A pair of spaces of upper semi-continuous maps and continuous maps✩

Zhongqiang Yang a,∗, Xiaoe Zhou b

a Department of Mathematics, Shantou University, Shantou, Guangdong, 515063, PR China
b School of Business, Shantou University, Shantou, Guangdong, 515063, PR China

Received 10 May 2006; received in revised form 5 September 2006; accepted 20 December 2006

Abstract

For a Tychonoff space X, we use ↓USC(X) and ↓C(X) to denote the families of the regions below all upper semi-continuous maps and of the regions below all continuous maps from X to I = [0, 1], respectively. In this paper, we consider the spaces ↓USC(X) and ↓C(X) topologized as subspaces of the hyperspace Cld(X × I) consisting of all non-empty closed sets in X × I endowed with the Vietoris topology. We shall prove that ↓USC(X) is homeomorphic (∼) to the Hilbert cube Q = [−1, 1]ω if and only if X is an infinite compact metric space. And we shall prove that (↓USC(X), ↓C(X)) ≈ (Q, c0), where c0 = {(x_n) ∈ Q: lim_n→∞ x_n = 0}, if and only if ↓C(X) ∼ c0 if and only if X is a compact metric space and the set of isolated points is not dense in X.

© 2007 Elsevier B.V. All rights reserved.

MSC: 54B20; 54D05; 54E45; 57N20

Keywords: The hyperspace; The Vietoris topology; Regions below; Upper semi-continuous; Continuous map; The Hilbert cube; c0

1. Introduction and main results

For a Tychonoff space X, the hyperspace Cld(X) is the set consisting of all non-empty closed subsets of X endowed with the Vietoris topology which is generated by the sets of the form

\[U^- = \{ A \in \text{Cld}(X): A \cap U \neq \emptyset \} \quad \text{and} \]
\[U^+ = \{ A \in \text{Cld}(X): A \subset U \}, \]

where U is open in X. Thus \{(U_1, U_2, \ldots, U_n): U_i \text{ is open in } X \} is an open base for this topology, where

\[(U_1, U_2, \ldots, U_n) = \bigcap_{i=1}^{n} U_i^- \cap \left(\bigcup_{i=1}^{n} U_i \right)^+. \]

✩ This work was supported by Nation Natural Science Foundation of China (No. 10471084) and by Guangdong Provincial Natural Science Foundation (No. 04010985).

∗ Corresponding author.
E-mail addresses: zqyang@stu.edu.cn (Z. Yang), xezhou@stu.edu.cn (X. Zhou).

0166-8641/S – see front matter © 2007 Elsevier B.V. All rights reserved.
It is well known that Cl(X) with this topology is metrizable if and only if X is a compactum (i.e. a compact and metrizable space) [11, Theorem I.3.4]. For a compact metric space X = (X, d), the Vietoris topology of Cl(X) is induced by the Hausdorff metric d_H defined as follows:

$$d_H(A, B) = \inf\{ r > 0 : A \subset B_d(B, r) \text{ and } B \subset B_d(A, r) \},$$

where $B_d(C, r) = \{ x \in X : d(x, c) < r \text{ for some } c \in C \}$ for $C \subset X$ and $r > 0$.

For a Tychonoff space X and a subset L of the set R of all real numbers, we consider the sets $C(X, L)$ and USC(X, L) which consist of all continuous maps and all upper semi-continuous maps from X to L, respectively. The Kadec–Anderson Theorem states that when X is an infinite compactum and $L = R$ the space $C_u(X, L)$ which is the set $C(X, L)$ endowed with the uniform convergence topology is homeomorphic to (\approx) $R^\omega \approx I^2$ [9,1]. The so-called Dobrowolski–Marciszewski–Mogilski Theorem [8] (cf. [13, Theorem 6.12.15]) asserts that if X is a nondiscrete, countable metrizable space and $L = R$ or $L = I = [0, 1]$ then the space $C_p(X, L)$, the set $C(X, L)$ with the topology of pointwise convergence, is homeomorphic to the subspace $c_0 = \{ (x_n) \in Q : \lim_{n \to \infty} x_n = 0 \}$ of the Hilbert cube $Q = [-1, 1]^\omega$.

In [18,19], noticing that a map $f \in \text{USC}(X, I)$ is carried by a bijection to its region below $\downarrow f = \{(x, \lambda) \in X \times I : \lambda \leq f(x)\}$ in the product space $X \times I$, we studied the space $\downarrow \text{USC}(X, I) = \{ \downarrow f : f \in \text{USC}(X, I) \}$ and its subspace $\downarrow C(X, I) = \{ \downarrow f : f \in C(X, I) \}$, where they are topologized as the subspaces of the hyperspace Cl(X × I). The family $\downarrow C(X, I)$ with this topology is usually different from the above two spaces $C_u(X, I)$ and $C_p(X, I)$ though there are bijections among them (see [19, Corollary 1]). It was proved in [19] that if X is an infinite locally connected compactum then there exists a homeomorphism $h : \downarrow \text{USC}(X, I) \to Q$ such that $h(\downarrow C(X, I)) \approx c_0$, that is, $(\downarrow \text{USC}(X, I), \downarrow C(X, I)) \approx (Q, c_0)$. But when X is a non-locally-connected compactum, $\downarrow \text{USC}(X, I)$ and especially $\downarrow C(X, I)$ become complicated. In [19], we pointed out that it is not necessary that $\downarrow C(X, I) \approx c_0$. In the following we shall be abbreviated $\downarrow \text{USC}(X, I)$ and $\downarrow C(X, I)$ as $\downarrow \text{USC}(X)$ and $\downarrow C(X)$, respectively. In the present paper, we shall prove the following theorems which generalize the above results.

Theorem 1. For an infinite Tychonoff space X, the following conditions are equivalent:

(a) X is a compactum;
(b) $\downarrow C(X)$ is second countable;
(c) $\downarrow \text{USC}(X) \approx Q$.

Remark 1. Let us recall the celebrated Curtis–Schori–West Hyperspace Theorem which states that Cl(X) $\approx Q$ if and only if X is a non-degenerate Peano continuum (a connected locally connected compactum is called a Peano continuum) ([4,17]; cf. [12, Theorem 8.4.5]). Noticing that Cl(X) \oplus $\{ 0 \}$ \approx $\downarrow \text{USC}(X, \{ 0, 1 \})$ [19, Introduction], Theorem 1 is a deformed result in which $\{ 0, 1 \}$ is replaced by I.

A subset A of a space Y is called homotopy dense in Y if there exists a homotopy $h : Y \times I \to Y$ such that $h_0 = \text{id}_Y$ and $h_t(Y) \subset A$ for every $t > 0$. This concept is very important in ANR theory and infinite-dimensional topology (see [6,15]). We shall also prove the following theorem:

Theorem 2. Let X be an infinite compactum. Then both $\downarrow C(X)$ and $\downarrow \text{USC}(X) \setminus \downarrow C(X)$ are homotopy dense in $\downarrow \text{USC}(X)$.

