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Abstract 

Color the elements of a finite set S with two colors. A collection of subsets of S is called 
a 2-part Sperner family if whenever for two distinct sets A and B in this collection we have 
A c B then B - A has elements of S of both colors. All 2-part Sperner families of maximum size 
were characterized in Erd6s and Katona (1986). In this paper we provide a different, and quite 
elementary proof of the structure and number of all maximum 2-part Sperner families, using 
only some elementary properties of symmetric chain decompositions of the poset of all subsets 
of a finite set. 

I. Introduction 

The celebrated Sperner's theorem [15] or  [1, Theorem 1.2.1] states that  the 

max imum size of an antichain in the poset of  all subsets of a finite set S of size n is 

equal to (L,/"zj). A complement  to this theorem [1, Theorem 1.2.2] states that  the only 

antichains of this max imum size are either all the subsets of S of  size L n/2 J or all the 

subsets of S of  size F n/27. Thus if n is even, there is only one max imum antichain, and if 
n is odd, there are two such antichains. 

One  generalization (there are many  others, see [1, 8]) was obtained independently 

by Ka tona  [11] and Klei tman [13]. Color  the elements of S with two colors. Call 

a collection of  subsets of  S a 2-part Sperner fami ly  if whenever for two distinct sets 
A and B in this collection we A ~ B then B -- A has elements of S of bo th  colors. Thus  

no mat ter  what  the coloring, an antichain (which could be called a 1-part Sperner 
family) is always a 2-part  Sperner family. Rather  surprisingly this weakening of the 

antichain condi t ion does not  yield larger 2-part  Sperner families. The K a t o n a -  

Klei tman theorem [1, Theorem 11.2.1] asserts that  the max imum size of a 2-part 
Sperner family of S is still (k,/~2]), regardless of the coloring! 
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The next obvious question is: What are the 2-part Sperner families of maximum 
size? Here, the answer is not as straightforward as in the original Sperner theorem, 
however, much simple structure still remains. The structure and number of all 2-part 
Sperner families of maximum size was discovered and proved in [5] (the author 
became aware of this work after the present paper was finished). In their proof, Peter 
Erdrs and Gyula Katona [5] use an LYM inequality and results on extreme points of 
profile matrices [6]. Their method is powerful and can be used in many other settings 
(for example see [4, 14]. In [10], Mark Huber uses this method to extend their result 
to the poset of the submultisets of certain kinds of multisets.) In this note we provide 
a different, and quite elementary proof of the structure and number of all maximum 
2-part Sperner families, using only some elementary properties of symmetric chain 
decompositions of the poset of all subsets of a finite set. This same method, which (like 
Sperner's original proof) does not appeal to the LYM inequality, will also give a new 
proof of the characterization of the maximum antichains of this poset. 

Two excellent sources for more background, and interesting related material are the 
survey article of Greene and Kleitman [8] and the book of Anderson [1]. A more 
recent survey can be found in [7]. 

2. The maximum 2-part Sperner families 

We introduce the following notation: Let S = R u W be a finite set with n elements, 
with Rc~ W = 0, in other words elements of S are colored using two colors W (hite) 
and R (ed). For k a nonnegative integer, (k s) will denote the collection of k-subsets of S, 
and (~) (w) will denote the collection of all subsets of S with exactly k elements from 
R and l elements from W. Thus the only maximum antichains in the poset of all 
subsets of S is (Ln~2J) or  (LnY2A)" We are now ready to write down exactly all the 2-part 
Sperner families. Just as with one color, the case n even will be different from n odd. 

Theorem 1. Let S = R w W be a finite set with R n W = O. Write n = IS[, w = [ W [, and 
r = [R [. Assume n = w + r is even, and r >. w. For i = 0 . . . . .  L w/2j, let 

w 
x i  = (Lr/2R~ _ i ) (Lw/2W~ _ i ) u (FF/2R] + i ) (Fw/2-] + i ) ,  

R W u R W 

Y ~ = ( F r / 2 , + i ) ( L w / 2 J - i )  ( L r / 2 J - i ) ( F w / 2 , + i ) "  

Let ~ be a collection of subsets orS. Then ~ is a 2-part Sperner family of maximum 
possible size if and only if 

= Zo wZ1 •Z2 u ... ~ZLw/2 3, 

where Zi is either Xi or Yi, for i = 0 . . . .  .L w/2 d. 
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Corollary 2. Le t  S = R u W be a f ini te  set with R n  W = 0, and [R[ > / IW [. Assume IS] 
is even and write w = I W I. Then the number o f  2-part Sperner families o f  maximum size 

in the poset o f  all subsets o r S  is 2 fw/zl. 

