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Abstract

For a commutative ring with identity, we give a complete description of all overgroups of the elementary
unitary group EU2nR (n � 5) in linear group GL2nR.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let R be a ring. Given an additive homomorphism f :R → R such that f [f (a)] = a and
f (ab) = f (b)f (a) for all a, b ∈ R, then f is called an involution on R. For instance, the usual
complex conjugation map gives an involution on the complex field. If R is commutative, the
identity map gives an involution on R. In this article, we assume that R is a commutative ring
with the identity 1. For simplicity we write an involution f as f (·) = (·)∗. An involution ∗ also
determines an involution � of the matrix ring MnR of all n by n matrices by (aij )

� = (a∗
ji),

for aij ∈ R. An example is that the transpose map T on MnR determined by the identity map
on R gives an involution on MnR. For a given ε ∈ R such that ε∗ε = 1, let Rε = {x | x = −ε∗x,

x ∈ R}.
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The unitary group is defined by

U2nR = {θ | θ�ϕnθ = ϕn, θ ∈ GL2nR},

where ϕn = E
(2)
12 ⊗ In + εE

(2)
21 ⊗ In, Ik denotes the identity matrix of MkR, E

(k)
ij the k × k

matrix with 1 at the position (i, j) and zeros elsewhere and ⊗ Kronecker product. Clearly ϕ−1
n =

ε∗E(2)
12 ⊗ In + E

(2)
21 ⊗ In, ϕ�

n = ϕ−1
n and εϕ�

n = ϕn.
Let R̂ be the set of all invertible elements in R. The generalized unitary group is defined by

GU2nR = {θ | θ�ϕnθ = xϕn, θ ∈ GL2nR, x ∈ R̂}.
If θ�ϕnθ = xϕn, then xϕn = εθ�ϕ�

nθ = ε(θ�ϕnθ)� = εx∗ϕ�
n = x∗ϕn. So x = x∗. Clearly U2nR is

a subgroup of GU2nR.
The elementary matrices are defined by αij (a) = I2n +aE

(2n)
ij (i �= j). An ideal J of R is said

to be dual, if J ∗ = J . For any ideal J of R, let E2nJ denote the subgroup of GL2nR generated by
all matrices αij (a) with a ∈ J, i �= j . For k = 1, . . . , n, let mk = k + n and mk+n = k. For a ∈ R

and 1 � i �= j � 2n we define the elementary unitary matrices βi,mi
(a) and βij (a) with j �= mi as

follows: βi,mi
(a) = αi,mi

(a) with a ∈ Rε when n+ 1 � i and with a∗ ∈ Rε when i � n; βij (a) =
βmj ,mi

(−a′) = αij (a) − a′E(2n)
mj ,mi

∈ U2nR with a′ = a∗ when i, j � n or n + 1 � i, j ; a′ = ε∗a∗
when i � n < j ; a′ = εa∗ when j � n < i. The subgroup of U2nR generated by all elementary
unitary matrices is denoted by EU2nR and called the elementary unitary group. Let UE2n(R,J )

denote the subgroup of GL2nR, generated by all elements of the form βij (r)αkl(a)βij (−r) with
a ∈ J and r ∈ R. It is obvious that UE2n(R,J ) is a normal subgroup of GL2nR. So

EUU2nJ = EU2nR · UE2n(R,J )

is a subgroup of GL2nR. For any ideal J , let φ be the canonical ring homomorphism:
R → R/J . Then φ induces the group homomorphism φJ : GL2nR → GL2n(R/J ) and
EU2nR → EU2n(R/J ). It is clear that

GUG2nJ = {
θ

∣∣ φJ (θ) ∈ GU2n(R/J ), θ ∈ GL2nR
}

is a subgroup of GL2nR. The main result of this paper is stated as follows.

Theorem 1.1. Let R be a commutative ring with 1 on which an involution ∗ is defined. Assume
that n � 5 and that when ∗ is identical on R and ε = 1, then 2 is torsion-free in R. Let X be an
overgroup of EU2nR in GL2nR. Then there is a unique dual ideal J of R such that

EUU2nJ ⊆ X ⊆ GUG2nJ.