Corollary 1. $\downarrow C(X)$ and $\downarrow \text{USC}(X) \setminus \downarrow C(X)$ are AR’s for each infinite compactum X.

Proof. It is well known that, for a metrizable space Y and its homotopy dense space A, Y is an AR if and only if so is A (cf. [15]). Corollary 1 follows from Theorems 1 and 2. □

As the main result we shall prove the following theorem:

Theorem 3. For a Tychonoff space X, the following conditions are equivalent:

(a) X is a compactum;
(b) $\downarrow C(X)$ is second countable;
(c) $\downarrow \text{USC}(X) \approx Q$.
(a) X is a compactum and the set of isolated points is not dense in X;
(b) $\downarrow C(X) \approx c_0$;
(c) $(\downarrow USC(X), \downarrow C(X)) \approx (Q, c_0)$.

2. Preliminaries

To show our theorems, let us first recall some necessary fundamental concepts and facts. For more information on them, please refer to [12,13].

A metrizable space X is called an absolute retract (abbreviated AR) provided that for every metrizable space Y containing X as a closed subspace there exists a continuous map $r : Y \to X$ such that $r|_X = \text{id}_X$. We say that a space X has the disjoint-cells property provided that for every natural number n, every continuous function $f : \mathbb{I}^n \times \{0, 1\} \to X$ can be approximated (arbitrarily closely) by continuous maps sending $\mathbb{I}^n \times \{0\}$ and $\mathbb{I}^n \times \{1\}$ to disjoint sets. A closed subset A of X is said to be a Z-set if there exist continuous maps $f : X \to X \setminus A$ arbitrarily close to the identity id_X. It is trivial that every Z-set is closed nowhere dense but the converse is not necessarily true. A Z_σ-set in a space is a countable union of Z-sets in the space. A Z-embedding is an embedding with a Z-set image. We use the following Toruńczyk’s Characterization Theorem to show Theorem 1.

Lemma 1 (Toruńczyk’s Characterization Theorem). (See [16]; cf. [12, Corollary 7.8.4].) A space X is homeomorphic to the Hilbert cube Q if and only if it is a compact AR with the disjoint-cells property.

Let \mathcal{M}_0 denote the class of compacta, and for a topological class \mathcal{C} of separable metrizable spaces let $(\mathcal{M}_0, \mathcal{C})$ denote the class of all pairs (Z, C) such that $Z \in \mathcal{M}_0$ and $C \in \mathcal{C}$ with $C \subset Z$.

Definition 1. Let X be a copy of the Hilbert cube Q and \mathcal{C} a topological class of separable metrizable spaces. We say that a subspace Y of X is strongly \mathcal{C}-universal in X provided for each $(M, C) \in (\mathcal{M}_0, \mathcal{C})$, every continuous map $f : M \to X$, each closed subset K of M such that $f|_K : K \to X$ is a Z-embedding and every $\varepsilon > 0$ there is a Z-embedding $g : M \to X$ such that $g|_K = f|_K$, $g^{-1}(Y) \setminus K = C \setminus K$ and $d(g(m), f(m)) < \varepsilon$ for each $m \in M$.

Definition 2. 1 For a class \mathcal{C} of separable metrizable spaces and a copy X of Q, we say that a subset Y of X is a \mathcal{C}-absorber in X if

1. $Y \in \mathcal{C}$,
2. Y is contained in a Z_σ-set of X, and
3. Y is strongly \mathcal{C}-universal in X.

The following uniqueness theorem of absorbers is a key to prove our Theorem 3.

Lemma 2. (See [2, Theorem 8.2]; cf. [13, Theorem 5.5.2].) If X and Y are \mathcal{C}-absorbers in a copy M of Q, then $(M, X) \approx (M, Y)$.

In this paper we are concerned with the class $\mathcal{F}_{\sigma \delta}$ of absolute $F_{\sigma \delta}$ spaces. It was proved in [7] that $c_0 = \{(x_n) \in Q : \lim_{n \to \infty} x_n = 0\}$ is an $\mathcal{F}_{\sigma \delta}$-absorber in Q.

In the following, \mathbb{N} denotes the set of all natural numbers. If (X, d) is a compact metric space, then $d((x, \lambda), (y, \mu)) = \max\{d(x, y), |\lambda - \mu|\}$ is an admissible metric on $X \times \mathbb{I}$ and so is d_H on the hyperspace $\text{Cl}(X \times \mathbb{I})$. Put $B_d(a, \varepsilon) = B_d(|a|, \varepsilon)$. For $A \subset X$, \overline{A} and $\text{diam}_d(A) = \sup\{d(x, y) : x, y \in A\}$ denote the closure and the diameter of A in (X, d), respectively.

Let $\phi : A \to B$ be a map from a set A to a set B. If $A \subset \text{USC}(X)$ and/or $B \subset \text{USC}(Y)$ for spaces X and Y.

We may define a corresponding map $\downarrow \phi : \downarrow A \to \downarrow B$ or $\downarrow \phi : A \to \downarrow B$ or $\downarrow \phi : \downarrow A \to B$ as $\downarrow \phi (\downarrow f) = \downarrow (\phi (f))$ or $\downarrow \phi (\downarrow f) = \phi (f)$, respectively.

1 There are different definitions of absorbers. Our definition is due to [2] and [13, p. 346]. In [3], the condition (a) in our definition is replaced by $Y \in \sigma \mathcal{C}$, where $\sigma \mathcal{C}$ is the class of spaces written as a countable union of closed subspaces which belong to \mathcal{C}.
For a space X and $A \subseteq \text{USC}(X)$, define a map $\bigvee A : X \to I$ by $\bigvee A(x) = \sup \{ f(x) : f \in A \}$. If $A = \{ f, g \}$, we replace $\bigvee A$ by $f \vee g$. It is trivial that $f \vee g \in \text{USC}(X)(C(X))$ if $f, g \in \text{USC}(X)(C(X))$, respectively.

At last, we give the following lemma which is well known (see [10, Corollary 4.8]).

Lemma 3. Let Y be a metric space and X a compactum. Then a map $f : Y \to \text{Cld}(X)$ is continuous if and only if, for every sequence (y_n) with the limit y in Y, the following conditions hold:

1. If $a_n \in f(y_n)$ and $\lim_{n \to \infty} a_n = a$, then $a \in f(y)$, and
2. for every $a \in f(y)$, there exists a sequence (a_n) in X such that $a_n \in f(y_n)$ for each n and $\lim_{n \to \infty} a_n = a$.

3. Proofs of Theorems 1 and 2

Lemma 4. For a Tychonoff space X, if $\downarrow C(X)$ is second countable, then X is a compactum.

