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Abstract

The exchangeability assumption on the dependence structure of the multivariate data is restrictive in practical situations where

the variables of interest are not likely to be associated to each other in an identical manner. In this paper, we propose a flexible

class of multivariate skew normal copulas to model high-dimensional non-exchangeable dependence patterns. The proposed

copulas have two sets of parameters capturing non-exchangeable dependence, one for association between the variables and

the other for skewness of the variables. In order to efficiently estimate the two sets of parameters, we introduce the block

coordinate ascent algorithm. The proposed class of multivariate skew normal copulas is illustrated using a real data set.
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1. Introduction

The copulas have been increasingly popular for modeling statistical dependence in multivariate data and have

been applied to many areas including finance [1], medical research [2], econometrics [3], environmental science

[4], actuarial science [5], just to name a few. A key feature of copulas is that they provide flexible representations

of the multivariate distribution by allowing for the dependence structure of the variables of interest to be modeled

separately from the marginal structure.

Most of the commonly used copulas are exchangeable, which means that the value of the copula is invariant

under permutations of its arguments. For some practical situations where one component of the variables influ-

ences the other one more than the other way around, exchangeability assumption on copula is not suitable. This is

because the dependence based on exchangeable copulas cannot distinguish between components of the variables.
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Recently, several researchers have put considerable efforts into developing multivariate non-exchangeable

copulas [6, 7, 8, 9]. The hierarchical Archimedean copulas are constructed from the idea of the compositions of

simple Archimedean copulas [8]. However, they requires intricate compatibility conditions and there is no easy

stochastic interpretation of them. The vine copulas [7, 10, 11], as popular hierarchical graphical models, utilize

the bivariate copulas as the building blocks of a tree structure for multivariate distributions and their dependency

structure is determined by a cascade of bivariate copulas. Although the vine copulas are highly flexible, they

are not closed under the marginalization and the lack of the stochastic representation makes the interpretation of

the vine copulas difficult. The Liouville copulas [9] are proposed as a non-exchangeable generalization of the

Archimedean copulas. But, they have some limitations in applications due to unavailability of an algebraically

tractable form, strictly positive support, and linear relationship between parameters and dimension.

In this paper we propose a flexible class of multivariate skew normal copulas to model high-dimensional non-

exchangeable dependence patterns. The proposed skew normal copula derived from the multivariate skew normal

distribution [12, 13] has the two sets of parameters capturing non-exchangeable dependence between the variables

of interest, one for correlation between the variables and the other for skewness of the variables. Depending on the

restrictions on these parameters, the proposed multivariate skew normal copula produces six parsimonious (non-

exchangeable/exchangeable) copulas. We also propose using the block coordinate ascent algorithm to efficiently

estimate the parameters in the proposed class of multivariate skew normal copulas. Instead of estimating all

parameters simultaneously, the introduced algorithm partitions the parameters into two disjoint blocks, one for the

correlation matrix and the other for skewness parameters, and update block by block.

This paper is organized as follows. In Section 2, we briefly review the concept of the multivariate copula and

its non-exchangeable property. Section 3 proposes a class of the multivariate skew normal copulas that can capture

various (non-exchangeable/exchangeable) dependence structures. In Section 4 we introduce the block coordinate

algorithm for estimating the proposed copulas and discuss its convergence property. Section 5 illustrates the

proposed class of skew normal copulas with a real data example. We end this article with a discussion in Section 6.

2. Review on multivariate non-exchangeable copulas

We here briefly review the multivariate non-exchangeable copula. For the general copula theory, see [14, 15,

16].

Definition 2.1. A (k + 1)-dimensional copula (or (k + 1)-copula) is a function C : [0, 1]k+1 �→ [0, 1] satisfying
following properties: for i = 0, . . . , k,

(a) C(u0, u1, . . . , uk) = 0 if at least one ui = 0;
(b) C(1, . . . , 1, ui, 1, . . . , 1) = ui for every ui ∈ [0, 1];

(c) C is (k + 1)-increasing in the sense that, for any J =
k∏

i=0
[ui, vi] ⊆ [0, 1]k+1 with ui, vi ∈ [0, 1], volC(J) =∑

a
sgn(a)C(a) ≥ 0, where the summation is over all vertices a of J, a = (a0, a1, . . . , ak)T is the transpose of

(a0, a1, . . . , ak), and ai = ui or vi,

sgn(a) =

⎧⎪⎪⎨⎪⎪⎩1, if ai = vi for an even number of i′s,
−1, if ai = vi for an odd number of i′s.