In [1] Kantor determined all overgroup of GLn(Fqr ) in GLnr (Fq). King in [2,3] and Li in [5,7]
described all overgroups of SU(n,K,f ) and Ω(n,K,Q) in GL(n,K) where K is a division ring
respectively. Some results on overgroups of G(K) in GLnK , where G(K) is a certain classical
group over K , can be found in [6]. Li in [4] determined the structure of symplectic group over
arbitrary commutative rings. You and Zheng in [20] obtained the overgroups X of symplectic
group Sp2nR in GL2nR where R is a local ring. Vaserstein in [10–13] obtained some results on
the general linear groups. The results on the overgroups of symplectic and orthogonal groups
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(with hyperbolic form) over commutative rings were given in [15–17]. Petrov in [9] investigated
the overgroups of unitary groups (with hyperbolic form) under a local stable rank condition with
form parameter. You in [18,19] classified overgroups of classical groups in linear group over
Banach algebras and over commutative rings respectively.

2. Preliminaries

Lemma 2.1. (See [14].) The following statements hold for 1 � i �= j � 2n:

(1) α−1
ij (a) = αij (−a);

(2) β−1
ij (a) = βij (−a);

(3) βij (a + b) = βij (a)βij (b);
(4) βij (a) 	 βjk(b) = βik(ab) when i, j , k, mi , mj and mk are all distinct, here α 	 β denotes

αβα−1β−1;
(5) βij (a) 	 βj,mi

(b) = βi,mi
(ab − c) when j �= mi , where c = εa∗b∗ when n + 1 � i and

c = ε∗b∗a∗ when i � n;
(6) βij (a) 	 βj,mi

(b) = βi,mi
(ab)βi,mi

(c) when j �= mi , where b∗ ∈ Rε and c = ab∗a∗
(i, j � n), b∗ ∈ Rε and c = εaba∗ (j � n < i), b ∈ Rε and c = −ab∗a∗ (i � n < j)

and b ∈ Rε and c = −εab∗a∗ (n + 1 � i, j);
(7) αij (a) 	 βjk(b) = αik(ab) when i, j and k are all distinct and j �= mi , where b ∈ Rε or

b∗ ∈ Rε if k = mj ;
(8) αij (a) 	 βk,mj

(b) = αi,mk
(c) when i, j and mk are all distinct, where c = −εa∗b∗

(j, k � n), c = −εab∗ (n + 1 � j, k) and c = −ab∗ (j � n < k or k � n < j);
(9) For 1 � k � n, γk,mk

= I2n − E
(2n)
kk − E

(2n)
mk,mk

+ E
(2n)
k,mk

+ εE
(2n)
mk,k

∈ EU2nR;

(10) For i �= j � n, �ij = E
(2)
11 ⊗ Pij + E

(2)
21 ⊗ (P �

ij )
−1 ∈ EU2nR, where Pij is an n × n (i, j)-

permutation matrix.

Lemma 2.2. θ ∈ GU2nR if and only if there is an x ∈ R̂ such that xui = ε∗v�
mi

ϕn when 1 � i � n

and ui = v�
mi

ϕn when n + 1 � i � 2n, where ui is the ith row of θ−1 and vi is the ith column
of θ .

Proof. From θ ∈ GU2nR we have θ�ϕnθ = xϕn, x ∈ R̂. Then xθ−1 = ϕ−1
n θ�ϕn. So

x

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u1
...

un

un+1
...

u2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= ε∗ϕ�
n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v�
1
...

v�
n

v�
n+1
...

v�
2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

ϕn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε∗v�
n+1
...

ε∗v�
2n

v�
1
...

v�
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

ϕn.

It is clear that the converse holds also. �
Note. θ ∈ U2nR if and only if there is an x ∈ R̂ such that ui = ε∗v�

mi
ϕn when 1 � i � n and

ui = v�
mi

ϕn when n + 1 � i � 2n, where ui is the ith row of θ−1 and vi is the ith column of θ .
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Lemma 2.3. For any overgroup X of EU2nR in GL2nR which is not in GU2nR, there is an
element θ ∈ X such that at least one column vi of θ satisfies xui �= ε∗v�

mi
ϕn when 1 � i � n or

ui �= v�
mi

ϕn when n + 1 � i � 2n, where ui is the ith row of θ−1 and x ∈ R̂.

