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PLD2 is enriched on exosom
es and its activity is correlated
to the release of exosomes
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Abstract Exosomes are small vesicles secreted by different
immune cells and which display anti-tumoral properties. Stim-
ulation of RBL-2H3 cells with ionomycin triggered phospholi-
pase D2 (PLD2) translocation from plasma membrane to
intracellular compartments and the release of exosomes. Al-
though exosomes carry the two isoforms of PLD, PLD2 was
enriched and specifically sorted on exosomes when overexpressed
in cells. PLD activity present on exosomes was clearly increased
following PLD2 overexpression. PLD2 activity in cells was
correlated to the amount of exosome released, as measured by
FACS. Therefore, the present work indicates that exosomes can
vehicle signaling enzymes.
� 2004 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
1. Introduction

Phospholipase D (PLD) hydrolyzes phosphatidylcholine to

generate choline and phosphatidic acid (PA). PA is an im-

portant lipid second messenger implicated in many cellular

functions [1], including exocytosis, endocytosis, remodeling of

the actin cytoskeleton, and which also directly activates a

range of target proteins such as mTOR [2]. Since PA is a

fusogenic lipid [3], it has been implicated in different steps of

vesicular trafficking and intracellular membrane fusion events

[4]. For example, PLD is involved in secretion mechanisms in

granulocytes [5] and RBL mast cells [6]. Also, inhibitors of

serine/threonine kinases that regulate PLD activity suppress

both PLD activity and secretion in these cells [7]. Two main

isoforms of PLD, PLD1 and PLD2, have been characterized,

which are differently regulated but are both dependent on

phosphatidylinositol-4,5-bisphosphate [1]. PLD1 is activated

by GTPases of ARF family such as Arf1 and of Rho families

(RhoA, cdc42 and Rac), and by protein kinases C. Conversely,
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PLD2 is constitutively active and weakly sensitive to Arf1 [1].

Synucleins [8] and actin [9] are known as cellular inhibitors of

PLD2 activity but PLD2 regulation is still unclear. Each iso-

form seems to be differently localized in cells. PLD1 is present

on intracellular compartments corresponding to granules or

Golgi apparatus [10], whereas PLD2 has been observed pref-

erentially on plasma membrane [6]. Due to its low abundance,

the intracellular localization of PLD2 has been studied only

indirectly through overexpression of chimeric proteins like

GFP-tagged PLD2 [6]. Nevertheless, it has also been shown

that a significant fraction of endogenous PLD2 localized to the

perinuclear Golgi region and was also distributed throughout

dense cytoplasmic puncta [11].

We have investigated the role of PLD2 in intracellular ve-

sicular trafficking in mast cells and more precisely in the se-

cretion of immuno-active vesicles, exosomes. Exosomes are

small vesicles (60–90 nm) formed in multivesicular bodies

(MVB) and secreted when MVB fuse with plasma membrane

[12]. These vesicles have attracted much interest, since Zitvogel

et al. [13] have shown that dendritic cells-derived exosomes

endowed immune anti-tumoral activities in mice. Clinical trials

are currently in progress.