From Definition 2.1, we can see that a (k+ 1)-copula is a joint cumulative distribution function (CDF) on [0, 1]k+1

with standard uniform marginal distributions.
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Let X = (X0, X1, . . . , Xk)T be a (k+1)-dimensional random vector with the CDF H(x0, x1, . . . , xk), and marginal

CDF’s F0(x0), F1(x1), . . ., Fk(xk). Sklar’s theorem [17] states that if the marginals of X are continuous, then there

exist a unique copula C such that

H(x0, x1, . . . , xk) = C(F0(x0), F1(x1), . . . , Fk(xk)).

The important properties of the copula C of X are that the copula C represents the dependence structure of X on

a quantile scale and it is invariant under strictly increasing transformations of the marginals.

For an absolutely continuous copula C, the copula density is defined to be

c(u0, u1, . . . , uk) =
∂k+1C(u0, u1, . . . , uk)

∂u0∂u1 · · · ∂uk
.

Given a random vector X, with an absolute continuous H and strictly increasing continuous marginals F0(x0),

F1(x1), . . ., Fk(xk), the copula density defined above is given by

c(u0, u1, . . . , uk) =
h(F−1

0 (u0), F−1
1 (u1), . . . , F−1

k (uk))

f0(F−1
0

(u0)) f1(F−1
1

(u1)) . . . fk(F−1
k (uk))

, (1)

where h(x0, x1, . . . , xk) is the joint density of H(x0, x1, . . . , xk) and f0, f1, . . . , fk are the marginal densities.

Most of the commonly used copulas for applied research (for example, Archimediean copulas and all meta-

elliptical copulas) assume that the dependence structure between the variables of interest is exchangeable.

Definition 2.2. A (k + 1)-copula C is exchangeable if it is the distribution function of a (k + 1)-dimensional ex-
changeable uniform random vector U = (U0,U1, . . . ,Uk)T satisfying C(u0, u1, . . . , uk) = C(uσ(0), uσ(1), . . . , uσ(k))

for any permutation σ ∈ Γ where Γ denotes the set of all permutations on the set {0, 1, . . . , k}.

The exchangeability assumption on copulas is too restrictive for some applied situations where one component of

the variables influences the other one more than the other way around. In the bivariate case exchangeability means

that the conditional probability distribution of the first variable given the second variable equals the conditional

probability distribution of the second variable given the first variable.

3. Class of multivariate skew normal copulas

In this section we propose the multivariate skew normal copula and its six nested copulas including the multi-

variate skew normal factor copula.

3.1. Multivariate skew normal distribution

The class of skew normal distributions was introduced by Azzalini [18], and its extensions and applications

have been studied by many authors in past three decades [12, 13, 19, 20, 21]. A random variable X is said to

have the skew normal distribution with the parameter λ ∈ R, denoted as X ∼ S N(λ), if it is continuous with the

probability density function (PDF),

f (x; λ) = 2φ(x)Φ(λx), x ∈ R, (2)

where φ(·) and Φ(·) are the PDF and the CDF of a standard normal variable. [12] introduced the transformation

method and the conditioning method for constructing the multivariate skew normal distribution. The transforma-

tion method provides the multivariate extension of Eq. (2) utilizing the following lemma.
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Lemma 3.1. [12] If Z0 and Z1 are independent standard normal random variables with mean 0 and variance 1,
denoted by Z0, Z1 ∼ N(0, 1), then X = δ|Z0| +

√
1 − δ2Z1 ∼ S N(λ), where δ ∈ (−1, 1) and λ = δ/

√
1 − δ2.

Let Z = (Z0, . . . ,Zk)T be the multivariate normal distributed random vector with standard normal marginals,

independent of Z ∼ N(0, 1). The joint distribution of Z and Z is given by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Z

Z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∼ Nk+2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝0,
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0T

0 R

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (3)

where R is the (k + 1) × (k + 1) correlation matrix of Z, and Np(μ,Ω) is the p-dimensional multivariate normal

distribution with mean vector μ and covariance matrix Ω. Define the (k + 1) random variables X0, X1, . . . , Xk by

Xj = δ j|Z| +
√

1 − δ2jZ j, (4)

where j = 0, . . . , k and δ j ∈ (−1, 1). Therefore, by Lemma 3.1, Xj follows S N(λ j) where λ j = δ j/
√

