that $\left(P_{0} \rightarrow{ }^{\theta_{2}} L \rightarrow{ }^{\Delta}[D T, \mathscr{S}(X)]\right)=0$.

Naturality of $1_{\text {mod }-\mathrm{R}} \rightarrow \mathscr{Q} \mathscr{S}$
Let X and X^{\prime} be right A-modules and f and A-homomorphism. Then we have the following commutative diagram

where the exact sequences in the second and the third rows are torsion resolutions of X and X^{\prime}, respectively, and in the first and the fourth rows are projective resolutions of $T(X)$ such that P_{0} and P_{0}^{\prime} are the projective covers of $V(X)$ and $V\left(X^{\prime}\right)$, respectively.

Then there are \hat{f} and \hat{f}_{V} such that

$$
f \rho_{1}=\rho_{1}^{\prime} \hat{f}, f_{V} \rho_{0}=\rho_{0}^{\prime} \hat{f}_{V}
$$

and it holds

$$
\rho_{0}^{\prime}\left(\hat{f}_{V} \alpha-\alpha^{\prime} \hat{f}\right)=0
$$

because

$$
\begin{aligned}
\rho_{0}^{\prime} f_{V} \alpha & =f_{v} \rho_{0} \alpha=f_{v} \alpha_{X} \rho_{1}=\alpha_{X^{\prime}} f \rho_{1} \\
& =\alpha_{X^{\prime}} \rho_{1}^{\prime} \hat{f}=\rho_{0}^{\prime} \alpha^{\prime} \hat{f}
\end{aligned}
$$

But by the snake lemma there is $\delta \in \operatorname{Hom}_{A}\left(P_{1}, \operatorname{Ker} \rho_{1}^{\prime}\right)$ such that

$$
f_{v} \alpha-\alpha^{\prime} \hat{f}=\alpha_{X^{\prime}} \operatorname{ker} \rho_{1}^{\prime} \delta
$$

and hence

$$
\rho_{1}^{\prime}\left(f+\operatorname{ker} \rho_{1}^{\prime} \delta\right)=\rho_{1}^{\prime} f=f \rho_{1}
$$

So we can use $\hat{f}+\operatorname{ker} \rho_{1}^{\prime} \delta$ in place of \hat{f}. Thus we may assume at the beginning that it holds

$$
\rho_{1}^{\prime} \hat{f}=f \rho_{1}, \quad \hat{f}_{v} \alpha_{X}=\alpha_{X^{\prime}}^{\prime} \hat{f}
$$

Then we can check commutativity for each square of the following diagram

where $\hat{\kappa}=\left(\eta_{P_{0} \otimes D T}\right) \hat{f} \otimes D T\left(\eta_{P_{0} \otimes D T}\right)^{-1}$. So by diagram (2) we know that in order to prove the naturality $X \simeq \mathscr{Q} \mathscr{P}(X)$ it is enough to check the commutativity of

and

However, it follows from the property of the minimal torsion resolutions and the definition of f_{V}. This completes the proof of Theorem 1.4.

3. Remarks and Examples

There are several applications of Theorem 1.4 for which we can refer to [13] and [15].
In connection with Nakayama's conjecture on dominant dimension of algebras [10] one of the author [11] proposed a conjecture on self-extensions that for a right module M over a selfinjective algebra R, M is projective if $\operatorname{Ext}_{R}^{n}(M, M)=0$ for all positive integers n. Recently Hoshino [9] proved the conjecture is true for modules over trivial extensions $A \ltimes D A$ of hereditary algebras A.

On the other hand as a consequence of Theorem 1.4 we have
Proposition 3.1. Assume that the conjecture on self-extensions is true for a trivial extension $A \ltimes D A$ of an algebra A. Then the conjecture is true for a trivial extension $B \ltimes D B$ if there is a chain of algebras $A=A_{0}, A_{1}, \ldots, A_{i}=B$ such that $\left(A_{1}, T_{1}, A_{0}\right)\left(A_{2}, T_{2}, A_{1}\right), \ldots,\left(A_{t}, T_{t}, A_{t-1}\right)$ are tilting triples.

Proof. It is enough to prove for the case $t=1$. As in Theorem 1.4 denote $A \times D A, B \times D B$ and a stable equivalence: $\bmod -B \ltimes D B \rightarrow$ $\underline{\bmod }-A \ltimes D A$ by R, S, and 2 , respectively. Then for a nonprojective right S-module M it follows by Theorem 1.4 that $\operatorname{Ext}_{s}^{n+1}(M, M) \simeq$ $\operatorname{Ext}_{s}^{1}\left(\Omega_{s}^{n} M, M\right) \simeq D \underline{\operatorname{Hom}}_{s}\left(\Omega_{s}^{n} M, \tau_{s}^{-1} M\right) \simeq D \underline{\operatorname{Hom}}_{s}\left(2 \Omega_{S}^{n} M, \mathscr{Q}_{s}^{-1} M\right) \simeq$ D Hom $\left._{R}\left(\Omega_{R}^{n} 2 M, \tau_{R}^{-1} 2 M\right) \simeq \operatorname{Ext}_{R}^{n+1} 2 M, 2 M\right)$ for $n=0,1,2, \ldots$, because by Auslander-Reiten's result [2] any stable equivalence commutes with loop functors of Heller for symmetric algebras. Now the conclusion is evident.

