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ABSTRACT

The Community Multiscale Air Quality Model (CMAQ) is a comprehensive three–dimensional “one–atmosphere”
air quality model that is now routinely used to address urban, regional–scale and continental–scale multi–
pollutant issues such as ozone, particulate matter, and air toxics. Several updates have been made to CMAQ by
the scientific community to enhance its capabilities and to provide alternative science treatments of some of the
relevant governing processes. The Advanced Modeling System for Transport, Emissions, Reactions and Deposition
of Atmospheric Matter (AMSTERDAM) is one such adaptation of CMAQ that adds an Advanced Plume–in–grid
Treatment (APT) for resolving sub–grid scale processes associated with emissions from elevated point sources. It
also incorporates a state–of–the–science alternative treatment for aerosol processes based on the Model of
Aerosol Dynamics, Reaction, Ionization and Dissolution (MADRID). AMSTERDAM is configured to provide flexibility
to the model user in selecting options for the new science modules. This paper describes the parallelization of
AMSTERDAM to make it a practical tool for plume–in–grid (PinG) treatment of a large number of point sources,
and presents results from its application to the central and eastern United States for summer and winter periods
in 2002. Over 150 coal–fired power plants in the domain with high emissions of sulfur dioxide (SO2) and nitrogen
oxides (NOX) were selected for PinG treatment in the CMAQ–MADRID–APT configuration of AMSTERDAM used for
this application. Although both model configurations (grid–only and PinG) give similar model performance results
(an aggregate measure of model skill), the results show significant differences between the two versions in the
specific nature of the predicted spatial distribution of ozone and PM2.5 concentrations. These differences can be
important in determining source contributions to ambient concentrations. A companion paper examines the
differences in the predicted contributions of hypothetical source regions from the two configurations of the
model.
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1. Introduction

The U.S. Environmental Protection Agency (EPA) Community
Multiscale Air Quality (CMAQ) model (Byun and Schere, 2006), is a
one–atmosphere three–dimensional grid model that is being used
to predict the impacts of emission controls on the atmospheric
concentrations and depositions of multiple pollutants such as
ozone (O3), fine particulate matter (PM2.5) and air toxics. Because it
is a community model, several enhancements to the model have
been made by the air quality modeling community to provide
alternative science treatments of some of the governing processes
or to include treatments that are not supported in the base CMAQ.

The Advanced Modeling System for Transport, Emissions,
Reactions and Deposition of Atmospheric Matter (AMSTERDAM) is
a version of CMAQ that incorporates an alternative treatment of
aerosol processes and also adds a plume–in–grid treatment to
simulate the subgrid–scale features associated with pollutant
emissions from point sources. Grid models, such as CMAQ,
necessarily average emissions within the volume of the grid cell
where they are released. This averaging process may be appro–

priate for sources that are more or less uniformly distributed at the
spatial resolution of the grid system. However, it may lead to
significant errors for sources that have a spatial dimension much
smaller than that of the grid system. For example, stack emissions
lead to plumes that initially have a dimension of tens of meters,
whereas the horizontal resolution in grid–based air quality models
is typically several kilometers in urban applications and up to
approximately 40 km in continental applications. This artificial
dilution of stack emissions leads to (1) lower concentrations of
plume material, (2) unrealistic concentrations upwind of the stack,
(3) incorrect chemical reaction rates due to the misrepresentation
of the plume chemical concentrations and turbulent diffusion, and
(4) incorrect representation of the transport of the emitted
chemicals.

Plume–in–Grid (PinG) modeling has been demonstrated to be
an effective approach to resolve sub–grid scale effects associated
with discrete sources (e.g., Seigneur et al., 1983; Sillman et al.,
1990; Kumar and Russell, 1996; Gillani and Godowitch, 1999;
Karamchandani et al., 2002; Godowitch, 2004; Karamchandani et
al., 2006a; Vijayaraghavan et al., 2008; Karamchandani et al.,
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2009). In this approach, the errors associated with the grid–
averaging of stack emissions are addressed by using a subgrid–
scale representation of stack plumes that is imbedded in the 3D
grid system of the air quality model.

While PinG modeling provides a more accurate and detailed
representation of point source emissions than a traditional grid
model, it increases the computational time required for model
simulations, particularly when a large number of point sources are
treated explicitly with the embedded plume model. This additional
computational overhead can make it impractical to use PinG
modeling for large modeling domains and long simulation periods.
In this paper, we describe the development of a parallelized
version of AMSTERDAM to overcome these limitations, and
present model performance results with and without PinG
treatment. We also compare the spatial patterns of predicted
ozone and PM2.5 concentrations from the two model configura–
tions to illustrate the differences between the two approaches. In a
companion paper (Karamchandani et al., 2010), we present results
from hypothetical emission control scenarios to illustrate the effect
of PinG modeling on predicted impacts of emissions reductions on
ozone and PM2.5 concentrations and sulfur and nitrogen deposi–
tion.