1 − δ2j .
[12] showed that the joint PDF of X = (X0, X1, . . . , Xk)T is

h(x; R, λ) = 2φk+1(x;Σ)Φ(αT x), (5)

where

αT =
λT R−1Δ−1

(1 + λT R−1λ)1/2
, Σ = Δ(R + λλT )Δ, Δ = diag((1 − δ20)1/2, . . . , (1 − δ2k)1/2), λ = (λ0, . . . , λk)T ,

and φk+1(x;Σ) denotes the PDF of Nk+1(0,Σ). The random vector X with the joint PDF in Eq (5) is said to be the

multivariate skew normal distribution with the location parameter 0, the correlation matrix R, and the skewness

parameter λ, denoted by X ∼ S Nk+1(R, λ).

3.2. Multivariate skew normal copula

We now define the multivariate non-exchangeable skew normal copula using the multivariate skew normal

distribution defined in Section 3.1.

Definition 3.1. A (k + 1)-copula C is said to be the skew normal copula if

C(u0, u1, . . . , uk; R, λ) = H
(
F−1

0 (u0; λ0), F−1
1 (u1; λ1), . . . , F−1

k (uk; λk); R, λ
)
, (6)

where F j(x j, λ j) and F−1
j (u j; λ j) denote the CDF of Xj ∼ S N(λ j) and its inverse, respectively, and H is the CDF

of X ∼ S Nk+1(R, λ).

Note that the skew normal copula in Eq. (6) is exchangeable if and only if λ0 = λ1 = . . . = λk and all off-diagonal

elements of R equal.

The skew normal copula in Definition 3.1 has two sets of parameters capturing the non-exchangeable depen-

dence between the variables of interest, the correlation matrix R accounting for association between unobservable

or latent variables Z in Eq.(3) and λ = (λ0, . . . , λk) accounting for the differential skewness of the variables

involved.

The corresponding skew normal copula density is given by

c(u0, u1, . . . , uk; R, λ) =
h(F−1

0 (u0; λ0), F−1
1 (u1; λ1), . . . , F−1

k (uk; λk); R, λ)

f0(F−1
0

(u0; λ0); λ0) f1(F−1
1

(u1; λ1); λ1) . . . fk(F−1
k (uk; λk); λk)

. (7)

where h(x0, x1, . . . , xk; R, λ) is the multivariate skew normal density in Eq. (5) and f j(x j; λ j) is the marginal density

of a skew normal variable, Xj ∼ S N(λ j).
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3.3. Multivariate skew normal factor copula

Factor copula for modeling the joint distribution of high-dimensional data was studied in [22, 23]. In the

factor copula, the dependence between variables is assumed to be captured via one or several common factors. We

here derive the 1-factor skew normal copula. As will be shown below, the skew normal factor copula has a much

smaller number of parameters than the skew normal copula in Eq. (6) and it is still non-exchangeable.

Let U = (U0, . . . ,Uk)T be a random vector with standard uniform marginals and a (k+ 1)-copula C(u0, . . . , uk)

be the joint CDF of U. The random variables U0,U1, . . . ,Uk are assumed to be conditionally independent given

the latent variable V where V ∼ U(0, 1). Let C j|V (u j|v) be the conditional CDF of U j|V = v, j = 0, 1, . . . , k. Then

the joint CDF of U is

C(u0, . . . , uk) =

1∫
0

k∏
j=0

C j|V (u j|v)dv. (8)

The copula given in Eq. (8) is called the 1-factor copula.

For the skew normal factor copula, we consider the bivariate copula C(u, v) given below,

C(u, v) =

G−1(v)∫
0

F−1(u;λ)∫
−∞

2√
1 − δ2

φ(s)φ

(
t − δs√
1 − δ2

)
dtds.

where G(z) and F(x; λ) denote the CDF of standard half normal distribution and the CDF of S N(λ), respectively,

and δ = λ/
√

1 + λ2. Set C j,v(u j, v) = C(uj, v) for every j = 0, 1, . . . , k in the 1-factor copula of Eq. (8) and after

some calculations, we can define the multivariate skew normal factor copula as follows.

Definition 3.2. A (k + 1)-copula C is said to be the skew normal factor copula if

C(u0, u1, . . . , uk; λ) =

1∫
0

k∏
j=0

Φ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
F−1

j (u j; λ j)) − δ jG−1(v)√
1 − δ2j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ dv, (9)

where δ j = λ j/
√

1 + λ2
j and G(v) denote the CDF of the standard half normal distribution.

