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INTRODUCTION

Let A be a finite dimensional algebra over a basic field k and T a right
A-module satisfying the following three conditions:

(1) Ext\(T,T7)=0, (2) Ext4(T, —)=0, (3) There is a short exact
sequence 0> A4, > T, — T -0, with T', T" being direct sums of sum-
mands of 7. Then putting B=End T, we call (B, T, A) and Hom (T, —):
mod-A4 — mod-B a tilting triple and a tilting functor, respectively.

Tilting functors have been introduced by Brenner and Butler [6]
as a generalization of the Bernstein—Gelfand—Ponomarev’s reflection
functors [S5]. They and Happel and Ringel [8] have proved that
we have (usually nonhereditary) torsion theories (4, %) in mod-4
and (Z,%) in mod-B, where 7 ={Xemod-A|Ext}(T, X)=0} and
F={Yemod-B|Y®,T=0}, and the tilting functor and Ext!(T, —)
give category-equivalences between J and # and between & and %,
respectively.

These equivalences give us, however, no information about indecom-
posable A-modules and B-modules which do not belong to the above sub-
categories 7, %, Z, and %. The purpose of this paper is to point out that
there is a method to enlarge our view by which we can supply the lack of
information.

Let us consider trivial extension algebras R=A4X DA and S=BX DB of
A and B by DA and DB respectively, where ,DA,=Hom, (4, k) and
gDBp=Hom,(B, k) are injective cogenerator bimodules. In this case R
and S are selfinjective (more precisely symmetric) algebras and mod-4 and
mod-B are naturally embedded into projectively stable categories mod-R
and mod-S. Then our main theorem states that for any tilting triple

* The main theorem in this paper was announced by one of the authors at ICRA IV in
Ottawa during August 16-25, 1984.
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TILTING FUNCTOR AND STABLE EQUIVALENCE 136

(A, 7, B) there exists always a stable equivalence .%°: mod-R — mod-S such
that the restriction of & to the torsion class 7 coincides with the tilting
functor Hom (T, — ).

In fact this stable equivalence & is a generalization of S, which was
introduced by one of the authors [11] for a trivial extension of a path-
algebra of an oriented tree Q and a reflection functor s, with respect to a
sink vertex of Q. And it is to be noted that Assem and Iwanaga [1], and
Wakamatsu [15] also proved the existence of such stable equivalence for
the following special cases, respectively,

(1} R=AXDA is of finite representation type,

(2) Hom (7, —) is a partial coxeter functor in the sense of Auslan-
der—Platzeck—Reiten [4].

Here it is not too much to say that our theorem is fairly general because
it needs no restriction for the representation type of A4 and the torsion
theories induced by 7. Even in the case where 4 and hence R are of infinite
representation type & teaches us concretely not only the correspondence
between many connected components of Auslander—Reiten quivers of R
and S but also the correspondence of (stable} homomorphisms between
indecomposable modules which belong not necessarily to the same connec-
ted component of Auslander—Reiten quivers (cf. Examples in Sect. 3).

Qur proof is also available to artin algebras provided we replace
D=Hom,(—, k) by Homq{(—, E(C/rad C)) where C are centers of
algebras and E£(C/rad C) are injective envelopes of ~C/rad C.

In Section ! we shall introduce the notion of torsion resolutions of
A-modules and using them we shall define the stable functor .&. The proof
for & to be stable equivalence is reduced to the proofs of the commuta-
tivities of great many diagrams and will be given in Section 2. In Section 3
we give remarks and examples in which Auslander—Reiten quivers of 4, B,
R and S, and correspondences defined by Hom (T, — ). Ext, (7, —) and
& will be explicitly given.

Throughout this paper unless otherwise specified modules are unital
finitely generated right modules, but homomorphisms operate from the left
hand. [ X, Y], denotes Hom (X, Y) for 4-modules X and Y.

1. TORSION RESOLUTIONS AND STABLE EXTENSIONS

Let (B, T, A) be a tilting triple. For the definition see Introduction.
Let (7, F), (¥, %) be the corresponding torsion theories in mod-4 and
mod-B. That is, T, is a tilting module, B=End 7, and 4 =End ,T;

I = {Xemod-A|Ext, (T, X)=0} =Gen(T )
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and
F = {Xemod-A|Hom (T, X)=0} = Cog(z ,(T)).

where 7 ,= D Tr is the Auslander-Reiten translation, and Gen(T ;) (resp.
Cog(z ,4(T)) is a subcategory of mod-A consist of all modules which are
homomorphic images (resp. submodules) of direct sums (resp. products) of
copies of T, (resp. 74(T));

% = {Ye B-mod|Tor?(Y, T)=0}
and

Z={YeBmodY®T=0}.
LeMMA 1.1.  For any A-module X there is an exact sequence

00— X2 vx) —2 1(x) 0

such that V(X)e 7, T(X)= P& T eadd-T, where P is a projective cover of
right B-module Ext! (T, X).