2. AMSTERDAM

AMSTERDAM is actually a suite of models, based on CMAQ,
with user–selectable configurations for chemistry, aerosols and
plume–in–grid (PinG) treatment. In addition to the standard CMAQ
configurations, the new configurations offered by AMSTERDAM
include CMAQ–AERO3–APT, CMAQ–MADRID, and CMAQ–
MADRID–APT. MADRID, which refers to the Model of Aerosol
Dynamics, Reaction, Ionization and Dissolution, is an advanced
alternative aerosol treatment developed by Zhang et al. (2004).
MADRID is available with both the Carbon Bond IV and SAPRC–99
gas–phase chemistry options. PinG treatment is provided with the
Advanced Plume Treatment (APT) option (Karamchandani et al.,
2002; Karamchandani et al., 2006a). This option is available with
both the AERO3 aerosol module of CMAQ and the MADRID aerosol
treatment. AMSTERDAM also includes options for the treatment of
mercury (Hg) species based on Seigneur et al. (2004; 2006).

The embedded reactive plume model for the APT option is
adapted from the Second–Order Closure Integrated puff model
with Chemistry (SCICHEM) (Karamchandani et al., 2000). SCICHEM
simulates plume transport and dispersion using a second–order
closure approach to solve the turbulent diffusion equations. The
plume is represented by a myriad of three–dimensional puffs that
are advected and dispersed according to the local micrometeo–
rological characteristics. Each puff has a Gaussian representation of
the concentrations of emitted inert species. The overall plume,
however, can have any spatial distribution of these concentrations,
since it consists of a multitude of puffs that are independently
affected by the transport and dispersion characteristics of the
atmosphere. The model can simulate the effect of wind shear since
individual puffs will evolve according to their respective locations
in an inhomogeneous velocity field. As puffs grow larger, they may
encompass a volume that cannot be considered homogenous in
terms of the meteorological variables. A puff splitting algorithm
accounts for such conditions by dividing puffs that have become
too large into a number of smaller puffs. Conversely, puffs may
overlap significantly, thereby leading to an excessive computa–
tional burden. A puff–merging algorithm allows individual puffs
that are affected by the same (or very similar) micro–scale
meteorology to combine into a single puff. Also, the effects of
buoyancy on plume rise and initial dispersion are simulated by
solving the conservation equations for mass, heat, and
momentum. The formulation of nonlinear chemical kinetics within
the puff framework is described by Karamchandani et al. (2000).
Chemical species concentrations in the puffs are treated as
perturbations from the background concentrations. The chemical

reactions within the puffs are simulated using a general framework
that allows any chemical kinetic mechanism to be treated. The puff
chemical mechanism is the same as the host grid model
mechanism for consistency.

The APT option for PinG treatment was initially developed and
applied for ozone (Karamchandani et al., 2002; Vijayaraghavan et
al., 2006) and subsequently extended to particulate matter
(Karamchandani et al., 2006a) and mercury (Karamchandani et al.,
2006b; Karamchandani et al., 2006c, Vijayaraghavan et al., 2008).

Because of the computational overhead associated with the
PinG treatment (about 20 to 30% for 50 sources), early model
applications were limited to small domains and/or short–term
simulations, with no more than 50 point sources treated explicitly
with the embedded plume model. However, these constraints
limited the utility of the model and it became apparent that it
would be necessary to reduce the turn–around time for PinG
applications. In the next section, we describe our approach to
achieve this speed–up, based on parallelization of the PinG code.
This approach relies on the widespread availability of multi–
processor workstations and workstation clusters that are
commonly used today for air quality model simulations. A parallel
PinG code allows efficient utilization of the available compute
cycles in these modern computer systems.

3. Parallelization of AMSTERDAM

The traditional approach to parallelizing a grid model such as
CMAQ is to perform domain decomposition by subdividing the
horizontal domain into a number of roughly equal subdomains,
with each subdomain assigned to a separate processor. Each
processor then performs the transport/chemistry/removal calcula–
tions on the grid cells within the subdomain. However, inter–
processor communication is required for I/O purposes and
horizontal transport calculations. In CMAQ, this inter–processor
communication is accomplished by using the parallel input output
(PARIO) management library based on the Message Passing
Interface (MPI) library (http://www.mcs.anl.gov/research/
projects/mpi/), a standard for message passing in parallel comput–
ing. CMAQ uses the Argonne National Laboratory open–source
implementation of MPI, referred to as MPICH (http://www.mcs.
anl.gov/research/projects/mpich2/), because of its widespread
usage and availability.