From Definition 3.2 we can see that the skew normal factor copula in Eq. (9) is the skew normal copula with the

identity correlation matrix R = Ik+1 and the unrestricted λ. Note that the 1-factor skew normal copula given in

Eq. (9) is exchangeable if and only if λ0 = λ1 = . . . = λk.

Remark 3.1. Since the skew normal factor copula is parameterized by the skewness parameters λ0, λ1, . . ., λk,
Σ and α in Eq.(5) can be written as Σ = (σi j), where σi j = δiδ j, for i � j, and σi j = 1, for i = j, and
αi =

1√
1+

k∑
i=0
λ2

i

× δi
(1−δ2i )

, for i = 0, . . . , k. Note that the skew normal factor copula has less flexibility than the skew

normal copula in Eq. (6). For example, if the skewness parameters λi and λ j, i � j, are both positive or negative,
the corresponding σi j in Σ under the skew normal factor copula is restricted to be positive.

3.4. List of multivariate skew normal copulas

In the previous two subsections, we proposed the multivariate skew normal copula and the multivariate skew

normal factor copula. Depending on the restrictions of the skewness parameters λ = (λ0, . . . , λk) and the correla-

tion matrix R, we can further develop several parsimonious skew normal copulas. In the following, we provide a

list of multivariate skew normal copulas that can be useful in data analysis.
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• Model 0: skew normal copula in Eq. (6) with unrestricted λ and unrestricted R;

• Model 1: skew normal copula with the same skewness parameters (λ0 = λ1 = . . . = λk) and unrestricted R;

• Model 2: skew normal copula with λ = 0 and unrestricted R, which is the multivariate normal copula;

• Model 3: skew normal copula with unrestricted λ and exchangeable R = [Ri j] where, for i, j = 0, . . . , k,

Ri j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 for i = j

ρ otherwise.
(10)

• Model 4: skew normal copula with the unrestricted λ and R = Ik+1, the skew normal factor copula in Eq. (9);

• Model 5: skew normal copula with the same skewness parameter and the exchangeable R in Eq. (10);

• Model 6: skew normal copula with λ = 0 and the exchangeable R in Eq. (10).

Note that the Model 0 - Model 4 are non-exchangeable and the Model 5-Model 6 are exchangeable.

3.5. Kendall’s tau

Given a bivariate random vector (X, Y), Kendall’s tau, which is one of the commonly-used concordance mea-

sures, is defined as the probability of concordance minus the probability of discordance [14], i.e.,

τ = P[(X − X′)(Y − Y ′) ≥ 0] − P[(X − X′)(Y − Y ′) ≤ 0],

where (X′, Y ′) is an identical and independent distributed as (X, Y). The Kendall’s tau is invariant to monotone

transformations of random variables, while the Pearson’s correlation is unaffected only by the linear transforma-

tion. Thus, the Kendall’s tau is useful in comparing association/dependence structure in the data computed under

different copulas. Note that in this paper we numerically compute Kendall’s tau for the skew normal copulas using

the following formula and the numerical integration function ‘adaptIntegrate’ [24] in R [25],

τ = 4

∫ ∞
−∞

∫ ∞
−∞

H(x, y; ρ, λ1, λ2)h(x, y; ρ, λ1, λ2)dxdy − 1.

4. Parameter estimation using block coordinate ascent algorithm

This section discusses the estimation method and the numerical algorithm for the proposed class of skew

normal copulas.

4.1. Maximum pseudo-likelihood method

In the copula literature there are three commonly used estimation methods, the maximum likelihood (ML),

the inference functions for margins (IFM) [15], and the maximum pseudo-likelihood (MPL) [26, 27]. The ML

and IFM methods require the specification of parametric models for the marginals. On the other hand, the MPL

method uses the rank-based estimators for the marginals and is robust against misspecification of the marginal

models [28]. In this paper we employ the MPL method for estimating the proposed class of skew normal copulas.