Proof. Step 1. We shall show that X is second countable and hence it is metrizable. Suppose $\{ \{ U^n_1, U^n_2, \ldots, U^n_m(n) \} \} \cap \downarrow \text{C}(X) : n = 1, 2, \ldots \}$ is a countable open base for $\downarrow \text{C}(X)$ and B is a countable open base for I. For every n, every $i \leq m(n)$ and $B \in B$, let

$$V(n, i, B) = \{ x \in X : H \times B \subseteq U^n_i \text{ for some open set } H \ni x \text{ in } I \}.$$

Then $V(n, i, B)$ is open in X and $V(n, i, B) \times B \subseteq U^n_i$. Now let \mathcal{C} be the family of all finite intersections of sets of the form $V(n, i, B)$. Then \mathcal{C} is a countable open base for X. Trivially, it is a countable family of open sets in X. To show that \mathcal{C} is an open base for X, take an open set V in X and $x \in V$. There exists $f \in \text{C}(X)$ such that $f(x) = 1$ and $f(y) = 0$ for all $y \in X \setminus V$. Let $U_1 = X \times \{ 0, \frac{1}{2} \}$ and $U_2 = V \times \{ 0, 1 \}$. Then $f \in \langle U_1, U_2 \rangle \cap \downarrow \text{C}(X)$. Thus there exists n such that

$$\downarrow f \subseteq \langle U^n_1, U^n_2, \ldots, U^n_m(n) \rangle \cap \downarrow \text{C}(X) \subseteq \langle U_1, U_2 \rangle \cap \downarrow \text{C}(X).$$

Then for every $t \in I$ there exists $i(t) \leq m(n)$ such that $(x, t) \in U^n_{i(t)}$. It follows that there exist $B_t \subseteq B$ and an open set H in X such that $(x, t) \in H \times B_t \subseteq U^n_{i(t)}$. Choose a finite subcover $\{ B_t : j = 1, 2, \ldots, l \}$ of the open cover $\{ B_t : t \in I \}$ of I and let $G = \bigcap_{j=1}^l V(n, i(t_j), B_{t_j})$ for each $z \in X \setminus G$. Let $h = f \vee g \in C(X)$. Then $\downarrow h \neq \langle U_1, U_2 \rangle$. On the other hand, $G \times I = \bigcap_{j=1}^l V(n, i(t_j), B_{t_j}) \times (U^n_{i(t_j)} \setminus B_{t_j}) \subseteq \bigcup_{j=1}^l U^n_{i(t_j)} \setminus B_{t_j}$. It follows that $\downarrow h = \downarrow f \cup \downarrow g \subseteq \downarrow f \cup \downarrow (G \times I) \subseteq \bigcup_{j=1}^l U^n_{i(t_j)} \setminus B_{t_j}$. Thus, $\downarrow h \subseteq \langle U^n_1, U^n_2, \ldots, U^n_m(n) \rangle \cap \downarrow \text{C}(X)$ since $\downarrow h \supset \downarrow f$ and $\downarrow f \cap U^n_i \neq \emptyset$ for every $i \leq m(n)$. A contradiction occurs.

Step 2. We shall show that X is compact. Otherwise, since X is metrizable, there exists a countable infinite discrete set $\mathcal{C} = \{ x_n : n = 1, 2, \ldots \}$ in X. Let $0 \in \text{C}(X)$ be the map with the constant value 0 and $\{ \{ U^n_1, U^n_2, \ldots, U^n_m(n) \} \} \cap \downarrow \text{C}(X) : n = 1, 2, \ldots \}$ a countable neighborhood base at 0 in $\downarrow \text{C}(X)$. For every n, choose open sets G_n, H_n in X and $t_n \in (0, 1]$ such that $x_n \in G_n \subseteq \overline{G_n} \subseteq H_n$, the family $\{ H_n : n = 1, 2, \ldots \}$ is discrete and $H_n \times [0, t_n] \subseteq U^n_i$ for some $i \leq m(n)$. There exists a continuous map $f_n : X \to [0, t_n]$ such that $f_n(x_n) = t_n$ and $f_n(x) = 0$ for every $x \in X \setminus G_n$.

Let

$$U = \bigcup_{n=1}^{\infty} \left(H_n \times [0, t_n) \right) \cup \left(X \setminus \bigcup_{n=1}^{\infty} \overline{G_n} \right) \times [0, 1) \bigcup [0, 1].$$

Then $\langle U \rangle$ is a neighborhood of 0 but $\downarrow f_n \subseteq \downarrow \text{C}(X) \cap (\langle U^n_1, U^n_2, \ldots, U^n_m(n) \rangle \setminus \langle U \rangle)$ for every n. This contradicts that $\{ \{ U^n_1, U^n_2, \ldots, U^n_m(n) \} \} \cap \downarrow \text{C}(X) : n = 1, 2, \ldots \}$ is a neighborhood base at 0 in $\downarrow \text{C}(X)$. \[\Box\]

Lemma 5. For every compactum X, $\downarrow \text{USC}(X)$ is a retract of $\text{Cld}(X \times I)$ and for every subfamily $A \subseteq \downarrow \text{USC}(X)$, we have that $\bigcup A \in \downarrow \text{USC}(X)$ if $\bigcup A \in \text{Cld}(X \times I)$.

Proof. For every $A \subseteq \text{Cld}(X \times I)$, define $\phi(A) : X \to I$ by

$$\phi(A)(x) = \sup \{ t \in I : (x, t) \in A \}.$$
Regarding that sup θ = 0 we have that φ(A) is well-defined. We shall now prove that φ(A) is upper semi-continuous. For every t₀ ∈ I and x₀ ∈ φ(A)^⁻¹(0, t₀), we have sup{t ∈ I: (x₀, t) ∈ A} < t₀. Then ((x₀) × [t₀, 0]) ∩ A = φ(A) and t₀ > 0. It follows from the closedness of A that (U × (t₁, 1)) ∩ A = φ(A) for some open set U ⊃ x₀ in X and some t₁ ∈ (0, t₀). Thus φ(A)(y) < t₀ for every y ∈ U. We have that φ(A) ∈ USC(X). Moreover, it is easy to verify that d_H(φ(A), φ(B)) ≤ d_H(A, B) for every pair A, B ∈ Cl(X × I). That shows that A → φ(A) is continuous. Trivially, A = φ(A) if A ∈ ↓ USC(X). We have proved that the first statement holds.

From the first statement it follows that ↓ USC(X) is compact. Thus, for every directed subfamily A ⊂ ↓ USC(X) with respect to inclusion relation, we have that ∪ A is the limit of the net A ⊃ A → A ∈ Cl(X × I) if ∪ A ∈ Cl(X × I). Hence ∪ A ∈ ↓ USC(X) if A ⊂ ↓ USC(X) is directed and ∪ A ∈ Cl(X × I). Moreover, we note that ↓ USC(X) is closed with respect to finite union. It follows that the second statement holds also. ■

By Lemma 5, we have the following important lemma.

Lemma 6. For every compactum X, ↓ USC(X) is a compact AR.