In the present work, we have observed the enrichment of an

active PLD2 on exosomes secreted by RBL-2H3 cells and

shown that PLD2 was necessary to obtain maximal exosome

secretion.
2. Materials and methods

2.1. Chemical reagents and antibodies
RPMI 1640, DMEM, PBS, penicillin, streptomycin and LL-glutamine

were purchased from Biowhittaker. FCS was from Gibco (Paisley,
UK). All solvents, alcohols were from Merck Eurolab (VWR). 4,4-
Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-PC and BODIPY-
ceramide (Molecular Probes) were stored in ethanol at )20 �C. All
chemical reagents were from Sigma (St. Louis) except glycine (Euro-
bio). Rabbit polyclonal anti-PLD antibody (N-PLD4) was from
Johnson Pharmaceutical Research Institute (Raritan, NJ, USA) and
was kindly supplied by Dr. D. Uhlinger. This antibody was raised
against the sequence 523–537 of human PLD2, which was found 100%
identical with rat PLD2 and 75% identical with rat PLD1. The HA.11
monoclonal mouse anti-HA antibody (clone 16B12) was from BabCo
(Eurogentec). Secondary antibodies labeled with horseradish peroxi-
dase (HRP, goat anti-rabbit) or with rhodamine (goat anti-mouse)
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Fig. 1. (A) Exosomes and RBL-2H3 cells were analyzed by Western
blotting with polyclonal NPLD4 anti-PLD antibody. Rat brain was
used as PLD2 control. (B) Resting and ionomycin-activated RBL cells
overexpressing HA-tagged PLD2 (RBL PLD2+) and exosomes from
RBL PLD2+ were analyzed by Western blotting using NPLD4 or anti-
HA antibodies. (C) HA-tagged PLD2 localization was analyzed by
immuno-fluorescence microscopy in resting or ionomycin-activated
RBL PLD2+ cells. Lower panels in (C) are merge of transmission and
fluorescence.
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were from Chemicon and Beckman-Coulter, respectively. Methyl
arachidonoyl fluorophosphonate (MAFP) was from Calbiochem.

2.2. Cells
RBL-2H3 cells were grown as previously reported [14]. Cells were

kept either adherent, or in suspension under constant agitation in
spinner bottles (VWR). RBL cells overexpressing active (RBL PLD2+)
or inactive (RBL PLD2)) PLD2 were obtained by electroporation
(250 V, 500 lF) of cells with linearized pcDNA3.1 vector containing
the HA-tagged cDNA of murine PLD2 with a catalytic active or in-
active (K758R) sequence. PLD2 overexpressing cells were selected with
geneticin (500 lg/ml) added in regular cultures, but suppressed in
spinner bottle cultures for exosome preparation.

2.3. Exosomes preparation
Wild type RBL cells, RBL PLD2+ or RBL PLD2), were grown in

suspension and degranulation was triggered with ionomycin (final
concentration 1 lM) during 20 min at 37 �C. Exosomes were then
recovered and purified by differential centrifugations from superna-
tants recovered after stimulation as described [14,15]. The final pellet
referred to as exosomes was taken up in PBS for further analyses.
Usually, 300 lg of exosomal proteins [14] was obtained from 1 · 109
RBL Wt cells. Quality of preparations was routinely checked by
electron microscopy (D. Lankar, Institut Curie [15]).

2.4. Cytofluorimetry analysis of in vitro-labeled exosomes
Exosomes were labeled with 4.8 lM BODIPY-ceramide, BODIPY-

PC or 2-6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino (NBD)-PC in PBS
for 30 min at 37 �C in the dark. Excess of fluorescent lipids was re-
moved by two successive ultracentrifugations at 110 000· g for 70 min
at 4 �C in a TLX100 ultracentrifuge (Beckman Coulter). Pelleted
fluorescent exosomes were taken up in PBS and fluorescence was
measured by spectrofluorimetry (kexc ¼ 475 nm; kem ¼ 515 nm).
For FACS analyses, pelleted labeled exosomes were incubated at

room temperature 15 min with 10 ll of aldehyde-sulfate-coated latex
beads (Interfacial, Dynamics Corp., Portland, USA) and then for 1 h
in 1 ml of PBS [15]. Free aldehyde-sulfate groups were then saturated
by 100 mM of glycine for 30 min at room temperature [15]. Beads
carrying fluorescent exosomes were then washed twice in FACS buffer
(0.01% NaN2, 1% FCS in PBS) by two centrifugations for 3 min at
2000 rpm and finally analyzed by FACS with the settings used for
FITC. Fluorescence was proportional to known amounts of exosomes
up to 30 lg proteins.

2.5. Measurement of PLD activity by HPLC
Production of phosphatidylethanol (transphosphatidylation reac-

tion) [1] was monitored by HPLC using fluorescent phosphatidylcho-
line (BODIPY-PC) as PLD substrate. 1· 106 sonicated RBL cells or
100 lg exosomes were incubated, respectively, 30 and 60 min with 1.1
lM of BODIPY-PC and 1% ethanol in 1 ml PBS with 2 mM Caþþ/
Mgþþ, at 37 �C with 10 lMMAFP (a phospholipase A2 inhibitor) and
10 ll protease inhibitor cocktail (P8340, Sigma). Then, fluorescent
lipids were extracted with 1 ml butanol-1. Separation of fluorescent
BODIPY-PC-derived products was realized according to the proce-
dure described by Kemken et al. [16].