Given a sample of n observations x1, . . . , xn from a continuous random vector X = (X0, . . . , Xk)T , we first

compute the normalized ranks or the rescaled empirical distributions for the j-th variable Xj, ui j =
ri j

n+1
where

i = 1, . . . , n, j = 0, 1, . . . , k, and ri j is the rank of xi j among n data points from Xj, x1 j, . . . , xn j. The pseudo

log-likelihood function for the parameters in the skew normal copula is


p(R, λ) = log

n∏
i=1

c(ui0, . . . , uik; R, λ) =
n∑

i=1

log c(ui0, . . . , uik; R, λ) (11)
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where c(u0, . . . , uk; R, λ) is the skew normal copula copula density in Eq. (7). We can obtain the maximum pseudo-

likelihood estimators (MPLE) for the parameters by maximizing Eq. (11) with respect to (λ,R). Note that the

number of the parameters to be estimated is k + 1 + k(k + 1)/2, (k + 1) in λ and k(k + 1)/2 in R.

4.2. 2-block coordinate ascent algorithm

The estimation of R through Eq. (11) is a difficult numerical problem, as the estimate of R must be positive

definite. Furthermore, for high-dimensional data, the simultaneous estimation of λ and R is difficult to implement.

To estimate the skew normal copulas proposed in Section 3, we introduce the 2-block coordinate ascent al-

gorithm [29]. A main idea is to decompose the problem of simultaneously estimating all parameters into two

simpler estimation subproblems. First, partition the parameters into two disjoint blocks, one for λ and the other

for R. Second, maximize 
p(R, λ) over one of the blocks, while keeping the other block fixed at their current val-

ues, and replace the values of the active block by the maximizer of 
p(R, λ) with one block fixed, and then proceed

by choosing the other block to become active. The details of the proposed algorithm are given as follows:

Algorithm 1 2-block coordinate ascent algorithm for the skew normal copulas

Step 1. Initialize two blocks with λ̂0 and R̂0.

Step 2. At the t-th iteration, update the estimate λ̂t by maximizing 
p(R, λ) over λ with a fixed R (R = R̂t−1) :

λ̂t = argmax
λ
{
p(R̂t−1, λ)}.

Step 3. At the t-th iteration, update the estimate R̂t by maximizing 
p(R, λ) over R with a fixed λ (λ = λ̂t) :

R̂t = argmax
R
{
p(R, λ̂t)}.

Step 4. Repeat Steps 2 and 3 until the algorithm converges.

Most convergence results of the block coordinate algorithm require either the convexity, quasi-convexity prop-

erty or the unique maximization point assumptions of the target function. However, [29] showed that 2-block coor-

dinate algorithm is globally convergent towards stationary points, even in the absence of convexity or uniqueness

assumptions. The following theorem establish the convergence of the Algorithm 1.

Theorem 4.1. [29] Suppose that the global maximization with respect to each block is well defined and let θ̂t

denote the estimates of the vectorized R and λ in the skew normal copula generated from the t-th iteration of the
Algorithm 1. Then, every limit point of the infinite sequence {θ̂t} is a stationary point.

The estimation of R in Step 3 of Algorithm 1 involves the optimization of Eq. (11) over R and R̂t (the estimate

of R) should be positive definite at each iteration. To ensure the positive definiteness of R̂t, we utilize the spherical

parametrization. Because R is a correlation matrix, it can be uniquely factored as R = LT L where L is an upper

triangular matrix, which gives the Cholesky parameterization of R. Let Lj denote the j-th column of L, li j denote

the i-th elements of Lj, and θi j denote the spherical coordinates of the first j elements of Lj where j = 2, . . . , k + 1

and i = 1, . . . , j. We then reparameterize the Cholesky decomposed triangular matrix with trigonometric functions:

l1 j = cos(θ1 j), l2 j = sin(θ1 j)cos(θ2 j), · · · ,
l

( j−1) j = sin(θ1 j) . . . sin(θ( j−2) j)cos(θ( j−1) j), l j j = sin(θ1 j) . . . sin(θ( j−2) j)sin(θ( j−1) j). (12)
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The inverse of the transformation in Eq. (12) will also be needed in the Algorithm 1, which is given below,

θ1 j = arccot(l1 j/
√

l2j j + . . . + l2
2 j), θ2 j = arccot(l2 j/

√
l2j j + . . . + l2

3 j), · · · ,

θ( j−2) j = arccot(l( j−2) j/
√

l2j j + l2
( j−1) j), θ( j−1) j = 2arccot

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
l( j−1) j +

√
l2j j + l2

( j−1) j

l j j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
where arccot is the inverse of the cotangent function. Furthermore, the unconstrained estimation is obtained by

defining φ = (φ1, . . . , φ k(k+1)
2

)T where φ
( j−1)( j−2)/2+i−1

= log
(
θi j

π−θi j

)
.