Proof. We at first prove that ↓ USC(X) is a Peano continuum. From Lemma 5 it follows that ↓ USC(X) is a compactum. To show the connectedness and the local connectedness of ↓ USC(X), for each f, g ∈ USC(X), let θ : I → USC(X) be a map defined by

θ(t)(x) = \begin{cases}
(1 - 2t)f(x) + 2t(f ∨ g)(x), & \text{if } 0 ≤ t ≤ \frac{1}{2}; \\
(2 - 2t)(f ∨ g)(x) + (2t - 1)g(x), & \text{if } \frac{1}{2} ≤ t ≤ 1.
\end{cases}

Trivially, θ(t) ∈ USC(X) for each t ∈ I and θ(0) = f, θ(1) = g. Moreover, it is not difficult to verify that ↓ θ : I → ↓ USC(X) is continuous. To complete the proof of the fact that ↓ USC(X) is a Peano continuum, it suffices to show that d_H(↓ f, ↓ θ(t)) ≤ d_H(↓ f, ↓ g) for every t ∈ I. For each (x, λ) ∈ ↓ f and each t ∈ I, there exists (y, μ) ∈ ↓ g such that d((x, λ), (y, μ)) ≤ d_H(↓ f, ↓ g).

Case A. g(x) ≥ f(x). Then θ(t)(x) ≥ f(x). It follows that (x, λ) ∈ ↓ θ(t). Thus d((x, λ), ↓ θ(t)) = 0.

Case B. g(x) ≤ f(x). Then (x, λ) ∈ ↓ θ(t) if t ∈ [0, \frac{1}{2}]. And, if t ∈ [\frac{1}{2}, 1], then θ(t)(y) ≥ g(y) and hence (y, μ) ∈ ↓ θ(t). It follows that d((x, λ), ↓ θ(t)) ≤ d_H(↓ f, ↓ g) for each t ∈ I.

On the other hand, it is easy to see that ↓ θ(t) ⊂ ↓ θ(\frac{1}{2}) ⊂ B_d(↓ f, d_H(↓ f, ↓ g) + ε) for every t ∈ I and ε > 0. Thus d_H(↓ f, ↓ θ(t)) ≤ d_H(↓ f, ↓ g) for each t ∈ I.

By the above fact and the Wojdysławski Theorem [17], Cl(↓ USC(X)) is an AR. From Lemma 5 and [12, Proposition 5.3.6] it follows that ∪ : Cl(↓ USC(X)) → ↓ USC(X) is a retraction. Thus ↓ USC(X) is a compact AR. ■

The following lemma is a key to show Theorem 2.

Lemma 7. Suppose (X, d) is an infinite compact metric space, A = C(X) or A = USC(X) \ C(X). For every map f : K(0) → A from the 0-skeleton K(0) of a locally finite simplicial complex K to A, there exists an extension h : |K| → A such that ↓ h : |K| → ↓ A is continuous and

\[\text{diam}_{d_H} ↓ h(σ) ≤ 6 \text{diam}_{d_H} ↓ f(σ(0)) \]

for every σ ∈ K.

Proof. Choose a non-isolated point x₀ in X. For σ, τ ∈ K, τ < σ means that τ is a face of σ. Take the barycentric subdivision Sd(K) of K. The barycenter of σ ∈ K is denoted by b(σ). Now we fix σ ∈ K. For every τ < σ, define h_σ(b(τ)) : X → I as follows:

In the case A = C(X), let

\[h_σ(b(τ)) = \sqrt{\{ f(v) : v ∈ τ(0) \}}. \]

In the case A = USC(X) \ C(X), let

\[h_σ(b(τ))(x) = \begin{cases}
(1 - d(τ)) \cdot \sup \{ f(v)(x) : v ∈ τ(0) \}, & \text{if } x ≠ x₀;

d(τ) + (1 - d(τ)) \cdot \sup \{ f(v)(x) : v ∈ τ(0) \}, & \text{if } x = x₀.
\end{cases} \]
where $d(\tau) = \min\{\text{diam}_{d_H} \downarrow f(\tau(0)), 1\}$.

It is trivial to verify that $h_\sigma(b(\tau)) \in \text{USC}(X)$. Moreover, it is in A. In fact, this fact is trivial in the case $A = \text{C}(X)$. We check that it is also true in another case. If $d(\tau) \neq 0$, it follows from the definition of $h_\sigma(b(\tau))$ that this map is not continuous at x_0. If $d(\tau) = 0$, then $f(v) = f(v')$ for any $v, v' \in \tau(0)$. It follows that $h_\sigma(b(\tau)) = f(v)$ is not continuous.

For every $z \in \sigma$, there exists a set $\{s_\tau(z): \tau \prec \sigma\}$ (the barycentric coordinates of z in $\text{Sd}(\sigma)$) of real numbers such that

1. $s_\tau(z) \geq 0$ and $\sum_{\tau \prec \sigma} s_\tau(z) = 1$;
2. $z = \sum_{\tau \prec \sigma} s_\tau(z) b(\tau)$.

Let

$$h_\sigma(z) = \sum_{\tau \prec \sigma} s_\tau(z) h_\sigma(b(\tau)).$$

Trivially, $h_\sigma(z) \in A$ for every $z \in \sigma$. It is not hard to verify that, if $\lim_{n \to \infty} z_n = z$ in σ, then the sequence $(h_\sigma(z_n))$ of functions converges uniformly to the function $h_\sigma(z)$ in X. It follows that $(\downarrow h_\sigma(z_n))$ converges to $\downarrow h_\sigma(z)$ in $\downarrow \text{USC}(X)$. Thus $\downarrow h_\sigma: \sigma \to \downarrow A$ is continuous.

Trivially, $h_\sigma|\tau = h_\tau$ if $\tau \prec \sigma$ for $\sigma, \tau \in K$. Thus

$$h = \bigcup \{h_\sigma: \sigma \in K\}: |K| \to A$$

is well-defined and $\downarrow h: |K| \to \downarrow A$ is continuous. By the definitions of h_σ, it is easy to see that $h(v) = h(v) = f(v)$ for every $v \in \tau(0)$ in both $A = \text{C}(X)$ and $A = \text{USC}(X) \setminus \text{C}(X)$. It follows that h is an extension of f.

It is remainder to show that $\text{diam}_{d_H} (\downarrow h_\sigma(z) \downarrow \sigma) \leq 6 \text{diam}_{d_H} (\downarrow f(\sigma(0)))$ for every $\sigma \in K$. To this end, suppose $z \in \sigma$. There exists an m-dimensional simplex σ_1 in $\text{Sd}(\sigma)$, where $m = \dim \sigma$, such that $z \in \sigma_1$. Suppose $\{v_1\} = \sigma(0) \cap \sigma_1(0)$. Then we have $(1 - d(\sigma)) f(v_1) \leq h_\sigma(b(\tau))$ for every $\tau \prec \sigma$ with $s_\tau(z) > 0$. It follows that

$$(1 - d(\sigma)) f(v_1) \leq h_\sigma(z).$$ (1)

On the other hand, $h_\sigma(b(\tau)) \leq d(\sigma) + \sqrt{\{f(v): \tau \in \sigma(0)\}}$ for every $\tau \prec \sigma$. It implies that $h_\sigma(z) \leq d(\sigma) + \sqrt{\{f(v): \tau \in \sigma(0)\}}$. (2)

Trivially, if $z = b(\sigma)$, then (1) and (2) also hold. Thus,

$$d_H (\downarrow h_\sigma(z), \downarrow h_\sigma(b(\sigma))) \leq d_H (\downarrow (1 - d(\sigma)) f(v_1), \downarrow (d(\sigma) + \sqrt{\{f(v): \tau \in \sigma(0)\}})).$$