Proof. From Lemma 2.2, we get the result. �
For a commutative ring R, the Jacobson radical radR of R is defined by the intersection of all

the maximal ideals of R. A commutative ring R is said to be semi-local if R has finitely many
maximal ideals. For a commutative semi-local ring R, let M1, . . . ,Mk denote all the maximal
ideals of R, then R/ radR = ⊕k

i=1 Fi , where Fi = R/Mi , i = 1, . . . , k, are fields. For x ∈ R,
if x (mod Mi) �= 0, i = 1, . . . , k, then x ∈ R̂. If x (mod Mi) �= 0, i = 1, . . . , k, then x ∈ radR.
A vector u = [r1, . . . , rk]T ∈ Rk is said to be unimodular if there exists a v ∈ Rk such that
uT v = 1. From Theorem 8.1 in [8] and Proposition 2.3 in [14] a lemma follows.

Lemma 2.4. Let u = [r1, . . . , r2n]T ∈ R2n be a unimodular vector over a semi-local ring R and
n � 3. Then there is a θ ∈ EU2nR such that θu = [1,0, . . . ,0, r ′

n+1,0, . . . ,0]T . If u is also a
column of a unitary matrix in U2nR, then r ′

n+1 = 0.

A unimodular vector u is said to be a unitary vector if u is a column of a unitary matrix.

Lemma 2.5. For a semi-local ring R with at most two maximal ideals and n � 4, let
ξ = [u1, . . . , u2n] ∈ GL2nR with u1 = [1,0, . . . ,0, rn+1,1,0, . . . ,0]T . Then there exist θ1, θ2 ∈
EU2nR such that θ1ξθ2 = [u1, u

′
2, . . . , u

′
2n]T with u1 is not changed and u′

n+2 = [0,1,0, . . . ,0,

r ′
n+1,n+2, r

′
n+2,n+2,0, . . . ,0]T .

Proof. Discuss just for a semi-local ring R with two maximal ideals. Let η = ∏2n
i=n+2 β1i (−r1i )

where r1i is the first element of ui . Then ξη = [u1, u
′
2, . . . , u

′
2n]T with unimodular columns u′

i =
[0, r2,i , . . . , rn+1,i , r

′
n+2,i , rn+1,i , . . . , r2n,i]T , i = n + 2, . . . ,2n. Let vi = [r2,i , . . . , rn+1,i rn+1,i ,

. . . , r2n,i]T , i = n + 1, . . . ,2n. Since R only has two maximal ideals M1 and M2, and
R/ radR = F1 ⊕ F2 where Fi (i = 1,2) are fields, applying the linear independency of u′

n+2
(mod Mi), . . . , u

′
2n (mod Mi), i = 1,2, we have that one of vn+2, . . . , v2n is unimodular. Since

�ij (2 � i < j � n) is in EU2nR, we may assume that vn+2 is unimodular. By Lemma 2.4
we can find a matrix θ1 = I2 ⊕ ζ , ζ ∈ EU2n−2R such that θ1ξη or θ1ξη�ij has the required
form. �

Note that in Lemma 2.5 if rn+1,1 = 0, then r ′
n+1,n+2 = 0.

Lemma 2.6. Under the conditions in Lemma 2.5 and n � 5, let ξ = [u1, . . . , u2n] ∈ GL2nR

with u1 = [1,0, . . . ,0, rn+1,1,0, . . . ,0]T . Then there exist θ1, θ2 ∈ EU2nR such that θ1ξθ2 =
[u1, u

′
2, . . . , u

′
2n]T with u′

n+2 = [0,1,0, . . . ,0, r ′
n+1,n+2, r

′
n+2,n+2,0, . . . ,0]T and u′

n+3 = [0,0,1,

0, . . . ,0, r ′
n+1,n+3, r

′
n+2,n+3, r

′
n+3,n+3,0, . . . ,0]T .

Proof. Repeat the process of proving Lemma 2.5. �



X.T. Wang, C.S. Hong / Journal of Algebra 320 (2008) 1255–1260 1259
Lemma 2.7. (See [19].) Let X be an overgroup of EU2nR in GL2nR and n � 3. If X contains an
elementary matrix αi,mi

(a) with a /∈ R or a∗ /∈ Rε , then X contains an αkl(c) with l �= mk and
c ∈ R except for the case that ∗ is identical on R, ε = 1, and 2 is a torsion element in R.

Let R∗ denote the subring of R generated by all rr∗ with r ∈ R. Obviously, 1 ∈ R∗ and
RεR∗ ⊆ Rε .

Lemma 2.8. Let R be a commutative ring with 1 on which an involution ∗ is defined. Then the
ring S−1R is a semi-local ring which has at most two maximal ideals for every maximal ideal M

of R∗, where S = R∗\M .