2.6. Western blotting analyses
Cells and exosomes were lysed in sample buffer (80 mM Tris–HCl,

glycerol 10%, SDS 10%, b-mercaptoethanol 2%, w/v; bromophenol
blue 5%, v/v) and sonicated. 40 lg of proteins was then separated on a
6.5% SDS–polyacrylamide gel and transferred on to a nitrocellulose
membrane. Membranes were saturated with 10% non-fat milk in PBS–
0.1% Tween 20 for 1 h at room temperature and blotted with rabbit or
mouse primary antibodies against PLD or HA, respectively, in 1%
non-fat milk in PBS–0.1% Tween 20 at room temperature for 45 min.
Membranes were then washed and incubated in the same buffer with
HRP-labeled, anti-rabbit IgG or anti-mouse IgG secondary antibod-
ies. The signal was detected by enhanced chemiluminescence system.

2.7. Immunofluorescence microscopy experiments
Resting RBL PLD2+ cells were grown overnight on glass/Teflon

coverslips (VWR) in complete medium (1· 104 cells/50 ll). Cells were
then fixed 20 min with 5% PBS/paraformaldehyde (w/v) at room
temperature, and permeabilized 15 min at room temperature with
0.05% saponin (w/v) in RPMI, 10% BSA (w/v), and 10 mM glycin.
Cells were then labeled at room temperature with anti-HA antibody in
PBS for 45 min and washed before incubation with rhodamine-labeled
anti-mouse secondary antibody in PBS for 45 min in the dark. For
labeling of activated cells, cells were plated, stimulated with ionomycin
(15 min, 37 �C), and then treated as for resting cells. Samples were
analyzed with a confocal laser scanning microscope (Zeiss LSM510).
3. Results

We analyzed PLD isoforms expression on exosomes com-

paratively to parent cells. As shown in Fig. 1A, PLD1 is more

expressed than PLD2 in RBL, whereas on exosomes the two

isoforms are equally expressed, indicating that PLD2 is en-

riched on exosomes compared to total parent cells. We then

overexpressed an HA-tagged PLD2 in RBL and also observed



Fig. 2. (A) Typical chromatograms representatives of fluorescence
HPLC measurement of PLD activity. (B) Quantification of PLD spe-
cific activity on exosomes from WT, PLD2+, PLD2) RBL cells and
corresponding parent cells. Results are means of 2–3 experi-
ments± S.E.M.

Fig. 3. (A) Electron microscopy analysis of exosomes from RBL Wt
cells. Bar¼ 100 nm. (B) Exosomes were labeled with BODIPY-PC,
BODIPY-ceramide or NBD-PC and fluorescence was monitored by
spectrofluorimetry (a.u., arbitrary units). (C) BODIPY-ceramide-la-
beled exosomes were loaded on latex beads and analyzed by FACS.
Dot plots showing forward scatter (size) vs. side scatter (content) are
presented. Inset: Exosomes bound on monomeric beads (circled in (A))
were quantified.
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an enrichment of this protein in exosomes as compared to cells

(Fig. 1B). We next tracked HA-tagged PLD2 in cells by fluo-

rescence microscopy. In resting RBL, HA-PLD2 was located

on the plasma membrane (Fig. 1C, left panels), as already

reported [6]. When degranulation was triggered, we noticed a

redistribution of PLD2 from the plasma membrane towards

the cell interior (Fig. 1C, right panels), which might direct

PLD2 on exosomes.

Exosomes recovered from stimulated RBL Wt contained an

active PLD (Fig. 2) as evidenced by the presence of BODIPY-
Fig. 4. (A) FACS quantification (a.u.) of BODIPY-ceramide-labeled-exosom
2–3 experiments±S.E.M. are presented. (B) C14-serotonin release by resting
Typical experiment is presented.
PEt (Fig. 2A). DG but not PA was noticed on exosomes,

suggesting the presence of a PA-phosphatase. The global PLD

specific activity (involving both PLD1 and 2) in control Wt

samples was similar in exosomes and parent cells (Fig. 2B). As

compared to Wt samples, overexpression of PLD2 led to a

specific PLD activity about 10 and five times higher in exo-

somes and cells, respectively. Overexpression of inactive PLD2

led to about 20% decrease in PLD specific activity in cells (7.4

vs. 5.5 pmol/mg/h), but no clear effect on exosome PLD ac-

tivity was noticed.