Noting $\downarrow \sqrt{\{f(v): \tau \in \sigma(0)\}} = \bigcup\{\downarrow f(v): \tau \in \sigma(0)\}$ and $d(\sigma) \leq \text{diam}_{d_H} \downarrow f(\sigma(0))$, it is not hard to verify that

$$d_H (\downarrow (1 - d(\sigma)) f(v_1), \downarrow (d(\sigma) + \sqrt{\{f(v): \tau \in \sigma(0)\}})) \leq 3 \text{diam}_{d_H} \downarrow f(\sigma(0)).$$

Thus

$$d_H (\downarrow h_\sigma(z), \downarrow h_\sigma(b(\sigma))) \leq 3 \text{diam}_{d_H} \downarrow f(\sigma(0))$$

for every $z \in \sigma$. It follows that

$$\text{diam}_{d_H} \downarrow h_\sigma(\sigma) \leq 6 \text{diam}_{d_H} \downarrow f(\sigma(0)).$$

We now are in a position to prove Theorems 1, 2. At first, we show Theorem 2.

Proof of Theorem 2. 2 Trivially, both $\downarrow \text{C}(X)$ and $\downarrow \text{USC}(X) \setminus \downarrow \text{C}(X)$ are dense in $\downarrow \text{USC}(X)$ if X is an infinite compactum. It follows from Lemmas 6, 7 and a result in [15] that $\downarrow \text{C}(X)$ and $\downarrow \text{USC}(X) \setminus \downarrow \text{C}(X)$ are homotopy dense in $\downarrow \text{USC}(X)$. □

2 The referee pointed out that by using [10, Theorem 5.1], the fact that $\downarrow \text{C}(X)$ is homotopy dense in $\downarrow \text{USC}(X)$ has a simple proof.
Proof of Theorem 1. (a) ⇒ (c): We assume that \((X, d)\) is an infinite compact metric space. By Lemma 6, \(\downarrow\text{USC}(X)\) is a compact AR. It follows directly from Theorem 2 that \(\downarrow\text{USC}(X)\) has the disjoint-cells property. Thus, Lemma 1 implies that (c) holds.

(c) ⇒ (b): This is trivial.

(b) ⇒ (a): It follows from Lemma 4. □

4. Proof of Theorem 3

Lemma 8. Let \(Y\) be a metric space and \(a, b : Y \rightarrow \mathbb{I}\) two continuous maps with \(a(y) < b(y)\) for each \(y \in Y\). And let \(M : Y \times \mathbb{I} \rightarrow \mathbb{I}\) be a map satisfying the following conditions:

1. \(M(y_0, t) : \mathbb{I} \rightarrow \mathbb{I}\) is increasing for each fixed \(y_0 \in Y\), and;
2. \(M(y, t_0) : Y \rightarrow \mathbb{I}\) is continuous for every fixed \(t_0 \in \mathbb{I}\).

Then \(s : Y \rightarrow \mathbb{I}\) defined by

\[
s(y) = \frac{1}{b(y) - a(y)} \int_{a(y)}^{b(y)} M(y, t) \, dt
\]

is continuous and \(M(y, a(y)) \leq s(y) \leq M(y, b(y))\) for every \(y \in Y\).

Proof. The continuity of \(s\) follows from Lebesgue’s Dominated Convergence Theorem (cf. [14, 1.34]) and the inequality is trivial. □

Lemma 9. For each compactum \(Y\) and its \(F_{\sigma\delta}\)-set \(C\), there exists a Z-embedding \(g : Y \rightarrow Q_u = \prod_{n=1}^{\infty} [0, 1]\) such that \(g^{-1}(c_1) = C\), where \(c_1 = \{(x_n) \in Q_u : \lim_{n \rightarrow \infty} x_n = 1\}\).

Proof. It is a reform of [19, Lemma 2]. □

Proposition 1. For each infinite compact metric space \((X, d)\), \(\downarrow C(X)\) is strongly \(F_{\sigma\delta}\)-universal in \(\cup\text{USC}(X) \approx Q\).

Proof. Choose a non-isolated point \(x_{\infty} \in X\). Without loss of generality, we may assume that there exists a sequence \((x_n)_{n=0}^{\infty}\) in \(X\) such that \(d(x_n, x_{\infty}) = 2^{-n}\) for every \(n\) and \(d(x_n, x_{\infty}) \leq 1\) for each \(x \in X\).

Let \(C, K\) be an \(F_{\sigma\delta}\)-subset and a closed subset of a compactum \(Y\), respectively. And let \(\Phi : Y \rightarrow \text{USC}(X)\) be a map such that \(\downarrow \Phi : Y \rightarrow \cup\text{USC}(X)\) is continuous and \(\downarrow \Phi |_K : K \rightarrow \cup\text{USC}(X)\) is a Z-embedding. By [5, Lemma 1.1] and Theorem 1, without loss of generality, we may assume that \(\downarrow \Phi(K) \cap \downarrow \Phi(Y \setminus K) = \emptyset\). For every \(\epsilon \in (0, 1)\), we shall define a map \(\Psi : Y \rightarrow \text{USC}(X)\) such that \(\downarrow \Psi : Y \rightarrow \cup\text{USC}(X)\) is a Z-embedding, \(\Psi|_K = \Phi|_K\), \(\Psi^{-1}(C(X)) \setminus K = C \setminus K\) and \(d_H(\downarrow \Psi(y), \downarrow \Phi(y)) < \epsilon\) for each \(y \in Y\), which shows that Proposition 1 holds.

Let \(\delta : Y \rightarrow [0, 1]\) be a map defined by

\[
\delta(y) = \frac{1}{3} \min \{\epsilon, d_H(\downarrow \Phi(y), \downarrow \Phi(K))\}.
\]

Then \(\delta\) is continuous and \(\delta(y) = 0\) if and only if \(y \in K\).

It follows from [13, Proposition 4.1.7] and Theorem 2 that there exists a homotopy \(H : \cup\text{USC}(X) \times \mathbb{I} \rightarrow \cup\text{USC}(X)\) such that

\[
H_0 = \text{id}_{\cup\text{USC}(X)}, \quad H_t(\downarrow \text{USC}(X)) \subset \downarrow C(X) \quad \text{and} \quad d_H(H_t(\downarrow f), \downarrow f) \leq t
\]

for each \(f \in \text{USC}(X)\) and each \(t \in (0, 1]\). For each \(y \in Y\) and \(t \in [0, 1]\), let

\[
\downarrow h(y) = H(\downarrow \Phi(y), \delta(y)), \quad \text{and} \quad M(y, t) = \sup \{h(y)(x) : d(x, x_{\infty}) < t\}.
\]
Then \(h(y) \in C(X) \) for each \(y \in Y \setminus K \) and \(\downarrow h |_{Y \setminus K} : Y \setminus K \to \downarrow C(X) \) is continuous. Moreover, \(d_H(\downarrow h(y), \downarrow \Phi(y)) \leq \delta(y) \) for every \(y \in Y \). It follows from the continuities of \(\delta \) and \(H \) that \(M : (Y \setminus K) \times I \to I \) satisfies the conditions (a) and (b) in Lemma 8. Thus

\[
s(y) = \frac{1}{\delta(y)} \int_{\delta(y)}^{2\delta(y)} M(y, t) \, dt
\]

is continuous on \(Y \setminus K \) and \(M(y, \delta(y)) \leq s(y) \leq M(y, 2\delta(y)) \) for every \(y \in Y \setminus K \). Let \(g : Y \to Q_n \) be a map satisfying the conditions in Lemma 9.