Proof. For Xe 7 we can take V(X)= X and T(X)=0. Hence we divide
the proof into the following two cases:

(i) Let X belong to #. Take the projective cover P —* Ext!, (T, X)
of Ext! (7, X) and denote Ker p by K.
Apply (— ® zT) to

0—— K——;» P—C— Ext! (T, X) —— 0.
Then
0 Tor8(Ext!(T, X), T) > K®T
- PRT—-Exti (T, X)®T—-0 is exact.
However Tor8(Ext, (T, X), T) ~ X and
Ext! (T, X)T=0 forXe#Z.

So we can take K® T and P® T as V(X) and T(X), respectively.

(ii) Let X be an 4-module which is not necessarily torsion free. Let
us consider the exact sequence

0—-i(x)>X—>X/t(X)—-0
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as an element of Ext! (X/n(X), 1(X)), where 1(X) is the torsion part of X
with respect to (7, ).
By (i) there is an exact sequence

0 — X/t(X) ~» V(X/H(X)) > T(X/t{(X)) — 0

with V(X/t{(X))e I and T(X/1(X))eadd-T.

Applying Extl(—,#(X)) we have an isomorphism §: Ext}
(V(X/t(X)), 1(X)) - ExtL (X/1(X), (X)) because Extl (T(X/1(X)), t{X))=0
and Ext? (T(X/1(X)), {(X))=0. Thus we have the following commutative
diagram

1

T e g e O

0

l
HX)

|

X

7 — 0

l

0 —— X/t(X) —— V(X/t(X)) —— T(X/t(X)) —— 0

é

where the first column is considered as E and the second column is
considered as 6 ~'(E). Now from #(X), V(X/t(X))€ 7 it follows Ve and
T ~T(X/t{X))eadd-T. Because T(X/1(X))=P®T where P is the
projective cover of Ext! (T, X/1(X)), but ExtL (7, X}, ~ Ext, (T, X/H{ X)) 5.
This completes the proof.

O

For any X emod-A4 we shall call an exact sequence

0-X->V,»V,-0

a torsion resolution of X if

V.eg and V,eadd-T.

ProPOSITION 1.2, For any torsion resolution of X,

0 XV ->T -0
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there is an isomorphic torsion resolution such that

(&) (6
00— X 25 V(X))@ Ty—— T(X)® Ty, — 0,

where Toeadd-T and oy, By, V(X), T(X) are same as in Lemma 1.1.

Proof. From V', V(X)eJ it follows Ext}(T,V')=0 and
Extl (T, V(X)) =0. Thus there are 4-homomorphisms f, g, /, k such that

00— X2 yx) 2 1x) 0
H '/1 /71

O——s X— V T 0

0 X 2 yx) —2 s 1x)——0

is commutative.
Here it is to be noted that

Hom , (T, T(X)) - Ext (7, X)—0
HomA(T.k/z)jv H
Hom (7, T(X)) - Ext' (T, X)—0

is commutative and Hom (7, kh) is an isomorphism, for by Lemma 1.1
rows are the projective covers of Ext!, (7, X).

However Hom , (7, —) gives an equivalence between J and %. Thus kh
and gf are isomorphisms and we can conclude our proof by a routine
calculation.

Dually for Ye B-mod we shall call an exact sequence

0-W sV ->Y->0

a torsion free resolution if V'€ % and W eadd-DT,

PrOPOSITION 1.3.  For a right B-module Y

(1) there is a torsion free resolution

0 W(Y)—1s U(Y)—2s ¥ —— 0

such that 0> Tor2(Y, T)» W(Y)®T is the injective envelope of
Tor2(Y, 1.
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(2) for any torsion free resolution of Y there is an isomorphic torsion
Jree resolution such that

Ay O
0— u«yjc>ma,——3~9+ vy)e w,- 2% y 0.

Let R and § be trivial extensions of 4 and B by injective cogenerators
DA and DB, respectively. Then there are full embeddings of mod-4
mod-R and mod-Bcmod-S: Take A-homomorphism feHom , (X, Y),
X, Yemod-4. Assume f is factored through a projective R-module
(POPR®DA, (,,° 9))such that

lpgpa O

f=(x—'% PeoP®DA—L>Y)

Then Imf, =« (0@ P®DA) and Ker /5, 5(0@ PR DA), since X and Y are
annihilated by ideal (0, DA) of R, and hence fis the zero map. This implies
mod-4 < mod-R is a full embedding, and similarly mod-B c mod-S is a full
embedding.

In the case where 4 and B are hereditary and Hom (7, —) gives the
Bernstein—Gelfand—Ponomarev’s reflection functor, one of the authors [11]
proved that there exists a stably equivalent functor between mod-R and
mod-S which extends Hom (7, —). It seems to us that the result is
interesting because 4 and B are not only of finite representation type but
also of infinite representation type (depending on neither tame nor wild
type). The main purpose of this paper is to prove the following more
general result:

Tueorem 1.4,  For any tilting triple (B, T, 4}

(1) there is a stable functor & from mod-R to mod-S such that
F1I =Hom(T, —).

(2) & is always a stable equivalence.

