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Abstract

For a commutative ring with identity, we give a complete description of all overgroups of the elementary
unitary group EU;, R (n > 5) in linear group GLj, R.
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1. Introduction

Let R be a ring. Given an additive homomorphism f: R — R such that f[f(a)] = a and
f(ab) = f(b) f(a) for all a,b € R, then f is called an involution on R. For instance, the usual
complex conjugation map gives an involution on the complex field. If R is commutative, the
identity map gives an involution on R. In this article, we assume that R is a commutative ring
with the identity 1. For simplicity we write an involution f as f(-) = (-)*. An involution * also
determines an involution * of the matrix ring M, R of all n by n matrices by (a;;)* = (a;fl.),
for a;; € R. An example is that the transpose map T" on M, R determined by the identity map
on R gives an involution on M, R. For a given ¢ € R such that e*e =1, let R® = {x | x = —¢&™*x,
X € R}.
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The unitary group is defined by
UwR = {9 | 9*(/7119 = ¥n, S GL2nR}7

where ¢, = E 8 Q I, + eEg) ® I, Iy denotes the identity matrix of MR, El(Jk) the k x k
matrix with 1 at the position (i, j) and zeros elsewhere and ® Kronecker product. Clearly ¢, ! =
2 2 -
S*Efz) &I+ Eél) ® Iy, ¢f = ¢, ! and ep} = g@,,.
Let R be the set of all invertible elements in R. The generalized unitary group is defined by

GUoy R =1{0|6* a6 = x@n, 6 € GLo,R, x € R}.

If 6*¢,6 = xgp, then xp, = €0*¢;0 = (0 ,0)* = ex*¢; = x*¢,. So x = x*. Clearly U, R is
a subgroup of GU», R.

The elementary matrices are defined by «;;(a) = I, —i—aEl.(,.Z") (i # j). Anideal J of R is said
to be dual, if J* = J. For any ideal J of R, let E;, J denote the subgroup of GL,, R generated by
all matrices ;j(a) witha € J,i # j.Fork=1,...,n,letmy =k +n and myy, =k.Fora € R
and 1 <i # j < 2n we define the elementary unitary matrices B; ,»; (a) and B;;(a) with j # m; as
follows: B; m; (@) = @i m; (a) witha € R® whenn +1 <i and with a* € R® wheni < n; B;;(a) =
Bmjmi (—a’) = aij(a) —a/E,(,,zj",)ml. € Uy, R witha' =a* wheni, j <norn+1<i,j;ad =¢c*a*
when i <n < j; a’ =ea* when j <n <i. The subgroup of Uy, R generated by all elementary
unitary matrices is denoted by EU;, R and called the elementary unitary group. Let UE3, (R, J)
denote the subgroup of GLy, R, generated by all elements of the form g;; (r)ay; (a) B;j (—r) with
a € J and r € R. It is obvious that UE>, (R, J) is a normal subgroup of GL, R. So

EUUy,J =EU»R - UE>, (R, J)

is a subgroup of GLp,R. For any ideal J, let ¢ be the canonical ring homomorphism:
R— R/J. Then ¢ induces the group homomorphism ¢;:GLy, R — GLp,(R/J) and
EUy, R — EU>,(R/J). Itis clear that

GUGy,J = {9 } ¢7(0) e GU2x(R/J), 60 € GLGR}
is a subgroup of GLy, R. The main result of this paper is stated as follows.

Theorem 1.1. Let R be a commutative ring with 1 on which an involution * is defined. Assume
that n > 5 and that when x is identical on R and ¢ = 1, then 2 is torsion-free in R. Let X be an
overgroup of EUy, R in GLy, R. Then there is a unique dual ideal J of R such that

EUU,J € X CGUGo,J.

In [1] Kantor determined all overgroup of GL,, (Fyr) in GLy,(Fy). King in [2,3] and Liin [5,7]
described all overgroups of SU(n, K, f) and £2(n, K, Q) in GL(n, K) where K is a division ring
respectively. Some results on overgroups of G(K) in GL, K, where G(K) is a certain classical
group over K, can be found in [6]. Li in [4] determined the structure of symplectic group over
arbitrary commutative rings. You and Zheng in [20] obtained the overgroups X of symplectic
group Sp,, R in GLy, R where R is a local ring. Vaserstein in [10-13] obtained some results on
the general linear groups. The results on the overgroups of symplectic and orthogonal groups
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(with hyperbolic form) over commutative rings were given in [15—17]. Petrov in [9] investigated
the overgroups of unitary groups (with hyperbolic form) under a local stable rank condition with
form parameter. You in [18,19] classified overgroups of classical groups in linear group over
Banach algebras and over commutative rings respectively.