While the domain decomposition paradigm is appropriate for
the grid model, the plume component (SCICHEM) in the PinG
model requires a different approach because the puffs are not
distributed uniformly among the subdomains. For example, one
could expect a higher density of puffs in subdomains with many
point sources than in other subdomains. Thus, using a domain
decomposition approach for SCICHEM would result in inefficient
utilization of processors. Furthermore, there could be potential
issues with puffs crossing subdomain boundaries during a
simulation time step.

Hence, we selected “puff decomposition” as the approach for
parallelizing the plume component of the model. The total puffs at
any given time step are divided uniformly among the available
processors. However, the strongly interactive nature of the puff
calculation, including splitting, merging, and overlap calculations
posed an additional challenge in the parallelization of the plume–
in–grid code. Because these puff interactions could occur between
puffs distributed among different processors, there would be a
significant communication overhead associated with performing
the interaction calculations on independent processors.

To overcome this issue, we focused our parallelization effort
on the chemistry component of the plume model. This component
that includes gas–phase chemistry, aerosol calculations, and
aqueous–phase chemistry, requires more computing resources
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than any of the other components of the model. Thus, the largest
benefit could be achieved by conducting these chemistry
calculations in parallel.

Based on these considerations, the overall parallelization
approach of the embedded plume model consists of the following
steps:

(1) The grid model subdomain concentrations are collected
to construct a full domain 3D concentration field as background
concentrations for SCICHEM, which is called at each CMAQ
transport time step.

(2) The overall puff stepping control is maintained on the
root processor, which performs the calculations for puff emissions,
transport, dispersion and interactions and assembles the complete
meteorology and ambient chemistry fields from the Eulerian
subdomains.

(3) The root processor distributes the total puffs among
itself and the slave processors to perform the chemistry calcu–
lations.

(4) At the end of the chemistry calculations, the root pro–
cessor collects the puff information from the individual processors.

(5) At the end of the SCICHEM simulation time step, the root
processor performs a puff dumping calculation if necessary (i.e.,
transfers the puff information back to the grid model) to adjust the
full domain gridded concentration field.

(6) The full domain 3D concentration field is distributed
among the various subdomains for the host grid model parallel
computations for the next transport time step.

As in the case of the host grid model, all the inter–processor
communication required for distributing and collecting the puff
data and subdomain 3D concentration fields is accomplished using
MPI methods. The data exchange between the host grid model and
the plume model consists of transfer of the full 3D concentration
field from the host model to the plume model at the initiation of a
SCICHEM time step, and the transfer of the adjusted 3D concen–
tration field at the end of the time step from SCICHEM to the host
grid model. In a parallel application, this data exchange requires
the storage of an extra copy of the 3D concentration field, in–
creasing the memory requirements of the model by nearly a factor
of 2. All other data required by the plume model (i.e., meteorology,
emissions) are directly read from model input files using the I/O
API and netCDF libraries.

Figure 1 shows the hybrid decomposition scheme used for the
parallelization of AMSTERDAM. The scheme is illustrated for a
workstation with four computing or processing elements (PEs). The
left panel shows the traditional domain decomposition method

used in the grid model component, in which the four processors
are used for 4 subdomains of the modeling domain. The right panel
shows the puff decomposition method used for the reactive plume
component, in which the puffs in the entire domain are divided
among the 4 PEs for the chemistry calculations.

In the following section, which describes the model appli–
cation with 158 point sources treated explicitly with the plume
model, we present the computational speed–up obtained from
parallelizing the PinG code.

4. Model Application

The parallelized version of CMAQ–MADRID–APT was applied
to a modeling domain that covers the central and eastern United
States (see Figure 2). The grid is based on a Lambert Conformal
map projection, with the origin located at 97° west longitude and
40° north latitude and reference latitudes at 33° and 45° north
latitude. The horizontal grid system consists of 243 x 246 grid cells,
with a resolution of 12 km. The vertical grid is pressure–based and
extends from the surface to about the tropopause (100 mb or
~15 km) and is discretized using 19 layers of variable thickness.