Now it needs to introduce several notations: For C-algebras E and F,
and an E-F-bimodule U and an F-E-bimodul V we denote by #%, the map:
mod-Es Wawr (1 >w®t)e Uy, W® Uslemod-E and by &} the
map: mod-Fa [V, Z;1® (V2h®@t— h(t)e Zemod-E. In the case of
V= ,T, we abbreviate 1, and ¢Z to 5, and ¢, respectively. Denote by 1,
the adjunction, [ - ® U, — 1 = [—, LU, — ]z

We use also isomorphisms 6 ,: ;DT ® T, — D Homgz{7, T)=DA and
0p: T® ,DT— DHomg(T, T)= DB, and sometimes we identify DT® T
(resp. T® DT) with DA (resp. DB) by &, (resp. d5).

For a B-module W (resp. A-module Z) we can define an S-module

481/109/1-10
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(WOW®DB, (,,° ) (W®WRDB)® DB—> W® W® DB) (resp. an

lweps O

R-module (Z®Z® D4, (4,2, 3)) and we denote this module by
w V4
AAAAA (resp. MM/\)
W& DB Z® DA

ProposITION 1.5. Let (X, ¢: X® DA, — X ;) be a right R-module and

0—— X—2 y(x) 2 1(x) 0

the minimal torsion resolution of a right A-module X. Since V(X)e T,
vy LLVX)]I® T - V(X) is an isomorphism. We can define a
B-homomorphism

D XQDT [T, V(X)]®[T, V(X)]® DB
by
([T, oy LT, —¢]1 [T,X®J,] "IX@DT)
[T V(X)]®65 ey, ®@DT 0y @ DT

and denote Cok @, by F(X). Then it holds that
(1) X® DT is right S-module by
—¢RDT-X®6,QDT - X®DT®I;'": X®DTR®DB—->XQDT.
(2) @y can be considered as an S-homomorphism:
LT, V(X)]
X @ DT g o NAAAAAAANA |
LT, V(X)]1® DBs
(3) If X is a torsion right A-module, then ¥ (X)=Hom ,(T, X).
4) If X is a projective R-module, ie., projective and injective
R-module, then ¥ (X) is a projective S-module.
Proof. (1) It follows by the equality
(—¢@DT X®5,8DT-X®DTR55")
“((—¢®DT X®5,DT- X® DTRS;')® DB)
=(—¢  —¢®DA-X®DARS,)QDT - X®5,8DT® DB=0.
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(2) Tt follows from the commutativity of the following diagram

[T,X8DT8T] DB

Nxepr®oB
XBDTEDB [T,%85, 1808
f [T,XSDA]®TEDT  [T,X&DA1®S
2. 14 ¥ B
l £ opa®DT ~
L®DASDT [T,-$]18T&DT [T,X®DA]8DB
!
¢®DT[ [T,X] ® T ® DT
- |
£, 8DT ~ [T,-9]8DB
X®DT (T,a,]8T8DT
i [T,X]8DB
[T,V (X)]8T&DT
{T,aX] @DB
{T,v({X) ]@6
oT
a8
V(X)
V(Xi@DT [T,V(X) 1@DB

7N

[T,V(X)]eDB

(3) Since T is a tilting left B-module the torsion class D% =Gen p¥
and zD(B) € Gen 4T, Tor{(T, DT) ~ Tor#(T,, [T, ,D(B)]) = 0. It
follows that

0—— XQDT——5> V(X)® DT ———— T(X)® DT —— 0

Bx®DT

1s exact. But from the assumption XeZ it follows T(X)=0 and
&y ® DT 0y ® DT is an isomorphism.

On the other hand, [T, a,]-[7, —¢] [T.X®6,] tyepr=0 since
¢ =0. Hence by the definition of #(X), ¥ (X}~ Hom (T, X).
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(4) Let e be a primitive idempotent of 4. Then e is also a primitive
idempotent in R and

eR = AnnAnvv.
eAR® DA

Let 0 > ed —*4 V(ed) —=#* T(e4) — 0 be the minimal torsion resolution of
eA. Then V(ed), T(ed)eadd T,. And & is given by

- [[T,aeA] 0
1
"easpr ° [T,eA®DA] [1 o] tr,eal\ O Trlenapa!
o ® SO
eA®DASDT)» [T,eAGDASDA] [T, eA@Im (T,V(eh)]
5]
[T,eABDA]
AAANANANAAA.
AN [T,V (eA) J6DB
eABDAGDT ®
AGDA] &DB
\ V(ea)®DT /7 {T,e 1@
®
€A®DASDT 1 o
@ ® DT 0 ' 3 ®DT
V(ea)
-1
0 1
EeA@DAGDT
p
0 0 \
o - (T:1eagpal * Mensor 0
et 8T + o _®DT 0 ’
v (ed) eA
0 -1 epr. 1 J
\ € eneDA eA®DAGDT

Here ¢,'¢ i leswpagpr: eA®DARDT - [T, eAQDAT® DB is an
isomorphism and

[T, le@pal®Nesgor: eAQDT - [T,eA®DA]
is also an isomorphism as a component of
([T, Leagoa] ®nM®DT>, cABDT =~ (redona

4 ANAAANANNA - e
8V(eA)®DT'°‘eA®DT eARDAR DT [T Vied)1® DB.
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Hence

[T, Vied)]
Cok @ ~ A AWV,
[T, V(ed)]®DB

but [T, V(ed4)] is a projective B-module and Cok & is a projective
S-module.