Proof.  This is immediate  from Theorem 1. Just note  that in the case when w, and 
hence r, is odd, we have two choices for each of the Zs. Whereas,  in the case when w is 
even, we have Xo = Yo and thus Zo is fixed. [ ]  

Theorem 3. Le t  S = R u W be a f ini te  set with R n W -- O. Wr i t e  n = IS], w = [ W I, and 

r = IRI. Assume n = w + r is odd, and r >1 w. For i = 0 . . . . .  w, let 

Le t  o~ be a collection o f  subsets o f  S. Then ~ is a 2-part Sperner fami ly  o f  maximum 

possible size i f  and only i f  

W R W R W 

~ = ( e R o ) ( f o  ) U ( e l ) ( f  1 ) u ' " V ° ( e w ) ( J  ~, ) '  

where for  i = O, . . . ,  w, 

ei = al or  bi, f = Cl or di , 

and for  i = O, . . . ,  w - 1, 

e i + l  ~ e i ,  f+ l  ~ f .  

Corollary 4. Let  S = R va W be a f ini te  set with R n  W = 0, and I R I >7 I W I. Assume [SI 
is odd and write w = [ W I. Then the number o f  2-part Sperner families o f  maximum size 

in the poset o f  all subsets o f  S is 2 ~+1. 

Proof.  Cont inuing with the nota t ion  of Theorem 3, let Zi (eR) w = ( ~ ) .  Now by The- 
orem 3, a max imum 2-part  Sperner family ~ has the form ZovaZ1 u ... u Z w .  N o w  
the corol lary follows from the fact that  based on our  choice for Zo, . . . ,  Zi, we have 
exactly two choices for each Zi + 1. To  see this consider the case when r is even and w is 
odd. In this case we have ao = bo, and Co 4 = do. Thus  we have 2 choices for Zo. Also for 
i even, the only equalities among  the relevant numbers  is c~ = dg+ 1, and d~ = q+ 1. So 
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given our choice for ei and f ,  the choice for f + l  is determined, and we have two 
choices for ei+ 1. For  i odd, the relevant equalities are al = bi+ 1 and bi = ai+ 1, which 
means that given our choice of ez and f ,  there is only one choice for e~+ 1 but two 
choices for f + l .  In any case there is always exactly two choices for Z~+I. The case 
when r is odd, and w is even is quite similar. []  

The most striking feature of the above theorems is the fact that maximum sized 

( k ) ( l ) .  In other 2-part Sperner families are the union of collection of sets of form R w 
words, when constructing a maximum 2-part Sperner family, if you pick one subset of 
S with k red elements and 1 white elements, then you have to pick all such subsets! 
Thus in finding maximum 2-part Sperner families, one can consider a much smaller 
partially ordered set: Partially order the collection 

k l [ k = 0  . . . .  , I R I , / = 0  . . . .  ,IWl , 

R W by declaring (R)(W) ~< (k2)(l~ ) if and only if kl ~< k2, and 11 <~ 12 (This is a subposet 
of the poset of antichains defined by Dilworth [3], see [1, chapter 13]). Now 
according to the theorems, a maximum 2-part Sperner family is the union of elements 
of a 2-part Sperner family of this new (and smaller) poset. For  example, consider the 
case when S has ten elements with 6 of them red and 4 of them white. We make a 7 x 5 
table, with its rows indexed by 0, . . . , 6 = J R ] ,  and its columns indexed by 
0 . . . .  ,4 = [W ]. The ( i , j )  entry of this table will be the size of (~ ) (w) :  

0 
1 
2 

R 3  
4 
5 
6 

W 
0 1 2 3 4 

1 4 6 4 1 
6 24 36 24 6 

15 60 90 60 15 
20 80 120 80 20 
15 60 90 60 15 
6 24 36 24 6 
1 4 6 4 1 

To find a maximum 2-part Sperner family we cannot pick two collections from any 
row or any column. Now Theorem 1 says that we have to pick the 120 elements each 
with 3 red and 2 white elements, and then we have to choose two of the 60 element 
collections, either entries (2, 1) and (4, 3), or entries (4, 1) and (2, 3). After these choices 
we have to pick two of the 6 element collections, either entries (1, 0) and (5, 4) or entries 
(5, 0) and (1, 4). Thus there are 4 maximum 2-part Sperner families, and each does have 
120 + 60 + 60 + 6 + 6 = 252 = lo (L10/zj) elements. Note that the above table is much 
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smaller than the Hasse diagram for the poset of all subsets of a set with 10 elements, 
and for all cases we can draw similar tables with similar patterns (the pattern will be 
slightly different for IS[ odd, since the 2 choices at each stage depend on the choices 
that came before). 