Now by Hoshino's result we have
Corollary 3.2. The conjecture on self-extensions is true for a trivial extension $B \times D B$ of an algebra B which is obtained from a hereditary algebra by applying repeatedly tilting processes.
In order to show some examples, it is necessary to explain our convension concerning the expression of modules. Let k be a field and A an algebra over k defined by a quiver Q and an ideal I of the path algebra $k Q$, i.e., $A=k Q / I$. We denote by Q_{0} and Q_{1} the sets of vertices and arrows of the quiver Q respectively. Let e_{i} be the primitive idempotent of A corresponding to a vertex $i \in Q_{0}$. A right A-module M is given by attaching vector spaces $M(i)$ to every vertices $i \in Q_{0}$ and linear maps $M(\alpha): M(i) \rightarrow M(j)$ to every arrow $\alpha: j \rightarrow i$ of Q_{1} such that $M(\alpha)$'s satisfy all relations induced from I.

In the case where each vector space $M(i)$ can be decomposed into a direct sum of one-dimensional subspaces $M(i)=\oplus_{s} k v_{s}^{(i)}$ such that $M(\alpha)\left(k v_{s}^{(i)}\right)=k v_{t}^{(j)}$ or 0 for each linear map $M(\alpha): M(i) \rightarrow M(j)$, we will express the module-structure of M by the following diagram $\Theta(M)$:
(i) The vertices of $\Theta(M)$ are the k-basis $v_{s}^{(i)}$ in the above decompositions of $M(i)$'s,
(ii) There is an arrow labeled by α from $v_{s}^{(i)}$ to $v_{t}^{(j)}$ if and only if $M(\alpha)\left(k v_{s}^{(i)}\right)=k v_{t}^{(j)}$ for a linear map $M(\alpha): M(i) \rightarrow M(j)$.

In practice, we simply denote the vertex $v_{s}^{(2)}$ by i and in the case where there is only one arrow from $v_{s}^{(i)}$ to $v_{t}^{(j)}$, we usually omit the arrow and write i over j in order to point out the existence of the arrow from $v_{s}^{(i)}$ to $w_{t}^{(j)}$.

Fxampif 1. Let A be an algebra defined by the following quiver and relation over k;
(quiver)

Then, the Auslander-Reiten quiver Γ_{A} is the form

where dotted lines show τ_{A}-orbits and ripple marks indicate the vertices of Γ_{A} which should be identified to each other. Especially ${ }^{2} 1_{2}^{3}$ denotes an abbreviation of

Example 2. Let B be an algebra defined by the following quiver and relation;

Then the following is the Auslander-Reiten quiver Γ_{B} :

For the above algebras and their Auslander-Reiten quivers we now have the following tilting module $T_{A}=\tau_{A}^{-1}\left(e_{1} A\right) \oplus e_{2} A \oplus e_{3} A={ }^{2} 1^{3} 2 \oplus{ }^{2} 1 \oplus 1^{3} 2_{2}$ and the tilting triple $\left(B,{ }_{B} T_{A}, A\right)$, where $B \cong \operatorname{End}_{A}(T)$. Then the distribution charts of $\mathscr{T}, \mathscr{F}, \mathscr{X}$, and \mathscr{Y} and maps defined by $\operatorname{Hom}_{A}(T,-)$ and $\operatorname{Fxt}_{A}(T,-)$ as follows:
$\mathscr{T}=\left(\Gamma_{A}\right)_{0}-\{1\}, \quad \mathscr{F}=\{1\}$,
$\mathscr{Y}=\left(\Gamma_{B}\right)_{0}-\left\{1,{ }^{3} 1,2^{1} 3_{1},{ }^{1} 3_{1}\right\}, \mathscr{X}=\{1\}$,
and
$\operatorname{Hom}_{A}(T,-)$

$\operatorname{Ext}_{A}(T,-)$

Figure 1

Now by Yamagata's theorem $|17|$ the trivial extension $T(B)=B \times D B$ is of infinite representation type since $Q(B)$ contains an oriented cycle

3. Hence so is $T(A)=A \ltimes D A$ and there exist many connected components of $\Gamma_{T(A)}$ and $\Gamma_{T(B)}$. Therefore we show only connected components in which indecomposable A or B-modules appear as their vertices. In Fig. 1 by $\Gamma_{T(A)}^{(1)}$ we denote a connected component of $\Gamma_{T(A)}$ which contains a simple torsion free A-module 1 and we can check $\mathscr{S}(1) \cong \Omega_{T(B)} \operatorname{Ext}_{A}^{1}(T,-)$, where $\Omega_{T_{(B)}}$ is the loop space functor of Heller (cf. [15])

In Fig. 1, ($-\circ-$) indicates the positions where projective $T(A)$ - (resp.
$T(B)$-) modules appear. Further subquivers and vertices encircled by closed curves indicate ones consist of torsion or torsion free A - or B-modules. On the other hand subquivers and vertices encircled by dotted closed curves indicate ones consist of B-modules which are neither torsion nor torsion free. The vertical correspondence from the top to the bottom indicates \mathscr{S} and we know that \mathscr{S} preserves the correspondence defined by the tilting functor $\operatorname{Hom}_{A}(T,-)$.