For the positive definiteness of the estimate of the exchangeable correlation matrix R in the Models 3, 5, and

6, we employ the Fisher transformation for ρ and ensure the estimate of ρ to be between −1/k and 1. To avoid

time-consuming computation for evaluating the marginal skew normal quantile functions F−1
j (u; λ j), we utilize the

monotone cubic Hermit interpolation [15, 30] on points (xs, us) where F j(xs; λ j) = us and s = 1, . . . , 150. Note

that we employed the multiple starting value strategy in the Algorithm 1.

5. Data analysis

This section presents an example concerning a study of nutrient intake conducted by the U.S. Department

of Agriculture in 1985. We consider three variables measured from 737 women, daily calcium intake, daily

iron intake and daily protein intake. Figure 1 shows the scatterplot of the normalized ranks of three variables. As

pointed out in [9], asymmetric patterns shown in the bivariate marginals of Figure 1 (e.g., calcium-protein margins

with respect to the diagonal line) and the different values of Kendall’s rank correlations between three pairs

(calcium-iron 0.32, calcium-protein 0.36, iron-protein 0.52) indicate the need of the non-exchangeable copula.

Fig. 1. Normalized ranks of the data from the study of nutrient intake in 737 women conducted by the U.S. Department of Agriculture

[9] applied the non-exchangeable Clayton-Liouville copula to this data and showed a better fit compared to

the fully exchangeable Clayton copula. We here illustrate the performance of a list of skew normal copulas with
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the same data and compare it to the Clayton-Liouville copula.

We first fit the normalized ranks of the data with the proposed class of trivariate skew normal copulas, Model

0 - Model 6, and the Clayton-Liouville copula. In order to obtain copula models with better fit, we employ the

Akaike’s information criterion (AIC) [31] and Bayesian information criterion (BIC) [32] based on the normalized

ranks [33, 34]: AIC = 2
p(θ̂) − 2dim(θ̂) and BIC = 2
p(θ̂) − dim(θ̂) log(n) where θ is the set of the parameters in

the copulas, θ̂ is the MPLE for θ, dim(θ) is the dimension of θ and n is the sample size.

Table 5 compares the class of skew normal copulas with the Clayton-Liouville copula in terms of the max-

imized pseudo log-likelihood value, AIC, BIC, and the estimated Kendall’s tau for each pair of three variables,

calcium-iron τci, calcium-protein τcp and iron-protein τip. We can see that two skew normal copulas, Model 0

and Model 1, show much better improvement in fit than the Clayton-Liouville copula. The Model 1 and 3 have

the same number of parameters as the Clayton-Liouville copula, but the Model 3 has slightly lower AIC and BIC

than Clayton-Liouville copula. These results indicate that the copula with the unrestricted R better characterizes

the non-exchangeable dependence in this date set than the copula with the unrestricted λ.

Model MPLoglik AIC BIC τci τcp τip

Clayton-Liouville 417.58 827.16 808.75 0.32 0.33 0.48

Model 0 431.60 851.2 823.59 0.31 0.35 0.51

Model 1 429.49 850.98 832.57 0.34 0.38 0.52

Model 2 409.35 812.7 798.89 0.33 0.38 0.51

Model 3 415.78 823.57 805.16 0.30 0.36 0.50

Model 4 314.15 622.3 608.49 0.20 0.32 0.43

Model 5 384.41 764.82 755.61 0.41 0.41 0.41

Model 6 365.95 729.9 725.30 0.40 0.40 0.40

Table 1. Maximum pseudo log-likelihood value (MPLoglik), AIC, BIC, and the estimated Kendall’s tau for each pair calcium-iron τci,

calcium-protein τcp, and iron-protein τip for the Clayton-Liouville copula and the class of skew normal copulas.

6. Conclusion

The non-exchangeable copulas are the fundamental tools to analyze the non-exchangeable/asymmetric depen-

dence structure between multiple variables. We proposed a flexible class of multivariate skew normal copulas to

model the high-dimensional data with non-exchangeable dependence patterns and developed the efficient block

coordinate ascent algorithm for the parameters estimation. As the future work, we will apply the class of skew

normal copulas to analysis of directional dependence using the regression models. The non-exchangeable copula

based regression enables us to study the directional dependence stemming from not only marginal behavior of

variables, but also the joint behavior of them.
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