For  the proof  of the theorems we need some easy facts about  symmetric chain 
decompositions which we will discuss next. 

3. Preliminaries on symmetric chains 

Let S be a set with n elements, and let #(S)  denote the set of all subsets of S. A chain 
of elements of ~(S), 

A1 c A 2  ~ ... C A b  

form a symmetric chain if for i = 1, . . . ,  h - 1, Ai+ x has one more element than A~, and 
lax] + ]Ah[ = n [1, chapter 3]. De Bruijn, et al. [2] showed that ~(S)  can be written as 
a disjoint union of symmetric chains [-1, Theorem 3.1.1]. Any such union is called 
a symmetric chain decomposition of ~(S). There are many different symmetric chain 
decompositions for ~(S), but all of these consist of (L,,/"2 j ) chains. If as usual, the length 
of a chain is one less than the number  of subsets in it, then a symmetric chain 
decomposition of ~(S)  will always have 1 = (~) chain of length n, ( ~ ) - (~) chains of 
length n - 2, (~) - (~) chains of length n - 4 and so on. The following easy lemma 
will be very useful. 

Lemma 5. Let S = {1, 2 . . . .  , n}. Given an arbitrary symmetric chain d of  subsets of S, 
we can find other symmetric chains so that these together with o~ form a symmetric chain 

decomposition of  ~(S).  

Proof. We know that ~(S)  has some symmetric chain decomposition, and because of 
the comment  before the lemma, in this symmetric chain decomposition there will be at 
least one symmetric chain ~ with the same length as ~4. It is not hard to see that there 
is a relabeling of elements of S that turns ~ into ~¢. Now if we apply this relabeling to 
the whole symmetric chain decomposition we get another symmetric chain decompo- 
sition and one of the new symmetric chains will be d .  [] 

Let ~ ¢ : A  1 c A2 c ... ~ A r be a symmetric chain in ~(S), and let N:B1  c B2 

c ... c Bt be a symmetric chain in ~ ( T ) .  Then the symmetric rectangle ~4 x N is 
defined to be 

A l w B 1  A 1 u B 2  ... A I w B t  

A 2 w B 1  A 2 w B 2  "'" A 2 u B t  

". ~ " . .  - 

AruB1  A r u B 2  ... ArwBt  
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Katona [12] used symmetric chain decompositions in each color class to study 
three-part Sperner families, and Griggs [9] used symmetric rectangles to give a simple 
proof of the Katona-Klei tman theorem on the size of a maximum 2-part Sperner 
family [i ,  Theorem 11.2.1]. The importance of symmetric rectangles is that a 2-part 
Sperner family can have at most one member from each row and each column of such 
a rectangle. The following Lemma is a slight strengthening of the Katona-Klei tman 
theorem on the size of a maximum 2-part Sperner family. 

Lemma 6. Let S = R w  W be a finite set with n elements, and with Rc~ W = O. Let d be 
a symmetric chain in ~ ( R )  of length t, and let ~ be a symmetric chain in ~ ( W  ) oflenoth 
s. Then 

1. The number of subsets of  size [n/2J in d x ~ is min(t + 1,s + 1). 
2. Let ~ be a maximum 2-part Sperner family in ~(S); then ~ contains exactly 

min(t + 1, s + 1) subsets from ~ x ~ ,  and no two of these are in the same row or column. 
The total number of subsets in ~ will be (Ln/~]). 

Proof. 1. Since both chains are symmetric, for each subset in the shorter chain there is 
exactly one subset in the longer one such that there union has size Ln/2J. 

2. By Lemma 5, there is a symmetric chain decomposition of R that contains d ,  
and a symmetric chain decomposition of W that contains ~.  Construct all possible 
symmetric rectangles. By the definition of a 2-part Sperner family no two elements of 

can be in the same row or column of the same symmetric rectangle. Thus 
contains at most m sets from each rectangle, where m is the minimum of the number 

of rows and the number of columns. By the first claim this minimum is equal to the 
number of subsets of size L n/2 I. Since every subset of S is in one of these rectangles, we 
have I~1 ~ (L,/"2j). But we have equality since (Lnf2J) is a 2-part Sperner family. This 
als0 means that ~ must include from each rectangle the maximum number possible, 
and hence the proof is complete. [] 

4. Proofs of the theorems 

To prove each of the two theorems, we first need a lemma. The following notation 
will be fixed: S = R w  W is a finite set with n elements and Rc~ W = O. We let r = [R[, 
and w = IWI. 