2. Preliminaries
Lemma 2.1. (See [14].) The following statements hold for 1 <i # j < 2n:

(1) aijl(a) =a;j(—a);

) B! (@) = Bij(~a);

(3) Bijla+b) = Bij(a)BijD);

(4) Bij(a) o Bjx(b) = Bix(ab) wheni, j, k, m;, m; and my are all distinct, here a & B denotes
afa gl

(5) Bij(a) © Bjm;(b) = Bim;(ab — c) when j # m;, where ¢ = ea*b* when n + 1 <i and
c=¢&*b*a* wheni <n;

(6) Bij(a) © Bjm(b) = Bim;(ab)Bim;(c) when j # m;, where b* € R® and ¢ = ab*a*
(i,j <n), b* € R® and ¢ = eaba™ (j <n <i), b € R® and ¢ = —ab*a* (i <n < j)
and b € R? and ¢ = —gab*a™ (n + 1 <1, j);

(7) ajj(a) o Bjk(b) = ajk(ab) when i, j and k are all distinct and j # m;, where b € R® or
b* € R® lfk =mj,

®) aij(@) © Brm;(b) = dim,(c) when i, j and my are all distinct, where ¢ = —ea*b*
(j,k<n),c=—eab* m+1< j,k)andc=—ab* (j<n<kork<n<yj);

(9) For 1 <K<, Yiom = lon — EGY — Estom + ECY 4+ 6EP") € EUy,R;

k,mg m,

(10) Fori#j<n w;=E3 ® Pij + E ® (P)~! € EUs R, where P;j is ann x n (i, j)-
permutation matrix.

Lemma 2.2. 6 € GU3, R if and only if there is an x € R such that xu; = e*vy o when 1 <i<n
and u; = v,’;,i(pn when n + 1 <i < 2n, where u; is the ith row of 0~ and v; is the ith column
of 0.

Proof. From 6 € GU», R we have 6*¢,0 = x¢,, x € R. Then x0~1 = cpn_lé*gon. So

_ _ i ook %
ui vy & V1
* E NS g
Un * ok v &
x =g, | " | en= 2| on-
Un+1 Unl Vi
~ Udn L vgn - L UI: -

It is clear that the converse holds also. O

Note. 6 € Uy, R if and only if there is an x € R such that U = 8*v;1,_<p,, when 1 <i < n and
u; = v;‘n’_go,, when n + 1 <i <2n, where u; is the ith row of ! and v; is the ith column of 6.
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Lemma 2.3. For any overgroup X of EU2,R in GLy, R which is not in GUp, R, there is an
element 6 € X such that at least one column v; of 0 satisfies xu; # €*vy, ¢, when 1 <i <n or

u; # vy, @n when n + 1 <i < 2n, where u; is the ith row of 0~ Uand x € R.
Proof. From Lemma 2.2, we get the result. O

For a commutative ring R, the Jacobson radical rad R of R is defined by the intersection of all
the maximal ideals of R. A commutative ring R is said to be semi-local if R has finitely many
maximal ideals. For a commutative semi-local ring R, let My, ..., M} denote all the maximal
ideals of R, then R/radR = @ile F;, where F; = R/M;,i=1,...,k, are fields. For x € R,
if x (mod M;) #0,i=1,...,k, then x e R.If x (mod M;) #0,i=1,...,k, then x € rad R.
A vector u = [rq,...,rx]" € RF is said to be unimodular if there exists a v € R¥ such that

uTv = 1. From Theorem 8.1 in [8] and Proposition 2.3 in [14] a lemma follows.

Lemma 2.4. Let u =[ry, ..., 1" € R¥ be a unimodular vector over a semi-local ring R and
n > 3. Then there is a 0 € EU», R such that Ou = [1,0,...,0, rn+1, 0,...,0%. If u is also a
column of a unitary matrix in Uy, R, then r,;_H =0.

A unimodular vector u is said to be a unitary vector if u is a column of a unitary matrix.

Lemma 2.5. For a semi-local ring R with at most two maximal ideals and n > 4, let
& =1luy,...,uz] € GLyy R with uy =1[1,0,...,0,7r,41.1,0, ... O]T Then there exist 01,6, €
EU3, R such that 0156, = [uy, u, ..., u’Zn] wzth uy is not changed and u’,, , = [0, 1,0, ..., 0,
0]7.

n+2 —
/ ’
rn+l,n+2’ rn+2,n+2’ 0’ cee

Proof. Discuss just for a semi-local ring R with two maximal ideals. Let n = ]_[lzin o Bli(=r1)
where ry; is the first element of u;. Then £ = [uy, uj, ..., u’2n]T with unimodular columns u; =
[0,72,iy .- Fntl.is rr/;+2,i’ Failiserntonilli=n+2,...,2n. Let v; = [raiy ...\ Fug1.iTntl.is

, Ton, dT, i=n+1,...,2n. Since R only has two maximal ideals M; and M, and
R / radR=F1 & F Where F; (i =1,2) are fields, applying the linear independency of u/, )
(mod M;), ..., u2n (mod M;), i =1, 2, we have that one of v,12, ..., vy, is unimodular. Since
wij (2<i<j<n)isin EUy,R, we may assume that v, is unimodular. By Lemma 2.4
we can find a matrix 6y = I, @ ¢, { € EUz, 2R such that 0;&n or 61&nw;; has the required
form. O