Based on an analysis of their emissions of SO2 and NOX, 158
large coal–fired power plants (CFPPs) in the United States were
chosen for PinG treatment. The locations of these point sources
are also shown in Figure 2. The SO2 and NOX emissions from these
sources represent over 75% and 68% of the respective total CFPP
emissions in the entire modeling domain.

Baseline simulations with the CMAQ–MADRID and CMAQ–
MADRID–APT configurations of AMSTERDAM were conducted for a
summer period (August 1 to August 31, 2002) and a winter period
(January 15 to February 15, 2002). The CMAQ transport options for
the AMSTERDAM simulations included the Yamartino horizontal
advection scheme and the Asymmetric Convective Model (ACM2)
for the vertical mixing. For the gas–phase chemistry, the EBI solver
was used with the MADRID version of the Carbon Bond IV (CB–IV)
mechanism.

The boundary conditions for the 12–km resolution modeling
domain shown in Figure 2 were obtained from a coarse grid (36–
km resolution) simulation over the continental United States, using
the CMAQ–MADRID configuration of AMSTERDAM. The boundary
conditions for the 36–km resolution coarse domain were obtained
from a simulation with the global Goddard Earth Observing System
with Chemistry (GEOS–CHEM) model (Bey et al., 2001), provided
by Harvard University.

Figure 1. Hybrid parallelization approach for the grid and embedded plume model components of AMSTERDAM.
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Figure 2.Modeling domain and locations of point sources treated explicitly with SCICHEM.

The meteorological inputs for the simulations were provided
by ENVIRON International Corporation and were based on the
outputs of the Fifth–Generation NCAR/Penn State Mesoscale
Model (MM5) (Grell et al., 1994). Emissions data were also pro–
vided by ENVIRON and were based on 2002 Continuous Emissions
Monitoring Systems (CEMS) data for CFPPs in the U.S. and on 2002
data from the Regional Planning Organizations (RPOs) for other
sources. These were processed to develop emissions for the
AMSTERDAM simulations.

AMSTERDAM run–times for the MADRID–APT application with
158 point sources treated explicitly were about 40 to 50% higher
than the corresponding run–times for the grid model only configu–
ration. On a machine with 8 processors, the speed–up from the
parallelization of the plume–in–grid configuration was about a
factor of 4 to 5. This was comparable to the speed–up for the grid–
only configuration of the model, indicating that the degree of
parallelization of the plume–in–grid version was similar to that of
the grid version. From Amdahl’s law, this suggests that nearly 90%
of the code is parallelized for both model configurations.

In the following section, we present results from the model
performance evaluation for the summer and winter periods and
the two configurations of AMSTERDAM.

5. Model Performance Evaluation

Data from the AIRS/AQS, IMPROVE, and SEARCH monitoring
networks were used for the model performance evaluation of
ambient ozone and PM2.5 concentrations. The Aerometric
Information Retrieval System (AIRS)/Air Quality System (AQS)
(http://www.epa.gov/ttn/airs/airsaqs/), contains ambient air
pollution data collected by EPA, state, local, and tribal air pollution
control agencies from thousands of monitoring stations across the
U.S. The Interagency Monitoring of Protected Visual Environments
(IMPROVE) monitoring network (http://vista.cira. colostate.edu/
improve/) consists of aerosol, light scatter, light extinction and
scene samplers in a number of National Parks and Wilderness
areas. In contrast to these two data sources, which have a nation–

wide focus and provide routine measurements, the SouthEastern
Aerosol Research and Characterization study (SEARCH) network is
a highly instrumented regional network in the states of Alabama,
Florida, Georgia and Mississippi (Hansen et al., 2003). In 2002,
there were eight stations in the network, arranged in urban–rural
pairs in each of the four states. SEARCH provides integrated filter–
based measurements as well as year–round continuous
measurements (1–60 min averages) of PM2.5 and gas components.

Table 1 shows the model performance statistics for hourly
ozone concentrations for the CMAQ–MADRID and CMAQ–
MADRID–APT configurations of AMSTERDAM for the summer and
winter periods using measurements from AIRS/AQS and SEARCH.
Although EPA has revoked the one–hour ozone standard, the
calculation of model performance statistics for one–hour ozone
concentrations is still recommended (EPA, 2007). The statistical
measures shown in Table 1 are defined by EPA (2007). A cut–off
value of 20 ppb for the observed hourly ozone concentrations was
used to remove the influence of very low observed concentrations
on the performance statistics. EPA modeling guidance recom–
mends using a cut–off value of 60 ppb (EPA, 2007); however, this
cut–off would eliminate most of the observations for the winter
period for our performance evaluation. Other studies have
investigated the use of 20 ppb and 40 ppb cut–off values in
addition to the 60 ppb recommended value (e.g., Hogrefe et al.,
2001; Baker, 2005; Tong and Mauzerall, 2006). We selected the
20 ppb threshold to reduce the number of data points discarded
for the performance evaluation.