Let f f  be a 2-part Sperner family, and let k l , k z , l l ,  and lz be integers with 
0 ~< kl < k2 ~< r, and 0 <<. Ii < 12 <<. w. We will say that ~ satisfies condition (C1) for 
kl, k2, ll, and lz if given any four sets Cl1, ClZ, C21, C22 such that 

(R)(w) forij 12 1. C~j ~ kj lj 
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C11 cz C12 

2. n c~ 

C21 c2 C22 

then f f  contains  two of the four sets. 
Of  course  in the above  si tuat ion since f f  is a 2-par t  Sperner  family, either C11 and 

C22 or C12 and C21 are in ~ .  

L e m m a  7. Let ~ be a 2-part Sperner family in ~(S). Assume that ~ satisfies condition 
(C1), and furthermore at least one element Of(k R) (w) is in ~, for  some i,j e 1, 2. Then 
every element of (k R ) ( t w) will be in ~.  

Proof.  We will p rove  one case. All o ther  cases will be similar. Assume ~ r~(~ ) (,w) is 
not  empty ,  and  yet (kR)(I w) is not  complete ly  conta ined in ~ .  Choose  subsets 
C 1 l, C'xi e (k R ) (w)  such that  C xl is in ~ ,  C'~x is not  in o~, and [C1~ c~ C'1~ [ is as large 
as possible. 

Let x be an element  of  C ~  that  is not  in C'11. Wi thou t  loss of  generali ty assume 
x e R. Thus  there exists ano the r  element of  R, y, that  is in C'11 but  not  in C11. Define 
some subsets of  S as follows: 

C2! = Cll • { y } u { k 2  - ka - 1  other  a rb i t ra ry  elements  of  R}, 

C~2 = C l l u  {12 - l x  other  a rb i t ra ry  elements  of  W }, 

C12 = C21uC12.  

N o w  Cx 1, C12, C21, and  C2z satisfy the condi t ions  of  condi t ion (C1), and thus two of 
them must  be in f t .  C11 is a l ready in i f ,  and  so C22 must  be in f t .  N o w  define two 
other  subsets as follows: 

c ' ; ,  = ( c 1 ,  - 

c '2 = (c1  - 

Again C'~'~, C'1'2, C21, and  C22 satisfy the condi t ions  of  condi t ion (C1), and thus two of 
them mus t  be in ~ .  C22 is a l ready in ~ ,  which forces C'[x to be in ~ .  However ,  

[ C'; 1 c~ C'11 [ > 1C11 ~ C'11 [ which is a contradict ion.  [ ]  

We are now ready to p rove  T h e o r e m  1. 

Proof of  Theorem 1. T o  p rove  one direction assume that  ~ = I iLw/2JT. wt=o ~,  as in the 
s ta tement  of the theorem.  ~ is clearly a 2-par t  Sperner  family and  we can calculate its 
size easily. Since n is even, r and w are bo th  even or both  odd. If  r is even, we have 
IXol = Ir01 = (rr/~l) (L~/w2j). For  r even and i > 0, or  for r odd  and i >/0, we have: 

, X i l = [ y i t : ( ~  r ) (  L w ) ( L  r ) ( r  w )  
r/2] + i w/2J -- i + r/2] - i w/Z-] + i 
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x, Lw/ZJ[y~[, which is exactly the number  of ways to pick Vr/2] + Now [Yl  = ~ i = o  
Lw/2J = Lr/2l + Vw/2] = [_n/2J elements from S. Thus [ ~ l =  (k,/"2J), and ~ is 
a maximum 2-part Sperner family by Lemma 6. 

For  the other direction, we will show that Z~ c ~ for i = 0 . . . . .  [_w/2 A. We use 

induction on i. For  i = 0 there are two cases: 

= = = ( , ) ( , , )  = Yo. Let a e (~) Case 1: r 21, a n d w  2m are both even. T h e n X o  R w 

and B e (w).  Both singletons {A} and {B} are symmetric chains of respectively R and 

W, and the 1 x 1 symmetric rectangle made from the product of these two chains will 
have only one element: AwB.  Thus Lemma 6 applies and A w B  must be in ~-. Thus 

Z 0 ~ .  

Case 2: r = 21 + 1 and w = 2m + 1, are both odd. We claim that o~- must satisfy 
condition (C1) for 1,1+ 1, m,m + 1. Assume that we are given any four sets 

R W Cij E (l+i) (re+j) for i, j = 0, 1, such that 

Coo c Col 

Clo  c2 C l l .  