Proof of Theorem14. (1) Let (X,¢:X®DA—-X) and (X, 4¢:
X, ® DA - X,) be R-modules and f an R-homomorphism of X to X
Then f is associated with

X®DA —2 - X

f@DAl lf

X1®DATX}

and by the property of torsion resolution there are A-homomorphisms £,
/7 such that

0 X V(X) . T(X) 0
fl Ji l frj
0 X, V(X,) T(Xy) 0

is commutative. Therefore the commutativity holds for each square of the
following diagram:

(T,-9]
. [T,X®DA] ——> [T,X] 1X,0.]
X8DT X
[T,v{x)]

XBDT — [T,£]  AAAAAAAAA
7 [T,V (X) ] BDB
C‘XGDT V(X)a8DT

£8DT V{X) {T,fvl

]
¥ AAAAANAA

{T,f_]%DB
¥ _&DT L Rt 1 v
v %" [T, ]
X, 8DT 1

1 1
£ ®DT
v T V(X
M«A
s y [T,V(X,) 1808
Gy BDT V(X.)®DT — +

1 1

[T, £5DA] [T,~¢;
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where we abbreviate isomorphisms
[T, X®é.1, [T,X,®6,], [T,V(X)]®dp, and [T, V(X,)I®0p.
Thus we have an S-homomorphism f*:
LX) - LX), though f* depends upon /.
In the following we shall prove that f, is uniquely determined modulo

morphisms which factor through projective S-modules.
Assume f'= 0. Then there is an A-homomorphism ¢ such that the triangle

in
OJv 8 jv /
Bxy

0 X, —2 V(X,) T(X,) 0

is commutative. And in the following diagram it holds «xi=
(%) 11130 ps) and 4@y =0:

X® DA

¢Xl

LT, V(X)] A [T, T(X)] . [T, V(X,)]

[T.V(X)]1®DB  [L.T(X)I®DB [T, V(X,)]®DB
A
0 ¢ J L (X))

where A= (""f1 1, 586 ps); k=% 1 sgpp) and py and py, are
cokernels of @, and &y, respectively. Therefore we have an
S-homomorphism 6 such that f*-py=pyxfp,. Hence f*=p, 46, and

[T, T(X)]
AAAAAANAANA
[T, T(X)]® DB

is a projective S-module.

Now for feHomg(X,X,;), geHomg(X;,X,) it is clear that
(g /Y*=g* - f* modulo S-homomorphisms which factor through projec-
tives.
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2. %:mod AX DA - mod BX DB 1S AN EQUIVALENCE

Torsion free resolution of ¥(X)
Let (Y, y: Y— [ DB, Y]) be a right S-module and

0 W(Y) —2 U(Y)—2 ¥ 0

a minimal torsion free resolution of a right B-module 7.
Since U(Y)e% and #yy, i an isomorphism, we can define an
A-homomorphism ¥,: [DA, U@ TI@UYY®T—-[DT, Y] by

([DT, y)’] ’ [DT> ’1(7(1Y)] “lpt [5A9 U(Y)® T]!
&rpr, vy it [03, Y]71® T-—4y®T-7,QT)

Denote Ker ¥, by 2(Y).
Further [ DT, Y] becomes a right R-module by

[DT. [6p. Y]]
S

(DT, Y122 [DT, [DB, Y]] [DT, [T®DT, Y]]

[64.[DT. Y]]

 ~[DT®T, [DT, Y]] [DA, [DT, Y11

and ¥, is natural as an R-homomorphism:

[DA, U(Y)®T]
AANANAANNAA = [ DT, Y.
uyryer

So 2(Y) is a right R-module and by a dual argument to the preceding
section we have a stable functor 2: mod-S — mod-R.
Now let (X, ¢: X® DA — X) be a right 4-module and

0— X325 1(X) _Bx, TxX)— 0 a minimal torsion resolution of X.