For a fixed \(k = 1, 2, \ldots \), let \(C_k = \{ y \in Y : 2^{-k} \leq \delta(y) \leq 2^{-k+1} \} \). Then \(\bigcup_{k=1}^{\infty} C_k = Y \setminus K \). For every \(m \in \mathbb{N} \), let \(S_m = \{ x \in X : 2^{-m} \leq d(x, x_\infty) \leq 2^{-m+1} \} \). Then \(x_{m-1}, x_m \in S_m \). Thus \(S_m \cap S_{m'} \neq \emptyset \) if and only if \(|m - m'| \leq 1 \). And \(\bigcup_{m=1}^{\infty} S_m = X \setminus \{ x_\infty \} \). Define continuous maps \(\varphi : C_k \to I \) by \(\varphi(y) = 2 - 2^k \delta(y) \) and \(\phi_m : S_m \to I \) by \(\phi_m(x) = 2^m(d(x, x_\infty) - 2^{-m}) \) for each \(m \in \mathbb{N} \). Then \(\phi_m(x_m) = 0 \) and \(\phi_m(x_{m-1}) = 1 \) for every \(m \geq 2 \). Now we define a sequence \(\{ f_m : C_k \to C(X) \}_{m} \) as follows:

\[
\begin{align*}
 f_1(y)(x) &= \delta(y)h(y)(x), \\
 f_2(y)(x) &= (1 - \varphi(y))s(y) + \varphi(y)h(y)(x), \\
 f_3(y)(x) &= h(y)(x)\varphi(y), \\
 f_4(y)(x) &= s(y), \\
 f_5(y)(x) &= 0, \\
 f_6(y)(x) &= (1 - \varphi(y))\delta(y) + \varphi(y)s(y), \\
 f_7(y)(x) &= (1 - \varphi(y))\delta(y)g(y)(1), \\
 f_m(y)(x) &= \delta(y), \quad \text{if } m \text{ is even and } m \geq 8, \\
 f_m(y)(x) &= \delta(y) \left((1 - \varphi(y))g(y) \left(\frac{m + 1}{2} - 3 \right) + \varphi(y)g(y) \left(\frac{m + 1}{2} - 4 \right) \right), \quad \text{if } m \text{ is odd and } m \geq 9.
\end{align*}
\]

Then, \(X \times C_k \ni (x, y) \mapsto f_m(y)(x) \in I \) is obviously continuous for every \(m \geq 4 \). Using the above maps we define a map \(\Psi_k : C_k \to \text{USC}(X) \) as follows:

\[
\Psi_k(y)(x) = \begin{cases}
 f_1(y)(x) = h(y)(x), & \text{if } x \in \bigcup_{i=1}^{2^k} S_i, \\
 \phi_{2k+i}(x)f_1(y)(x) + (1 - \phi_{2k+i}(x))f_i+1(y)(x), & \text{if } x \in S_{2k+i}, \\
 \delta(y), & \text{if } x = x_\infty.
\end{cases}
\]

Fact 1. For every \(y \in C_k \), \(\Psi_k(y) \) is well-defined and continuous on \(X \setminus \{ x_\infty \} \). And it is upper semi-continuous at \(x_\infty \). Moreover, it is continuous at \(x_\infty \) if and only if \(\lim_{n \to \infty} g(y)(n) = 1 \) if and only if \(y \in C \). Therefore, for every \(y \in C_k \), \(\Psi_k(y) \in C(X) \) if and only if \(y \in C \).

Trivially, we only need to verify that \(\Psi_k(y) \) is continuous at \(x_\infty \) if and only if \(\lim_{n \to \infty} g(y)(n) = 1 \). In fact, \(\Psi_k(y) \) is continuous at \(x_\infty \) if and only if \(\lim_{x \to x_\infty} \Psi_k(y)(x) = \Psi_k(y)(x_\infty) = \delta(y) \). It follows from \(\lim_{y \to x_\infty} x_{2k+i} = x_\infty \) that \(\lim_{y \to x_\infty} f_{i+1}(y)(x_{2k+i}) = \lim_{y \to x_\infty} \Psi_k(y)(x_{2k+i}) = \delta(y) \) if \(\Psi_k(y) \) is continuous at \(x_\infty \). In particular, considering that \(i + 1 \geq 9 \) is odd, we have that the continuity of \(\Psi_k(y) \) at \(x_\infty \) implies that \(\lim_{m \to \infty} g(y)(m) = 1 \) since \(\delta(y) \neq 0 \). Conversely, if \(\lim_{y \to x_\infty} g(y)(m) = 1 \), then \(\lim_{y \to x_\infty} f_m(y)(x) = \delta(y) \) uniformly holds for \(x \in X \). It follows from the definition of \(\Psi_k(y)(x) \) that \(\lim_{x \to x_\infty} \Psi_k(y)(x) = \delta(y) \), which means the continuity of \(\Psi_k(y) \) at \(x_\infty \). We are done.

To show the continuity of \(\downarrow \Psi_k : C_k \to \downarrow \text{USC}(X) \), we apply Lemma 3. Let \((y_n) \) be a sequence in \(C_k \) with the limit \(y \). The conditions (a) and (b) in Lemma 3 are verified in Facts 4 and 3 below, respectively. In advance, we remark the following fact which follows from the definitions.

Fact 2. For each sequence \((z_n) \) in \(X \) with the limit \(z \neq x_\infty \), if \(\lim_{n \to \infty} h(y_n)(z_n) = h(y)(z) \), then \(\lim_{n \to \infty} \Psi_k(y_n)(z_n) = \Psi_k(y)(z) \).
Fact 3. For each \((z, t) \in \downarrow \Psi_k(y)\), there exists a sequence \((z_n, t_n) \in \downarrow \Psi_k(y_n)\) such that \(\lim_{n \to \infty} (z_n, t_n) = (z, t)\).