Proof. Similar to the process of proving Lemma 1.4 in [14]. �
For a maximal ideal M of R∗, the localization: R → S−1R(S = R∗\M) induces the group

homomorphism ψM : GL2nR → GL2n(S
−1R) and EU2nR → EU2n(S

−1R).

Lemma 2.9. (See [19].) Let X be an overgroup of EU2nR in GL2nR.

(1) If X � GU2nR, then there exists a maximal ideal M of R∗ such that ψM(X) � ψM(GU2nR);
(2) for a given θ ∈ EU2n(S

−1R), where S = R∗\M , then for n � 3, there exists an s in S such
that θψM(EU2n(sR))θ−1 ⊆ ψM(EU2n(R));

(3) if X � GU2nR, then there exists a θ in EU2n(S
−1R) such that θψM(X)θ−1 contains an

elementary matrix αij (a) with j �= mi (a ∈ S−1R) or j = mi (a /∈ S−1Rε or a∗ /∈ S−1Rε);
(4) if X � GU2nR, then there exists an elementary matrix αij (a) ∈ X with j �= mi .

3. A proof of the main result

Proof of Theorem 1.1. If X ⊆ GU2nR, then EU2nR · UE2n(R,0) = EU2nR ⊆ X. If X �
GU2nR, by Lemma 2.9 there exists an element a ∈ R such that αij (a) ∈ X with j �= mi .
By Lemmas 2.1 and 2.7, we have that X contains all αij (ab) for k + 1 � i �= j � n + k

(k = 0, n). Therefore αi,mi
(ab) = αij (a) 	 βj,mi

(b) ∈ X for 1 � i � 2n (j �= mi) and αij (ab) =
αi,mj

(a) 	 βmj ,j (b) ∈ X for 1 � i � n,n + 1 � i � 2n and 1 � j � n,n + 1 � i � 2n

(j �= mi). So there exists an a ∈ R such that E2n(aR) ⊆ X. From αmi,mi
(c) = βij (a)αij (−a),

where c = a∗ or c = εa∗ or c = ε∗a∗, we have E2n(a
∗R) ⊆ X for the same a ∈ R satis-

fying E2n(aR) ⊆ X. Let J = {a | E2n(aR) ⊆ X, a ∈ R}. Clearly ab ∈ J for any a, b ∈ J .
Since αij (a + b) = αij (a)αij (b), we have a + b ∈ J for any a, b ∈ J . So J is a subring
of R. For any r ∈ R and a ∈ J , we easily have ar ∈ J , that is, J is an ideal of R. From
J ∗ = {a∗ | E2n(aR) ⊆ X, a ∈ R} = {a | E2n(a

∗R) ⊆ X, a ∈ R}, we have J ∗ = J . There-
fore EU2nR · UE2n(R,J ) ⊆ X. From EU2nR ⊆ X we have φJ (EU2nR) ⊆ φJ (X). Since φJ

is surjective, then EU2n(R/J ) ⊆ φJ (X). If φJ (X) � GU2n(R/J ), there is a /∈ J such that
αij (a + J ) ∈ φJ (X) with j �= mi . So there is a θ ∈ X satisfying φJ (θ) = φJ (αij (a)) and
θ �= αij (a). Take ξ = αij (−a)θ ∈ kerφJ . By Theorem 3 in [12], βk,mj

(a)	ξ ∈ UE2n(R,J ) ⊆ X.
Since αij (a)(βk,mj

(a) 	 ξ)αij (−a) ∈ EU2n(R,J ), then

αi,mk
(c) = αij (a) 	 βk,mj

(1) = αij (a)
(
βk,mj

(1) 	 ξ
)
αij (−a)

(
θ 	 βk,mj

(1)
) ∈ X,

where c = −ε∗a (j, k � n), c = −εa (n + 1 � j, k), c = −a (j � n < k or k � n < j). This is
a contradiction to a /∈ J . So φJ (X) ⊆ GU2n(R/J ), where J is the unique maximal ideal such
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that EU2nR · UE2n(R,J ) ⊆ X. Furthermore X ⊆ φ−1
J (φJ (X)) ⊆ φ−1

J (GU2n(R/J )). Therefore
X ⊆ φ−1

J (GU2n(R/J )) ∩ GU2n(R) = GUG2nJ . �
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