We shall seek a torsion free resolution of F(X),.
Let Py —*° V(X) — 0 be a projective cover of V{X). Then we have a com-
mutative diagram with exact rows:

0 P, —» P, —— T(X) 0
Jm Jpo j'id
00— X 25 VX)) 2 T(X) 0,

where f =B, p, and P, is projective as proj. dim 7(X} < 1.
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It follows further the commutative diagram:

0— P,@ DT [T, V(X)]@[T, P, ®DA]
jm@DT J(I[r.gm] 2)
0— XQDT 22 [T, V(X)]1D[T, V(X)]® DB—> F(X)—> 0,
(1)

where
Lh=[T, o0, [T, —¢1[T, X®@,11xgpr 1 @ DT,

L=[T, e [T, —¢1[T, X® 0,1 xe prs
$1=[T, Py®0,11peor®DT,
s, =[T, V(X)] ®538V(X)®DT0‘X® DT,
and
k= [T, V(X) 1@ 35050 ® DT) po® DTN py0 ) [T, PO,

because from Tor{(T(X), DT)~ D Ext}(T(X), T)=0 it follows the
exactness of two rows of the commutative diagram

0—— P,®DT222L p,@DT 1225 (X))@ DT—— 0

lm@or lpo@)m' H

and then we have ker(p, ® DT)~Ker(p,® DT). As Ker(lrgwi %)~
Ker x ~ Ker(p,® DT) ~ Ker(p, ® DT) we know Coker(¢,, s,) ~ F(X) by
the snake lemma.

Now from the fact that P,®DTecadd DTy and [T, V(X)]@®
[T,P,®DA]e% it follows that the upper row in (1) together with
Coker(t,, s;) can be considered as a torsion free resolution of F(X).

Hereafter we shall denote by (x, §) the pair of B-homomorphisms:
[T, V(X)]®I[T, P,®DA] — F(X) in the above torsion free resolution.
Then

[T, P,@DA] —Io #(X)
[T, V(X)]®DB— — (X)

is commutative.



TILTING FUNCTOR AND STABLE EQUIVALENCE 151

Composition Length of 25 (X)

Put an S-module

04, [T, V(X)]®TI1®[DA, [T, Po®DATR®T]
AAAAA
[T VXN]IQTOLT, Py®DAI®T

by L. Then by the torsion free resolution of (X)) which was obtained
at (1)

[DA, a(V(X))]1® [DA4, 6(Py® DA)]

0 = 2F( X} = AANANAAAAAAAAAAAANAAANAAS - [ DT, (X1 -0
o(V(X))@a(Py®DA)

is exact, where o denotes the functor [T, — J]® 7. Now ¢ V(X)) = V(X) and
o(Po® DAY= P,® DA and hence

|27(X)| = |IDA, V(X)]| + [Po| + [V(X)| + [P, ® DAl — [[DT, (X} ]].
However, we know

\[DT, #(A)]1 =[DA, V(X) ]| + | Po| — | Py}

and |Py| ~|P,| =|T(X)| =|V(X)| — |X|, for the first equality follows from
the exactness of

0-[DT, P,®DT|—-[DT, [T, V(X)]11® DT, [T, P,®DA]]
- [DT, #(X)]-0.

Hence |27(X)|=|XB P,@R)|.
Consequently we can prove

Py
AL (X))~ X P ANAAA
Py®DA
as an R-module provided we can find an R-monomorphism &:

X®P,®R L,

such that

X®Py®R—2— L,—2— [DT, #(X)]1x

is the zero map, where 4 =[DT, (x, 7)1
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Embedding X® Py® R— L
Let ©®, and @, be 4-homomorphisms defined by
@1 = ([DA7 8;({\’)][DA7 OC,\"] [DA’ ¢] nﬁAa 817(&’) aX):
X [DA, [T, VX)]®TI®[LT, V(X)]1®T<L

and

2=\ 0 0 ep' ®DA

ST VXN)IRTOT, Po@DA]DT.

): P,®P,® DA

Hereafter our main purpose is to show that the map (€., ©,):
X®PBP,®DA— L is the R-homomorphism & what we quoted before.

Each of @, and @, is monomorphism as ¢;)ay and &5, are
monomorphisms,

The next Lemma 2.1 is necessary to the proof:

LemMMa 2.1.

[DT, [T, X1] —22291, [ DT, [T, [T, X]1® T1]
[DA, X] L2 [DA, [T, X]1®T]
is a commutative diagram.

Proof. This follows immediately from the commutativity of

\ /Tvsx]
[T, X]

Now Lemma 2.1 induces the commutativity of

(DT, tryn1® DA
L v 1@ 24

[DT, [T, V(X)]1® DA [PT, [T, T, V(X)]®T]11® DA

| |

[DA, V(X)]®@ DA <L242wl®P4  rpy [T, V(X)]® T1® DA
DA I DA
Ey(xy VX I®T

V(X) — [T, V(X)]I®T.
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Further the last commutative diagram induces again the commutativity of

(D4, 2x1®@ DA (DT, q{7,7%)11 ® DA
(DA, X]®DA 220 (DA, V(X)]@DA ————====", (D4,[T, V(X)]®T]®DA

DA DA DA
Jﬁx lwm i"[T-Vm]@T

X —_— V(X) [LVXIeT.

zx EV(X)

Since
eY'[DA, ¢1Q@ DAY @ DA =4,

it follows
317(1X) Ay = 8?74, v @ T([DA, 8;(1)()][1)/1’ ay1[DA, $1n2*) @ DA.