In Fig. 2 we show other two connected components of $\Gamma_{T(A)}$ and $\Gamma_{T(B)}$ which contain the remaining A and B-modules. Of course it holds that $\underline{\operatorname{Hom}}_{T(A)}\left(M_{1}, M_{2}\right) \simeq \underline{\operatorname{Hom}}_{T(B)}\left(\mathscr{S}\left(M_{1}\right), \mathscr{S}\left(M_{2}\right)\right)$ for $M_{1}, M_{2} \in$ $\bmod -T(A)$. For example we can check that $\underline{\operatorname{Hom}}_{T(A)}\left({ }^{2} 3^{1},^{3},{ }_{2}^{1} 3\right) \simeq$ $\underline{\operatorname{Hom}}_{T(B)}\left({ }_{2} 2_{1} 1_{3}\right) \neq 0$ and $\underline{\operatorname{Hom}}_{T(A)}(3,1,3) \cong \underline{\operatorname{Hom}}_{T(B)}\left(3,1_{3}\right)=0$, where $2_{3} 1_{2},{ }^{3} 1 \in \Gamma_{T(A)}^{(2)}$ and $3^{1} 3_{3}, \quad{ }_{3} \in \Gamma_{T(A)}^{(3)}$.

It is to be noted that to our example all indecomposable projective $T(A)$ and $T(B)$-modules appear in the connected components of Figs. 1 and 2. So we may propose a problem; For a tilting triple $\left(B,{ }_{B} T_{A}, A\right)$ determine

$$
I_{T}^{(3)}
$$

Figure 2
all connected components of $\Gamma_{T(A)}$ and $\Gamma_{T(B)}$ such that in each of them at least an indecomposable projective $T(A)$ or $T(B)$-module appears as a vertex.

References

1. I. Assem and Y. IWanaga, Stable equivalence of representation-finite trivial extension, preprint.
2. M. Auslander and I. Reiten, Representation theory of artin algebras III, V, Comm. Algebra 3 (1975), 239-294; 5 (1977), 519-554.
3. M. AlSLander and 1. Reiten, On a generalized version of the Nakayama conjecture, Proc. Amer. Math. Soc. 52 (1975), 69-74.
4. M. Auslander, M. I. Platzeck and 1. Reiten, Coxeter functors without diagrams, Trans. Amer. Math. Soc. 250 (1979), 1-46.
5. I. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, Coxeter functors and Gabriel's theorem, Uspechi Mat. Nauk. 28 (1973); translated in Russian Math. Surveys 28 (1973), 17-32.
6. S. Brenner and M. C. R. Butler, "Generalizations of Bernstein-Gelfand-Ponomarev Reflection Functors," Lecture Notes in Math., Vol. 832, pp. 103-169, Springer-Verlag, Berlin, 1980.
7. R. M. Fossum, P. A. Griffith and I. Reiten, "Trivial Extensions of Abelian Categories," Lecture Notes in Math., Vol. 456, Springer-Verlag, Berlin, 1975.
8. D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443.
9. M. Hoshino, Modules without self-extensions and Nakayama's conjecture, Arch. Math. 43 (1984), 493-500.
10. T. Nakayama, On algebras with complete homology, Abh. Math. Sem. Univ. Hamburg 22 (1958), 300-307.
11. H. Tachikawa, "Quasi-Frobenius Rings and Generalizations," Lecture Notes in Math., Vol. 351, Springer-Verlag, Berlin, 1973.
12. H. Tachiknwa, Reflection functors and Auslander-Reiten translations for trivial extensions of hereditary algebras, J. Algebra 90 (1984), 98-118.
13. H. Tachikawa, "Selfinjective Algebras and Tilting Theory," Lecture Notes in Math., Vol. 1177, pp. 272-307, Springer-Verlag, Berlin, 1986.
14. H. Tachikawa and T. Wakamatsu, Extensions of tilting functors and $Q F-3$ algebras, J. Algebra 103 (1986), 662-676.
15. H. Tachikawa and T. Wakamatse, "Applications of Reflection Functors for SelfInjective Algebras," Lecture Notes in Math., Vol. 1177, pp. 308-327, Springer-Verlag, Berlin, 1986.
16. T. Wakamatsu, Partial Coxeter functors of selfinjective algebras, Tsukuba J. Math. 9 (1985), 171-183.
17. K. Yamagata, "On Algebras whose Trivial Extensions Are of Finite Representation Type," Lecture Notes in Math., Vol. 903, Springer-Verlag, Berlin, 1981.

[^0]: * The main theorem in this paper was announced by one of the authors at ICRA IV in Ottawa during August 16-25, 1984.