Note that in Lemma 2.5 if r,,11,1 =0, then rnJrl ng2 = =0.
Lemma 2.6. Under the conditions in Lemma 2.5 and n > 5, let & = [uy,...,uz,] € GLoy R
with uy = [1,0,...,0, 7,41, 1,0,...,0] Then there exzst 01,6, € EU>, R such that 6,£0; =
[uy, u’z, . u/2n]T wzthunJr2 =[0,1,0,...,0, rnJrl 42 n+2 a2 05 01T and o’ ne3 =10,0,1,

T
O O’ rn+1 n+3’ n+2n+3’ n+3 n+3’ "“’0] :

Proof. Repeat the process of proving Lemma 2.5. O
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Lemma 2.7. (See [19].) Let X be an overgroup of EU>, R in GLy, R and n = 3. If X contains an
elementary matrix o p; (a) with a ¢ R or a* ¢ R®, then X contains an oy (c) with | # my and
¢ € R except for the case that * is identical on R, ¢ = 1, and 2 is a torsion element in R.

Let R, denote the subring of R generated by all rr* with r € R. Obviously, 1 € R, and
R®R, C R®.

Lemma 2.8. Let R be a commutative ring with 1 on which an involution * is defined. Then the

ring ST'R is a semi-local ring which has at most two maximal ideals for every maximal ideal M
of Ry, where S = R,\M.

Proof. Similar to the process of proving Lemma 1.4 in [14]. O

For a maximal ideal M of R., the localization: R — S’IR(S = R,\M) induces the group
homomorphism ¥y : GLy, R — GLo,(S™'R) and EU, R — EU»,(S'R).

Lemma 2.9. (See [19].) Let X be an overgroup of EU>, R in GLo, R.

(1) If X € GUyy R, then there exists a maximal ideal M of R, such that Yy (X) € Yy (GU2, R);

(2) for a given 6 € EUy, (S_IR), where S = R,\M, then for n > 3, there exists an s in S such
that 0y (EU2, (sR)O™ € Yy (EU2, (R));

(C) 7.6 ;{ GUjy, R, then there exists a 6 in EUzn(S’lR) such that GlpM(X)@’1 contains an
elementary matrix a;j(a) with j #m; (a € S7IR)or j=m; (a¢ ST 'R ora* ¢ STIR?);

@ ifX z GU R, then there exists an elementary matrix a;j(a) € X with j #m;.

3. A proof of the main result

Proof of Theorem 1.1. If X € GUy,R, then EU,R - UE2,(R,0) = EU;,R € X. If X &
GUy, R, by Lemma 2.9 there exists an element a € R such that o;;(a) € X with j # m;.
By Lemmas 2.1 and 2.7, we have that X contains all «;j(ab) for k +1<i#j<n+k
(k =0, n). Therefore a; »; (ab) = a;j(a) o Bjm; (b) € X for 1 <i <2n (j #m;) and «;;(ab) =
ot,-,mj(a)o,ij,j(b)GX for I1<i<nn+1<i<2nand 1 <j<n,n+1<i<2n
(j #m;). So there exists an a € R such that E»,(aR) € X. From a,,, m, (¢) = Bij(a)a;j(—a),
where ¢ = a* or ¢ = ea* or ¢ = ¢*a*, we have Ey,(a*R) C X for the same a € R satis-
fying E>,(aR) € X. Let J ={a | E2,(@R) € X, a € R}. Clearly ab € J for any a,b € J.
Since «;j(a + b) = a;j(a)a;j(b), we have a + b € J for any a,b € J. So J is a subring
of R. For any r € R and a € J, we easily have ar € J, that is, J is an ideal of R. From
J*=1{a* | E2p(aR) € X, a€ R} ={a | Ey;(a*R) C X, a € R}, we have J* = J. There-
fore EU>, R - UE3,(R,J) € X. From EU,,R C X we have ¢;(EU,R) C ¢;(X). Since ¢,
is surjective, then EU>,(R/J) C ¢5(X). If ¢;(X) 5Z GU2,(R/J), there is a ¢ J such that
ajjla + J) € ¢;(X) with j # m;. So there is a 0 € X satisfying ¢;(6) = ¢;(c;j(a)) and
0 #ajj(a). Take § = a;j(—a)d € ker¢;. By Theorem 3 in [12], By m; (a) 0§ € UE2 (R, J) € X.
Since ajj (@) (Bk,m; (a) © §)aij(—a) € EUz(R, J), then

iy (€) = @i (@) & Brm; (1) = i (@) (Br,m; (1) © §)ij(=a) (0 © Bim,; (1)) € X,

where ¢ = —¢*a (j,k<n),c=—ea m+1<j,k),c=—a (j<n<kork<n<j). Thisis
a contradiction to a ¢ J. So ¢;(X) € GU,(R/J), where J is the unique maximal ideal such
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that EU», R - UE2, (R, J) C X. Furthermore X C ¢, ' (¢, (X)) € ¢, ' (GU2,(R/J)). Therefore
X C ¢, (GUxw(R/I)) NGUxp(R) = GUGy,J. O
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