This implies that 6, is an R-homomorphism.
By Lemma 2.1 we have a commutative diagram

[DT. nir.pyg0a)1® DA

[DT, [T, P,®DA]I® DA

DT, [T, [T, P,®DAI®T]1® DA
i

|
|

H “.

b [DA, epy@pal® DA [1

[DA, P,®DA]® DA [DA, [T, P,®DAI® T1® DA

”%1@ DA C?f Po® DA)
EPy@ DA
Py®DA P [T, P,@DAI®T

and similarly we obtain
(8P0®DA)71 SgoA®DA = 8?74,1’0@0@ LDT, 17 pye 0] ® DA ngoA ®@DA.
This shows @, is also an R-homomorphism.
Before proceeding to the proof of
Py
(X@ ANAAA —2— L —2 [ DT, y(X)]) =0
P,® DA

1t is necessary to prove

LEMMA 2.2,
X X —~  [DA,X®DA]
HQTJ gﬁgzr[(s;‘,)r@m]
[DT, X® DT — [DT, [T, X®DA47]

[DT, [T, X®d41nx®p1]

is commutative
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Proof. It is obtained by a routine calculation.

Lemma 2.3.  For a given homomorphism Z@ D - %8Y,

[PT,Z®DB] —2L4 .,  [DT Y]
W?gr[ E[DT, Y]
ZT [T [PT. Y]I®T
e rl SLzmwg‘,Y])@T

[DB,Z®DB1® T

(DF e [DB, YI®T
is commutative.

The proof is also a routine calculation.
Now we begin the proof of (X - L -“[DT, #(X)])=0, that is,

et o~ Y OTX® T317<1X) Xy
+ [DT, X] [DTv r’[T, V(X)]][DA’ 8;(1,\’)][DA’ ax][DA, ¢] ”QA =0

At first we introduce the following diagrams (2) and (3) in order to con-
firm the definitions of @ =(€,, ©,) and 4 and further to see the squares
and triangulars for which we need to prove the commutativity

Q
DA
V‘

(0a9] ,, [0A=d  [PAsyin]

[DT, nip,pg® D411

X o > L2
hy = (2)
PO PO . s;(lx) L3
SPp® DA
PO ® DA : L4a

where L,, L,, L,, and L, denote [DA, [T, V(X)1® T1],
[DA, [T, P,®DAI®T], [T, V(X)®T] and [T, P,® DA ® T, respec-
tively, and each o means the abbreviation of a corresponding module.



]
)
i’
<!
f
5]
)
7
3
U,
h
L

TILTING FUNCTOR AND STABLE EQUIVALENCE
-1
i (87, [T,V BT
T °a (x) 18T o~ T gy !
L o]
1 o \
[DT'H[T,PO@DA]] o [DT, %]
L -1
2 1. [877,[T,P BDAI®T]
T A o] [DT,y]
[DT,S(%)]
Sxy8T
yaT /’7")‘ \
~y8T “1oT,S(x%
L4 nDB 2 [DT,S(X) ]
S (x)
KeT YST {DS : _4}] 8T O/
[DB,y®DB] BT X
[DB,x8DR] BT |
L [DE,x]8T | [DB,yl8T

HDB T
[T,V(X)]8DB ~

(3)

’

where L. denotes [T, V(X)]® DB® T and we express ¥(X) by (¥ (X},
Y S(X) > [DB, £(X)]), ¢: (X)® DB > ¥(X) is a corresponding
map of ¢ in the adjoint relation [L(X)® zDB, F(X)]z~
[L(X), [DB, #(X)]sls. Bach - also means the abbreviation of a
corresponding module.

By the definitions of x, y, and (X) we know the commutativity of

[T, V(X)]® DB—=22%, #(X)® DB

T

[7.V(X)]®DB— S(X)
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and

F(X) v » Y[ DB, #(X)]

’72?’() A 1

[DB, #(X)® DB].

Further by Lemma 2.1 we have the commutativity
7L, V(X)1=[DT, 7’]{71 V(X)]] 1[04, [T, VIX)]® T1[DA, & it

Hence taking those commutativities into consideration for the diagrams (2)
and (3) we know that it is enough to prove the commutativity of the outer
polygon of the following diagram:

ow
(o)
n -1
X - SA ,X8DT] .
Ip [5A VX))
T+ xepr! \)g
[T, [T, ¢]]
X ———}—(—~>o [DT,x]
’“‘ a \,
v [oT,y]  (DT,S(X)]
/ 0
o @ (pT, S(X) ]
-1 q o)
£7(x) ®x [T,V(X)]®T
[DB,y]1®T
QO ————> 0
DB
Nz, vt

By Lemma 2.2 and 2.3, the quadrilateral (¢) and pentagon (@ are com-
mutative and by the naturality other quadrilaterals are commutative. And
the inner pentagon is also commutative by the definition of & (X).

This completes the proof of (X - L -4 [DT, #(X)])=0.
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Since

(VXD (5
AAAAAAANA —— F(X)
[T, V(X)]®B

is an S-homomorphism, 1y =0. Then from the diagrams (2) and (3) it
follows that (P,® DA —® L —»* [ DT, ¥(X)])=0.