The above is a symmetric rectangle that can be obtained from two symmetric chains 
of length one. Thus by Lemma 6 two of these sets must be in ~ and the condition (C1) 

is satisfied. Now Lemma 7 applies and we get that Xo or Yo are completely contained 
in ~ .  Thus Zo c ~ .  

Now consider the case i >  0. We assume by induction that Zi c ~ for 
i = 0 . . . .  , m - 1, and will show that Zm c ~ .  

Let k l = L r / 2 J - m ,  k 2 = V r / 2 ]  +m, l l = L W / Z J - m ,  and 12=Vw/2]+m.  We 
claim that g satisfies condition (C1) for kl,  k2, ll, and 12 and hence by Lemma 7 all of 
Xm or all of Y,, is contained in ~ ,  which would finish the proof. 

Let Cij be given as in the definition of condition (C1). For  i = 1, 2 we can find 
A i 6 ( k  R) and B j ~ ( ,  w) such that A, c A2, B1 ~ Bz, and Cij= AiwBj.  

Now [Al[ + [Az[ = Lr/2J + Vr/2] = r, and similarly [B~[ + IB~l = w. Hence, the 
chains A1 c Az and Bx c B2 can be refined into symmetric chains d and ~ o f ~ ( R )  
and ~ ( W  ) respectively. Both d a n d  ~ are of length 2m + r r/2-] - [_ r/2_J. By Lemma 
6, N x ~ must contain exactly 2m + 1 + Vr/2] - Lr/2J elements of ~ .  d x ~ is 
a symmetric square and looks as follows: 

A l W B 1  "'" A1 w B 2  

l J 
A2wBI  "" A2~B2 

By the inductive hypothesis 2 m - 1  + V r / 2 7 -  Lr/2_l elements from the inside 
square are already in ~,~, and hence two of the corner elements must be in f t .  Thus 
condition (C1) is satisfied, and the theorem is proved using Lemma 7. []  



S. Shahriar / Discrete Mathematics 162 (1996) 229-238 237 

The proof  of Theorem 3 parallels the above. We need a condition similar to 
condition (C1), and a lemma in place of Lemma 7. Because of the similarities we only 

sketch the proofs here. 
Let ~,~ be a 2-part Sperner family, and let kl, k2, k3,11, and 12 be integers with 

0 ~< k 1 < k 2 < k 3 ~< r, and 0 ~< 11 < 12 ~< w. W e  will say that Y satisfies condition (C2) 

for kl, k2, k3, 11, and 12 if given any six sets Cl l ,  C12, C21, C2e, C31, C32 such that 

for :,23and,= 2 1. Cij ~ ki lj 

. 

C l l  ~ C12 
o N 

C21 C C22 

C31 C C32. 

then o~ contains one of {C21, C22}, and one of the other four sets. 

Lemma 8. Let ~ be a 2-part Sperner family in ~(S). Assume that ~ satisfies condition 
(C2), and furthermore at least one element of (k~ ) ( w ) is in Y ,  for some j ~ 1, 2. Then 
every element of (k~ ) ( t w) will be in ~ .  

Proof. We will consider one case here. The other is very similar. Assume C21 and 
C21 are both elements of R W ' (< ) ( l~ ) ,  such that C21 is in ~ and C21 is not and 
IC21 ~C~11 is as large as possible. Let x be an element of C21 but not of C21. We do 
the case when x e R here. So there is another element y ~ R such that y is in C21 but 
not C21. Just as in the proof  of Lemma 7 by using two instances of condition (C2) we 
can show that the set we get by substituting y for x in C2 a must be in ~ .  This new set, 
however, has a larger intersection with C;1, and this contradiction proves the 
lemma. [] 

There is a corresponding condition (C3) and lemma if the six sets were from (kR) ( w ) 
for i =  1,2, a n d j  = 1,2,3. 

Proof of Theorem 3 (Sketch). The proof  proceeds similarly to that of Theorem 1. It is 
easy to see that the sizes of the ~ defined is the same as the size of a maximum 2-part 
Sperner family. For  the other direction, since one of r and w is odd and the other even, 
we do not have symmetric squares, and we have to consider symmetric rectangles 
where the number  of rows is one more or one less than the number  of columns. As 
before we proceed by induction and at each stage, the first rectangle considered will 
provide part  of the hypothesis of condition (C2) for the larger rectangle. At each stage 
depending on our previous choices we will be able to recognize condition (C2) or 
condition (C3) and apply Lemma 8. []  
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