As shown in Table 1, both configurations of the model (i.e.,
with and without PinG treatment) result in very similar perfor
mance statistics. Summer ozone concentrations tend to be slightly
under–predicted and winter concentrations are slightly over–
predicted. The normalized bias is less than 2% for the summer
period and less than 10% for the winter period, within the EPA
guidance value of ± 5 to ± 15% for hourly ozone concentrations
(EPA, 1991; Russell and Dennis, 2000). Similarly, the normalized
errors for both the summer and winter periods are less than the
EPA guidance value of ±30 to ±35%. The modeled and observed
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Table 1.Model performance statistics for hourly ozone concentrations using AIRS/AQS and SEARCH measurements

Summer 2002 Winter 2002

AMSTERDAM Configuration MADRID MADRID APT MADRID MADRID APT

Mean Observed Value (ppb) 45.8 31.5

Mean Modeled Value (ppb) 42.9 43. 2 33.2 33.5

Gross Bias (ppb) 2.9 2.6 1.7 2.0

Mean Normalized Bias (%) 0.8 1.4 7.5 8.5

Normalized Mean Bias (%) 6.9 6.2 5.4 6.4

Fractional Bias (%) 3.4 2.8 2.0 2.9

Gross Error (ppb) 9.9 9.8 7.7 7.7

Mean Normalized Error (%) 22.8 22.7 26.0 26.2

Normalized Mean Error (%) 23.1 22.7 24.4 24.5

Fractional Error (%) 22.5 22.3 25.6 25.6

Normalized RMSE (%) 27.7 27.5 32.4 32.6

Coefficient of Determination (r2) 0.55 0.56 0.23 0.23

ozone concentrations are well correlated for the summer period,
when the model explains more than 50% of the variance in
observed concentrations. The correlation for the winter period is
lower.

Figure 3 shows scatter–plots comparing observed daily maxi
mum 8–hour average ozone concentrations with the simulated
maximum 8–hour average concentrations for the summer period.
The left panel shows the results for the MADRID configuration
while the right panel shows the results for the MADRID–APT
configuration of AMSTERDAM. The results are similar for the two
model configurations – for both configurations, we note a high
degree of correlation between the modeled and observed maxi–
mum 8–hour ozone concentrations, consistent with the correlation
noted earlier in Table 1 for the hourly concentrations. However, we
also note some over–prediction biases at the low end of the
measured concentrations and under–prediction biases at the high
end. This is also illustrated in the residual scatter plots (i.e., errors
of prediction vs. measured values) for the daily maximum 8–hour
average ozone concentrations, shown in Figure 4. Note that
residual plots traditionally show the predicted values on the x–axis;
however, we have used measured concentrations in Figure 4 to
determine the accuracy of model predictions over the range of
observed values.

The corresponding scatter–plots and residual scatter plots for
the winter period are shown in Figures 5 and 6, respectively. The
results for the two model configurations are again similar. As
expected, peak winter ozone concentrations are lower than
summer values, because of the lower photochemical production in
winter. We see from Figure 6 that most of the over–prediction bias
in modeled ozone results for the winter period is associated with
8–hour maximum ozone concentrations less than 40 ppb, and
more than 50% of the observed values are lower than this
threshold. The bias is considerably lower at the higher concen–
trations. Figure 5 shows that there is considerably more scatter in
the winter period results than the summer results, again
associated with the difficulties in predicting concentrations lower
than 40 ppb. The lower correlation for the 8–hour maximum ozone
concentrations for the winter period is consistent with the lower
coefficient of determination noted in Table 1 for the hourly ozone
concentrations. Cai et al. (2008) have evaluated an air quality
forecast modeling system for summer and winter seasons and
have noted that the performance for the winter season was lower
than for the summer season. They point out that ozone concen–
trations in the winter season are dominated by background
concentrations and titration by NOX with little photochemical
production.

EPA modeling guidance also recommends the calculation of
the average peak prediction bias and error for an operational
evaluation of model performance for ozone (EPA, 2007). We
calculated these measures for the daily maximum 8–hour average
concentrations (the basis of the primary and secondary ozone
standards). For the summer period, the average peak prediction
bias for both configurations of AMSTERDAM is –8% and the
average peak prediction error is 17%. For the winter period, the
average peak prediction bias is 9% for the MADRID configuration
and 10% for the MADRID–APT configuration; the average predic–
tion error for both configurations is 21%.