Now it remains to prove that (P, - L—“ [DT, ¥(X)])=0. Looking
at diagrams (2) and (3) we know that it is enough to prove the com-
mutativity of the outer polygon of the folowing diagram:

-1

-1
(oT, (1,288,711 1 [GA By

> O ~
[DT,v]

—3 0

-1
(BT, "y @DT]

[oT, S(x) ]

/ [DT,EV(X) P0®DTJ
{DT,y]

£
[DT [T, v(x)18°8] (oT, S (X))

/DT £ f{DT,[T,V(X)]@DE
. N, vix)18T

O e O

[T, 10T, y1 16T
71 -1 R R
(1gp [65 [T,V(1D)er /D; (521, S e

[

DB
", vix) ]

QT

o

{DB,y]®T

Since k= [T, V(X)1® (¢, p0) ® DT 1155 pr [T, Po® 0, '] the pen-
tagon is commutative.

By Lemma 2.2 the quadrilateral () is also commutative. Further by
Lemma 2.3 the pentagon () is commutative.

Then the naturality of morphism in other squares induces the conclusion
that (P, = L -2 [DT,¥(X)])=

Naturality of 1,0q.r = 2%

Let X and X’ be right 4-modules and f and A-homomorphism. Then we
have the following commutative diagram
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0 P, —*— Py—I— T(X) 0
\Q aN ﬂ,\\
0 X V(X) T(X) —— 0
1 f lf fv lfV fr lfr
0 X VX » T(X')—— 0
0 P, P, T(X')

where the exact sequences in the second and the third rows are torsion
resolutions of X and X', respectively, and in the first and the fourth rows
are projective resolutions of 7(X) such that P, and Py are the projective
covers of V(X) and V(X"), respectively.

Then there are / and f, such that

foi=p\f fupo=pofy
and it holds

because
pofva=fipor=Ffiayp =0y fp,
= oy pif=poa' f.
But by the snake lemma there is 6 e Hom , (P, Ker p{) such that

foa—o f=o, ker pi 6

and hence
pi(ftkerpid)=p\f=fp,.

So we can use 4+ ker p) § in place of . Thus we may assume at the begin-
ning that it holds

p’lfzfpl’ fUOC)(:(ZL\ﬂﬁ

Then we can check commutativity for each square of the following
diagram
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{T,v(x)]

P_®DT / { \ S(x)

O] <
[T P OGDA] !

p.,8DT id' f
v1i _,,_—_-—:}* [T,V(X)]
X@DT ] e 7/,\1‘575(50

£8DT £8DT ([T, £ ] [T,£_leDB

A4 [Tf] |

(T, V(X)*]
X'®DT -—-1—’""" > S(xr)
\,\({)T V(X‘)}@DBJ/

b\
' D 5 é A
l@ T :ch:
\ J [T V(X')]
Pi@DT / S(x")
[T P’ @DA}

where & = (1 py p7) f® DT( pyo pr) ' S0 by diagram (2) we know that in
order to prove the naturality X ~ 2%(X) it is enough to check the com-
mutativity of

x PO |y ) sl py [T (0] @ T]

J l[DAs[Tus}@T]

x LA g ey RAeel g [ ()] @ T
and

X 2, px) -4, “rin (T, VX)1eT

fl (T./1®T
- !

X -2 (X)L [T, VX)) T.

However, it follows from the property of the minimal torsion resolutions
and the definition of f;,. This completes the proof of Theorem 1.4.

481109:1-1 ¢
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3. REMARKS AND EXAMPLES

There are several applications of Theorem 1.4 for which we can refer to
{137 and [15].

In connection with Nakayama’s conjecture on dominant dimension of
algebras [10] one of the author [11] proposed a conjecture on self-exten-
sions that for a right module M over a selfinjective algebra R, M is projec-
tive if Ext% (M, M)=0 for all positive integers n. Recently Hoshino [9]
proved the conjecture is true for modules over trivial extensions A X DA of
hereditary algebras A.

On the other hand as a consequence of Theorem 1.4 we have

PROPOSITION 3.1.  Assume that the conjecture on self-extensions is true
Jor a trivial extension AX DA of an algebra A. Then the conjecture is true
Sfor a trivial extension BWX DB if there is a chain of algebras
A=Ay, A,,.., A, =B such that (A, T\, Ag) (45, T5, Ay, (A, T,, A, )
are tilting triples.

Proof. 1t is enough to prove for the case r=1. As in Theorem 1.4
denote AX DA, BXDB and a stable equivalence: mod-BX DB —
mod-AX DA by R, S, and 2, respectively. Then for a nonprojective right
S-module M it follows by Theorem 1.4 that Exti*!'(M, M)~
Exts(Q%M, M) ~ D Homg(Q%M, t5' M) ~ D Hom((20Q%M, 9t5 ' M) ~
D Homz(Q%IM, 15 M) ~ Ext’* ' 9M, 2M) for n=0, 1, 2,..., because by
Auslander—Reiten’s result [2] any stable equivalence commutes with loop
functors of Heller for symmetric algebras. Now the conclusion is evident.