Trivially, we may only consider the case that \(\Psi_k(y)(z) \neq 0\). If \(z \neq x_\infty\), then it follows from the continuity of \(\downarrow h|_{C_k} : C_k \to \downarrow \text{USC}(X)\) and Lemma 3 that there exists a sequence \((z_n, t_n') \in \downarrow h(y_n)\) such that \(\lim_{n \to \infty} (z_n, t_n') = (z, h(y)(z))\). Thus \(\lim_{n \to \infty} h(y_n)(z_n) \geq h(y)(z)\). On the other hand, there exist \(n_1 < n_2 < \cdots\) such that \(\lim_{n \to \infty} h(y_n)(z_n) = \lim_{n \to \infty} h(y_n)(z_n) \leq h(y)(z)\) by Lemma 3. Hence \(\lim_{n \to \infty} h(y_n)(z_n) = h(y)(z)\). It follows from Fact 2 that \(\lim_{n \to \infty} (z_n, \Psi_k(y_n)(z_n)) = (z, \Psi_k(y)(z))\). Thus \((z_n, \frac{t_n}{\Psi_k(y_n)(z_n)}) \in \downarrow \Psi_k(y_n)\) and its limit is \((z, t)\). In the case \(z = x_\infty\), let \(z_n = z\) and \(t_n = \frac{t}{\delta(y_n)}\). Then \((z_n, t_n) \in \downarrow \Psi_k(y_n)\) and \(\lim_{n \to \infty} (z_n, t_n) = (z, t)\).

Fact 4. For every \((z_n, t_n) \in \downarrow \Psi_k(y_n)\), if \(\lim_{n \to \infty} (z_n, t_n) = (z, t)\), then \((z, t) \in \downarrow \Psi_k(y)\).

In the case \(z = x_\infty\), we may assume that \(z_n \in \bigcup_{i=1}^{\infty} S_{2k+i}\). Then \(t_n \leq \Psi_k(y_n)(z_n) \leq \delta(y_n)\). It follows from the continuity of \(\delta : Y \to I\) that \(t_\infty \leq \delta(y) = \Psi_k(y)(x_\infty) = \Psi_k(y)(z)\), that is, \((z, t) \in \downarrow \Psi_k(y)\). Now we consider the case \(z \neq x_\infty\). Since \(S_m\) is closed, we may assume, without loss of generality, that \(z_n, z \in S_m\) for some \(m\) and \(t_n, t > 0\) for all \(n\). We consider the following four cases:

Case A. \(m \leq 2k\). Then \(t_n \leq \Psi_k(y_n)(z_n) = h(y_n)(z_n)\). It follows from the continuity of \(\downarrow h : Y \setminus K \to \downarrow \text{USC}(X)\) and Lemma 3 that \(t \leq h(y)(z) = \Psi_k(y)(z)\), that is, \((z, t) \in \downarrow \Psi_k(y)\).

Case B. \(m = 2k + 1\). Then \(t_n \leq \Psi_k(y_n)(z_n) = \phi_{2k+1}(z_n)h(y_n)(z_n)\). Choose \(n_1 < n_2 < \cdots\) such that \(\lim_{n \to \infty} \frac{t_n}{\Psi_k(y_n)(z_n)} = a\) and \(\lim_{n \to \infty} h(y_n)(z_n) = b\). Then \(\lim_{n \to \infty} \Psi_k(y_n)(z_n)\) exists and \(t = \lim_{n \to \infty} t_n \leq \lim_{n \to \infty} \Psi_k(y_n)(z_n)\) because \(a \in I\). Since \(\downarrow h\) is continuous, we have that \(b \leq h(y)(z)\), hence \(t \leq \lim_{n \to \infty} \Psi_k(y_n)(z_n) \leq \Psi_k(y)(z)\). That is, \((z, t) \in \downarrow \Psi_k(y)\).

Case C. \(m = 2k + 2\) or \(2k + 3\). Proofs are similar to Case B.

Case D. \(m \geq 2k + 4\). Recall that \(X \times C_k \ni (x, y) \mapsto f_m(y)(x)\) is continuous for every \(m \geq 4\). Thus this fact is trivial.

It follows from the above facts that \(\downarrow \Psi_k : C_k \to \downarrow \text{USC}(X)\) is continuous for every \(k\). To define \(\Psi : Y \to \text{USC}(X)\), we need the following fact:

Fact 5. For every \(k\) and every \(y \in C_k \cap C_{k+1}\), we have \(\Psi_k(y) = \Psi_{k+1}(y)\).

At first, we note that the maps \(\phi : C_k \to I\) and \(f_m : C_k \to C(X)\) depend on \(k\). Thus, in the proof of Fact 5, we have to use different symbols to denote them. Let \(\phi : C_k \to I\) and \(f_m : C_k \to C(X)\) be these maps for the case \(k\) and let \(\phi' : C_{k+1} \to I\) and \(f_m' : C_{k+1} \to C(X)\) be these maps for the case \(k + 1\). For every \(y \in C_k \cap C_{k+1}\), we have \(\delta(y) = \frac{\phi(y)}{2}\). Thus, \(\phi(y) = 1\) and \(\phi'(y) = 0\). Using these facts, it is not hard to verify that \(f_1(y) = f_2(y) = f_3(y)\) and \(f_{m}'(y) = f_{m+2}(y)\) for every \(m\). It follows that

\[
\Psi_k(y)(x) = f_1(y)(x) = f_3(y)(x) = f_1'(y)(x) = \Psi_{k+1}(y)(x)
\]

for every \(x \in \bigcup_{i=1}^{2k+2} S_i\). For every \(i\) and \(x \in S_{2(k+1)+i} = S_{2k+(i+2)}\), we have

\[
\Psi_{k+1}(y)(x) = \phi_{2(k+1)+i}(x) f_1'(y)(x) + (1 - \phi_{2(k+1)+i}(x)) f_{i+1}'(x) = \phi_{2(k+2+i)}(x) f_{i+2}(y)(x) + (1 - \phi_{2(k+2+i)}(x)) f_{i+3}(y) = \Psi_k(y)(x).
\]

Trivially, \(\Psi_{k+1}(y)(x_\infty) = \delta(y) = \Psi_k(y)(x_\infty)\). Hence we complete the proof of the fact \(\Psi_k(y) = \Psi_{k+1}(y)\).

Thus we may define a map \(\Psi : Y \to \text{USC}(X)\) as follows:

\[
\Psi(y) = \begin{cases} \phi(y) = h(y) & \text{if } y \in K, \\ \Psi_k(y) & \text{if } y \in C_k. \end{cases}
\]

Then \(\Psi|_K = \Phi|_K\). Therefore, the following facts show that \(\Psi\) is as required.
Fact 6. For every $y \in Y$,
\[d_H(\downarrow \Phi(y), \downarrow \Phi(y)) \leq 4\delta(y) \leq \varepsilon. \]

It is trivial that this fact holds for $y \in K$. Now suppose $y \in C_k$ for some k. If \(x \in \bigcup_{i=1}^{2^k} S_i \), then $\Psi(y)(x) = \Psi_k(y)(x) = h(y)(x)$. Thus,
\[\{x\} \times [0, \Psi(y)(x)] = \{x\} \times [0, h(y)(x)]. \]

If $x \in S_{2k+i}$ for some i, then $d(x, x_\infty) \leq 2^{-2k-i+1} < 2^{-k} \leq \delta(y)$. It follows from the definition of Ψ_k that
\[\Psi(y)(x) = \Psi_k(y)(x) \leq \sup\{ f_i(y)(x) : i \in \mathbb{N} \} \leq \max\{ h(y)(x), s(y), \delta(y) \} \leq \max\{ \delta(y), \sup\{ h(y)(x') : d(x', x_\infty) \leq 2\delta(y) \} \}. \]