We next investigated whether these modifications of PLD2

expression and PLD activity in RBL cells could influence de-

granulation. For this purpose, we improved a previously de-

scribed method to measure the amount of exosomes released

[15]. Quality of exosomes preparation was checked by electron

microscopy. A typical preparation, consistent with previous
es released either by WT, RBL PLD2+, or RBL PLD2- cells. Means of
or ionomycin-activated Wt or PLD2+ RBL cells according to time.
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results [15], was reported in Fig. 3A. In order to quantify the

entire population of exosomes independently of any protein

marker, we first labeled them with fluorescent lipids. We tested

three fluorescent lipids and observed that the neutral lipid

BODIPY-ceramide was the best marker of exosome mem-

branes (Fig. 3B). Then, labeled exosomes were adsorbed on 3

lM latex beads to be detected by FACS. As shown in Fig. 3C,

monomeric beads (gate A) were mainly represented (74%, in-

set) and FACS analyses were restricted to this population.

As shown in Fig. 4A, PLD2 activity was clearly involved in

exosome release, since about two times more exosomes were

recovered from 4 · 106 RBL PLD2+ and two times less from

4 · 106 RBL PLD2) cells. As expected [6], RBL PLD2+ cells

secreted two times more serotonin than Wt cells (Fig. 4B).
4. Discussion

RBL-2H3 cells contain secretory granules corresponding to

MVB [15], able to release upon stimulation their internal

vesicles, called exosomes. Since exosomes trigger immune anti-

tumoral response [13], it is of interest to understand the mo-

lecular mechanisms involved in their biogenesis and secretion.

Different steps of secretion and intracellular trafficking require

fusogenic lipids such as PA produced by PLD.

In the present work, we have observed a net enrichment of

an active PLD2 isoform on exosomes. Interestingly, PLD2

undergoes intracellular redistribution from the plasma mem-

brane (Fig. 1) upon cell stimulation. A possible PLD2 trans-

location from plasma membrane to secretory granules and

then to exosomes during cell stimulation might account for

exosome enrichment in this enzyme. Noteworthy, PLD2 in-

ternalization from plasma membrane towards intracellular

vesicles has been previously reported [17]. Contamination of

exosome preparations by plasma membrane vesicles can be

ruled out, since exosomes purified in the same way displayed a

characteristic lipid composition distinct from that of plasma

membrane-derived vesicles [14].

In order to measure the amount of exosome released, we

have adapted a previously described method [15]. In our case,

exosomes were labeled with fluorescent lipids instead of fluo-

rescent antibodies [15]. Short-chain BODIPY-ceramide, a

neutral lipid, was the best tool to label exosome membranes as

compared with NBD-PC and BODIPY-PC (Fig. 3B). This

could be due to the impossibility of NBD-PC, contrarily to

BODIPY-ceramide, to penetrate into liquid-ordered mem-

brane domains with high lateral phospholipid pressure [18,19],

like in exosome membranes [14]. In the same way, intracellular

organelles are differently labeled with fluorescent lipids de-

pending on their membrane lipid composition and fluidity [20].

As observed in Fig. 4A, overexpression of active or inactive

PLD2 increases or decreases, respectively, exosome release.

Involvement of PLD activity in this process could be related to

the amount of secretory granules, which have fused with the

plasma membrane. Indeed, PLD2 has already been shown to

regulate secretion in RBL-2H3 cells [6]. However, PLD2 could

also participate exosome biogenesis since in syk deficient B

cells, with impaired PLD activation, MVB cannot be filled

with exosomes [21].
In summary, the present work is the first report of an active

signaling enzyme present on exosomes. Retrospectively, exos-

omal PLD could account for the noticeable extracellular PLD

activity observed after activation of some cells, such as neu-

trophils [22] or fibroblasts [23]. Finally, PLD activity carried

out by exosomes could be involved either in putative signaling

properties of exosomes through second messengers such as PA,

or in interaction mechanisms between exosomes and target

cells through the fusogenic properties of PA. Exosomes may

thus appear as a new signaling device.
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