Figure S1 (see the Supporting Material, SM) shows the average
station peak estimation accuracy for daily maximum 8–hour
average ozone concentrations for each day of the summer period
for the MADRID–APT configuration of AMSTERDAM (the results for
the MADRID configuration are similar and are not shown here).
This statistic is the average over all stations of the spatially paired
peak estimation accuracy, i.e., the discrepancy between the
magnitude of the peak daily 8–hour average measurement at a
monitoring station and the peak daily estimated value at the same
monitor. As shown in Figure S1a, the average station peak esti–
mation accuracy is within ±20% for all but 4 days of the summer
period. For the winter period, shown in Figure S1b, the average
station peak 8–hour average estimation accuracy is within ±20%
for only about 60% of the days in the period, again confirming that
the model performs better for the summer period than the winter
period.

The performance statistics for 24–hour average PM2.5
concentrations for the summer and winter periods are shown in
Table 2. These statistics are based on measured concentrations
from the AIRS/AQS, IMPROVE, and SEARCH networks. The
performance statistics for the individual PM2.5 components
(sulfate, nitrate and others) are provided in the SM (Tables S1
through S5). As in the case of the hourly ozone concentrations, the
PM2.5 performance statistics for the two model configurations are
almost identical. The PinG configuration (MADRID–APT) tends to
predict slightly lower total PM2.5 concentrations than the grid–only
configuration (MADRID). The modeled and observed concen–
trations are well correlated, especially for the summer period.
Although the mean normalized bias is significantly higher for the
summer period than for the winter period, both the normalized
mean bias and fractional bias are small for the two periods.
Because no cut–off or threshold was used for the observed PM2.5
concentrations in calculating the model performance statistics, the
mean normalized bias is the least reliable indicator of model
performance among the three measures. The performance statis–
tics shown in Table 2 indicate that both model configurations do a
good job of estimating total PM2.5 concentrations. However, the
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Figure 3. Comparison of maximum 8–hour average simulated and observed ozone concentrations for the summer period for (a) the grid–only or CMAQ–
MADRID configuration and (b) the PinG or CMAQ–MADRID–APT configuration of AMSTERDAM.

Figure 4. Spatially paired peak prediction accuracy for 8–hour average ozone concentrations for the summer period for
(a) the grid–only configuration and (b) the PinG configuration of AMSTERDAM.

performance for individual PM2.5 components is more variable,
with better performance for sulfate (see the SM, Table S1) than for
organic matter and black (elemental) carbon (Tables S4 and S5) or
nitrate and ammonium (Tables S2 and S3).

Figure 7 shows scatter plots of the observed and estimated
24–hour average total PM2.5 concentrations for the summer period
and the two model configurations. The observed and modeled
values are generally in good agreement, and are well correlated
(note high r2 value in Table 2). The agreement for the winter period
is not as good and there is considerably more scatter between the
observed and modeled values, as shown in Figure 8. Appel et al.
(2008) have also noted better model performance for PM2.5 in

spring and summer as compared to fall and winter. Note that
sulfate constitutes a large fraction of the total PM2.5 mass in
summer and is well–predicted, as shown in Table S1 (see the SM).
On the other hand, nitrate, which is a much larger component of
PM2.5 mass in winter than in summer, is poorly predicted (see the
SM, Table S2).

6. Plume–in–Grid Impacts: Beyond Model Performance

The model evaluation, discussed above, shows that the grid–
only and PinG configurations of AMSTERDAM display very similar
statistical performance characteristics at the locations of the
monitors. The similarities in model performance, as reported in
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Figure 5. Comparison of maximum 8–hour average simulated and observed ozone concentrations for the winter period for
(a) the grid–only configuration and (b) the PinG configuration of AMSTERDAM.

Figure 6. Spatially paired peak prediction accuracy for 8–hour average ozone concentrations for the winter period for
(a) the grid–only configuration and (b) the PinG configuration of AMSTERDAM.

past comparisons of the grid model and PinG model
(Karamchandani et al., 2002; Karamchandani et al., 2006a;
Vijayaraghavan et al., 2006), are associated with the majority of
the monitoring sites being unaffected or only slightly affected by
the plumes from the point sources selected for explicit treatment
by the plume model.