Since $d(x, x') < 3\delta(y)$ for every $x' \in B_d(x_\infty, 2\delta(y))$, we have
\[\{x\} \times [0, \Psi(y)(x)] \subset B_d(\downarrow h(y), 3\delta(y)). \]

If $x = x_\infty$, it is trivial that
\[\{x\} \times [0, \Psi(y)(x)] \subset B_d(\downarrow h(y), \delta(y)). \]

Hence
\[\downarrow \Psi(y) = \bigcup_{x \in X} \{x\} \times [0, \Psi(y)(x)] \subset B_d(\downarrow h(y), 3\delta(y)). \]

Conversely, if $x \in \bigcup_{i=1}^\infty S_{2k+i} \cup \{ x_\infty \}$, then $d(x, x_\infty) < \delta(y)$ and hence $s(y) \geq M(y, \delta(y)) \geq h(y)(x)$. Thus
\[\{x\} \times [0, h(y)(x)] \subset B_d([x_{2k+3}] \times [0, s(y)], d(x, x_{2k+3} + \delta(y))). \]

Noting that $\Psi(y)(x_{2k+3}) = \Psi_k(y)(x_{2k+3}) = f_i(y)(x_{2k+3}) = s(y)$ and $d(x, x_{2k+3}) \leq 2\delta(y)$, we have
\[\{x\} \times [0, h(y)(x)] \subset B_d([x_{2k+3}] \times [0, \Psi(y)(x_{2k+3})], 3\delta(y)) \subset B_d(\downarrow \Psi(y), \delta(y)). \]

It follows that
\[\downarrow h(y) \subset B_d(\downarrow \Psi(y), 3\delta(y)). \]

Thus $d_H(\downarrow h(y), \downarrow \Psi(y)) \leq 3\delta(y)$. Hence, $d_H(\downarrow \Phi(y), \downarrow \Psi(y)) \leq d_H(\downarrow \Phi(y), \downarrow h(y)) + d_H(\downarrow h(y), \downarrow \Psi(y)) \leq \delta(y) + 3\delta(y) = 4\delta(y)$.

Fact 7. $\downarrow \Psi : Y \rightarrow \downarrow \text{USC}(X)$ is a Z-embedding.

It follows from the continuity of $\downarrow \Psi : C_k \rightarrow \downarrow \text{USC}(X)$ and Facts 5 and 6 that $\downarrow \Psi : Y \rightarrow \downarrow \text{USC}(X)$ is continuous. Moreover, we shall show $\Psi(y_1) \neq \Psi(y_2)$ for any $y_1, y_2 \in Y$ with $y_1 \neq y_2$. By the symmetry, we may only consider the following three cases.

Case A. $y_1, y_2 \in K$. This fact is trivial.

Case B. $y_1 \in K$ and $y_2 \in Y \setminus K$. Then, by Fact 6,
\[d_H(\downarrow \Psi(y_2), \downarrow \Phi(y_2)) \leq 4\delta(y_2). \]

On the other hand, it follows from the definition of δ that
\[d_H(\downarrow \Phi(y_1), \downarrow \Phi(y_2)) \geq d_H(\downarrow \Phi(K), \downarrow \Phi(y_2)) \geq 5\delta(y_2) > 0. \]

We conclude $\Psi(y_1) = \Phi(y_1) \neq \Psi(y_2)$.

Case C. $y_1, y_2 \in Y \setminus K$. If $\Psi(y_1) = \Psi(y_2)$, then $\delta(y_1) = \Psi(y_1)(x_\infty) = \Psi(y_2)(x_\infty) = \delta(y_2) \neq 0$. Thus there exists k such that $y_1, y_2 \in C_k$ and, for this k, $\varphi(y_1) = \varphi(y_2)$. On the other hand, for every $i \in \mathbb{N}$,
\[f_{i+1}(y_1)(x_{2k+i}) = \Psi_k(y_1)(x_{2k+i}) = \Psi(y_1)(x_{2k+i}) = \Psi(y_2)(x_{2k+i}) = f_{i+1}(y_2)(x_{2k+i}). \]
If \(\varphi(y_1) = \varphi(y_2) = 1 \), then letting \(i \) be even and \(i \geq 8 \) in the above formula, by the definition of \(f_{i+1} \), we have \(g(y_1)(m) = g(y_2)(m) \) for every \(m \in \mathbb{N} \). If \(\varphi(y_1) = \varphi(y_2) \neq 1 \), then letting \(i = 6 \) in the above formula we have \(g(y_1)(1) = g(y_2)(1) \). Moreover, letting \(i = 8, 10, 12, \ldots \), respectively, in the above formula, we may inductively obtain \(g(y_1)(m) = g(y_2)(m) \) for every \(m \). Thus \(g(y_1) = g(y_2) \) in both cases. Since \(g: Y \to Q_\mathcal{U} \) is injective, we have that \(y_1 = y_2 \). A contradiction occurs.

Hence \(\downarrow \Psi: Y \to \downarrow \text{USC}(X) \) is an embedding. Noticing that, for every \(y \in C_k \), \(\Psi(y)(x_{2k+4}) = \Psi_k(y)(x_{2k+4}) = f_5(y)(x_{2k+4}) = 0 \), it follows from [19, Lemma 5] that \(\downarrow \Psi: Y \to \downarrow \text{USC}(X) \) is a \(Z \)-embedding.

Fact 8. \(\Psi^{-1}(C(X)) \setminus K = C \setminus K \).

In fact, for every \(y \in Y \setminus K \), there exists \(k \) such that \(y \in C_k \). By the definition of \(\Psi \) and Fact 1, we have that \(\Psi(y) \in C(X) \) if and only if \(\Psi_k(y) \in C(X) \) if and only if \(y \in C \). We are done. \(\square \)

Proof of Theorem 3. \((a) \Rightarrow (c) \): Theorem 1 implies \(\downarrow \text{USC}(X) \approx Q \). By Theorem 2, the closure of every \(Z \)-set in \(\downarrow C(X) \) is a \(Z \)-set in \(\downarrow \text{USC}(X) \). It follows from [19, Lemma 6] that \(\downarrow C(X) \) is contained in a \(Z_{\sigma} \)-set in \(\downarrow \text{USC}(X) \). Then, combining this with Proposition 1 and [18, Proposition 1], \(\downarrow C(X) \) is an \(\mathcal{F}_{\sigma \delta} \)-absorber in \(\downarrow \text{USC}(X) \). Thus, using Lemma 2, we have the condition (c).

\((c) \Rightarrow (b) \): This is trivial.

\((b) \Rightarrow (a) \): By Lemma 4, (b) implies that \(X \) is a compactum. Note that \(c_0 \) is not Baire. It follows directly from [19, Theorem 2] that the set of isolated points is not dense in \(X \). \(\square \)

Acknowledgement

The authors would like to express their sincere thanks to the referee for his or her valuable comments and suggestions.

References