Now by Hoshino’s result we have

COROLLARY 3.2. The conjecture on self-extensions is true for a trivial
extension BX DB of an algebra B which is obtained from a hereditary
algebra by applying repeatedly tilting processes.

In order to show some examples, it is necessary to explain our conven-
sion concerning the expression of modules. Let k£ be a field and 4 an
algebra over k defined by a quiver Q and an ideal [ of the path algebra k£Q,
ie., A=kQ/I. We denote by Q, and @, the sets of vertices and arrows of
the quiver Q respectively. - Let e¢; be the primitive idempotent of 4
corresponding to a vertex i€ Q. A right 4-module M is given by attaching
vector spaces M(i) to every vertices ieQ, and linear maps
M(a): M(i) — M(j) to every arrow a:j— i of Q, such that M(«)’s satisfy all
relations induced from I,

In the case where each vector space M(i) can be decomposed into a
direct sum of one-dimensional subspaces M(i)= P, kv!? such that
M(a)(kv?)=kv) or 0 for each linear map M(x): M(i) — M(j), we will
express the module-structure of M by the following diagram @(AM):
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(i) The vertices of @(M) are the k-basis v in the above decom-
positions of M(i}’s, :

(i) There is an arrow labeled by o from v to v!/ if and only if
M () (ko) = kv'? for a linear map M(a): M(i) —» M(j).

In practice, we simply denote the vertex v!” by i and in the case where
there is only one arrow from v to v!, we usually omit the arrow and

write i over j in order to point out the existence of the arrow from v!" to
()
vl

ExaMpPLE 1. Let 4 be an algebra defined by the following quiver and
relation over k;

2
(quiver) /N , (relation) Bo=0.
1— 3
7

Then, the Auslander—Reiten quiver I is the form

o \3 Pt \2 3 e
N T
NN,

where dotted lines show 1 ,-orbits and ripple marks indicate the vertices of

I', which should be identified to each other. Especialiy 2132 denotes an

abbreviation of
2 3
NS
1 2

ExaMpPLE 2. Let B be an algebra defined by the following quiver and
relation;
B
/_\3
~ 7

{(quiver) 221 (relation) By =0.
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Then the following is the Auslander-Reiten quiver I'g:

e

............

s
S

o
\ /
N, / 1\213 \1 "
N, - 1\1 e

e

For the above algebras and their Auslander—Reiten quivers we now have

the following tilting module T,=1;"'(¢;4) @ e, AP e; A= 21326—)21 ® 132
and the tilting triple (B, ;7. A), where B=~End,(T). Then the dis-
tribution charts of 7, &, ¥, and % and maps defined by Hom (7, —)
and Ext (7, —) as follows:

=("4)o— {1} 0-:{1}’

1
Y=(Tg)— {1 > 31}3%:{1}’
and
Hom (7, —)
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(1)

/\/\/xxxz S\,

WMWV231AOW3AAM\431 ARAAANR SAAS

&3] '
T +
T(B) 3

/\/2

ARAANAA 3 2

_____ \/\/\

NAAAANS ZIVAAAANA S AAAAAAA

FiGURE 1

Now by Yamagata’s theorem |17| the trivial extension T(B)=BX DB is
of infinite representation type since Q(B) contains an oriented cycle

L

\_r/,3. Hence so is 7(4)=AX DA and there exist many connected

components of /"4, and Iy g,. Therefore we show only connected com-
pornents in which indecomposable 4 or B-modules appear as their vertices.
In Fig. 1 by I'}),, we denote a connected component of I, which con-
tains a simple torsion free A-module 1 and we can check
F(1)= Q5 Extl (T, —), where Q4 is the loop space functor of Heller
(cf. [157).

In Fig. 1, (-+-) indicates the positions where projective T(A)- {(resp.
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T(B)-) modules appear. Further subquivers and vertices encircled by closed
curves indicate ones consist of torsion or torsion free 4- or B-modules. On
the other hand subquivers and vertices encircled by dotted closed curves
indicate ones consist of B-modules which are neither torsion nor torsion
free. The vertical correspondence from the top to the bottom indicates &
and we know that ¥ preserves the correspondence defined by the tilting
functor Hom , (T, —).

In Fig.2 we show other two connected components of Iy, and
Iy which contain the remaining 4 and B-modules. Of course it
holds that Hom (M, M,) ~ Hom 1, (¥#(M,), #(M,)) for M, M,e

mod-T7(A4). For example we can check that HomT(A)(2312, 3213)z

HomT(B)(IZ1 131) #0 and HomT(A)(31, 1Z%);Hommg)(& 213 ) =0, where
1
230y, 31er, and 2%, ery, .
It is to be noted that to our example all indecomposable projective T(A4)-

and T(B)-modules appear in the connected components of Figs. 1 and 2.
So we may propose a problem; For a tilting triple (B, 374, A) determine

FIGURE 2
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all connected components of /"4, and Iy such that in each of them
at least an indecomposable projective 7{4) or T(B}-module appears as a
vertex.

10.

1L

16.

17.
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