Model evaluation is an aggregate measure of model skill.
Although having similar performance statistics, the two configu–
rations can yield significantly different results on the specific
nature of predicted ozone and PM2.5. These differences can influ–
ence the estimation of the contributions of major point sources to
ozone and PM2.5 concentrations.

In a companion paper (Karamchandani et al., 2010), we
discuss the effects of hypothetical emission scenarios using the
two configurations of AMSTERDAM (i.e., grid–only and PinG), as
well as the contributions of the 158 CFPPs selected for PinG
treatment to ozone and PM2.5 concentrations. Here, we present
results showing the differences between the results from the two
configurations for the base simulation. These differences arise
because of differences in the treatment of transport and chemistry
of elevated point source emissions in the two configurations of the
model. As discussed in Karamchandani et al. (2000), the chemistry
of a coal–fired power plant plume is significantly different from the
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Table 2.Model performance statistics for daily PM2.5 concentrations using AIRS/AQS, IMPROVE and SEARCH measurements

Summer 2002 Winter 2002

AMSTERDAM Configuration MADRID MADRID APT MADRID MADRID APT

Mean Observed Value (μg m 3) 14.1 10.5

Mean Modeled Value (μg m 3) 14.0 13. 8 10.9 10.9

Gross Bias (μg m 3) 0.1 0.3 0.35 0.32

Mean Normalized Bias (%) 27.2 26.4 14.7 14.2

Normalized Mean Bias (%) 0.9 1.9 3.3 3.0

Fractional Bias (%) 2.4 1.4 0.5 0.9

Gross Error (μg m 3) 4.4 4.5 4.27 4.28

Mean Normalized Error (%) 55.5 55.7 45.1 44.9

Normalized Mean Error (%) 31.7 32.2 40.5 40.6

Fractional Error (%) 38.1 38.3 39.3 39.4

Normalized RMSE (%) 42.5 42.7 48.0 48.2

Coefficient of Determination (r2) 0.62 0.61 0.35 0.35

Figure 7. Comparison of monthly average simulated and observed PM2.5 concentrations for the summer period for
(a) the grid–only configuration and (b) the PinG or configuration of AMSTERDAM.

Figure 8. Comparison of monthly average simulated and observed PM2.5 concentrations for the winter period for
(a) the grid only configuration and (b) the PinG configuration of AMSTERDAM.
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background chemistry and the plume traverses several stages of
differing chemistry before its chemical characteristics approach
that of the background atmosphere.

Figure 9. Spatial patterns of (a) 8–hour average surface ozone concen–
trations on August 11, 2002, predicted with the grid–only configuration of
AMSTERDAM and (b) differences in 8–hour average surface concentrations
between the PinG and grid–only configurations of AMSTERDAM.

Figure 9a shows the spatial pattern of 8–hour average surface
ozone concentrations, on August 11, 2002, estimated with the
PinG configuration of AMSTERDAM. This day was selected for
analysis because some of the highest 8–hour average concen–
trations in August 2002 were predicted on this day. As seen in
Figure 9b, which shows the differences in 8–hour average ozone
concentrations between the PinG and grid configurations, using
the PinG approach results in decreases of up to 13 ppb and
increases of about 8 ppb in predicted ozone concentrations. As
discussed in Karamchandani et al. (2002) and Vijayaraghavan et al.
(2006), some of the increases in surface ozone due to PinG
treatment at the locations of elevated point sources can be
attributed to reduced near–source titration of background surface
ozone by the NOX emissions from those sources. In the grid model,
the NOX emissions are instantaneously brought to the surface
resulting in artificially enhanced titration of ozone, while the PinG
version allows the emissions to be transported for a longer
distance downwind before they affect surface ozone concen–
trations. Other ozone increases in the PinG approach can be
attributed to delayed production of ozone in the plume as it is
transported downwind to NOx–limited environments. The de–
creases in ozone using PinG are associated with lower production
of ozone in the early stages of plume transport.

Figure 10a shows the distribution of the predicted monthly
average surface PM2.5 concentrations across the modeling domain

for August 2002, using the PinG configuration of AMSTERDAM. The
high PM2.5 concentrations (over 1 000 μg m

–3) along the northern
border of the modeling domain are associated with wild fires in the
region during August 2002. The effect of using the PinG approach
on PM2.5 predictions is illustrated in Figure 10b, which shows re–
gions of both decreases and increases in PM2.5 concentrations. The
decreases are generally larger in magnitude than the increases; the
maximum decrease is larger than 12 μg m–3, while the maximum
increase is less than 1 μg m–3. The differences between the grid–
only and the PinG approaches can again be explained by the
differences in their treatment of the transport and chemistry of
SO2 and NOX emissions from large CFPPs. The NOX in the plumes
from these elevated sources inhibits the oxidation of the primary
species to the secondary products (sulfate and nitrate) in the early
stages of plume dispersion, and the emissions are transported aloft
for larger distances than surface emissions (Karamchandani et al.,
2000; Karamchandani et al., 2006a). These phenomena are treated
in the PinG model but cannot be captured by the grid model, which
is limited by its framework to mix emissions instantaneously within
one or more grid cell volumes.

Figure 10. Spatial patterns of (a) monthly average surface PM2.5 concen–
trations in August 2002, predicted with the grid–only configuration of
AMSTERDAM and (b) differences in monthly average surface PM2.5

concentrations between the PinG and grid–only configurations of
AMSTERDAM.

7. Summary and Conclusions

We have presented the development of a parallel version of
an advanced air quality modeling system, based on the framework
of the U.S. EPA community model, CMAQ, but with alternative
treatments of particulate matter formation and an advanced
treatment of sub–grid scale plumes from large elevated point
sources. The development and application of the single–processor



Karamchandani et al. – Atmospheric Pollution Research 1 (2010) 260–270 269

version of this modeling system has been described previously.
However, computational constraints limited the application of this
version to small–domain/short–term simulations, and allowed the
explicit treatment with the embedded plume model of only a small
fraction of large point sources of interest. The development of the
parallel version increases the utility of the model and allows us to
conduct long–term simulations over a regional domain, as well as
to explicitly simulate over 150 coal–fired power plants (CFPPs),
representing approximately 70% of the CFPP SO2 and NOX emis–
sions in the modeling domain.

We describe the application of the model for summer and
winter months in 2002 and present results from the evaluation of
the model using available ambient measurements of ozone and
PM2.5. The model was applied in two configurations – the grid–only
version, with all sources treated with the grid model, and the
plume–in–grid (PinG) version, with 158 CFPPs explicitly treated
with the plume model. For both the summer and winter periods,
the model performance statistics for both 1–hour ozone concen–
trations and maximum daily 8–hour ozone concentrations are
within suggested guidelines (EPA, 1991; Russell and Dennis, 2000).
The performance for the summer period is better than the winter
period. Ozone concentrations are much lower in the winter than in
summer due to reduced photochemical production and this influ–
ences the model performance in winter. Total PM2.5 concentrations
and PM2.5 sulfate concentrations are well–predicted by the model.
However, PM2.5 nitrate concentrations are poorly predicted. The
observed and simulated total PM2.5 concentrations are highly
correlated for the summer period, but the agreement is lower for
the winter period. The lower agreement in winter is possibly
associated with the difficulties in predicting concentrations of
PM2.5 nitrate, which is a large component of the winter aerosol.

Both model configurations (grid–only and PinG) give very
similar model performance results. This similarity has been noted
in previous PinG modeling studies and is associated with the
majority of the monitoring sites being only slightly affected or
unaffected by the plumes from the point sources selected for
explicit treatment by the plume model. However, it should be
noted that when measurements are available at monitoring
locations located downwind of major point sources, then the
plume–in–grid simulation can capture plume events more
successfully than the grid model simulation. This was shown in the
study by Karamchandani et al. (2006a), who evaluated grid model
and PinG model performance for plume events, using data from
the Southeastern Aerosol Research and Characterization study
(SEARCH) network. Thus, the similarities in aggregate model per–
formance conceal the smaller–scale differences between the grid
and PinG models.

More importantly, previous studies and this study show
significant differences between the PinG and grid–only versions in
their predicted spatial distribution of ozone and PM2.5 concen–
trations. These differences can be important in determining source
contributions to ambient concentrations. A companion paper
(Karamchandani et al., 2010) examines the differences in the
predicted impacts from the two configurations of the model for
hypothetical emission scenarios, and shows that the two models
predict significantly different source contributions, particularly to
summertime PM2.5 concentrations.

Although PinG modeling increases the computational
requirements for an air quality model simulation, we believe that
the additional overhead (about 20 to 30% for 50 sources and about
40 to 50% for over 150 sources) is acceptable in exchange for
correctly treating elevated point source plumes at the subgrid–
scale to overcome an inherent and well–recognized limitation of
grid–only models. With the advances in computing capabilities
over the last few years and expected advances in the future,
conducting a seasonal or annual PinG simulation with over 100

sources for a large modeling domain is no longer a research–only
exercise, as demonstrated in this study.
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