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Various self-consistent polycrystal plasticity models for hexagonal close packed (HCP) polycrystals are
evaluated by studying the deformation behavior of magnesium alloy AZ31B sheet under different uniax-
ial strain paths. In all employed polycrystal plasticity models both slip and twinning contribute to plastic
deformation. The material parameters for the various models are fitted to experimental uniaxial tension
and compression along the rolling direction (RD) and then used to predict uniaxial tension and compres-
sion along the traverse direction (TD) and uniaxial compression in the normal direction (ND). An assess-
ment of the predictive capability of the polycrystal plasticity models is made based on comparisons of the
predicted and experimental stress responses and R values. It is found that, among the models examined,
the self-consistent models with grain interaction stiffness halfway between those of the limiting Secant
(stiff) and Tangent (compliant) approximations give the best results. Among the available options, the
Affine self-consistent scheme results in the best overall performance. Furthermore, it is demonstrated
that the R values under uniaxial tension and compression within the sheet plane show a strong depen-
dence on imposed strain. This suggests that developing anisotropic yield functions using measured R val-
ues must account for the strain dependence.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Constitutive modeling of the plastic deformation of Hexagonal
Close Packed (HCP) crystals is much more complicated than that
in most Face Centered Cubic (FCC) and Body Centered Cubic
(BCC) crystals. More specifically, plastic deformation in most FCC
and BCC materials is dominated by crystallographic slip, while
both slip and twinning contribute to plastic deformation in HCP
crystals. Furthermore, due to its low symmetry of crystallographic
structure, different types of slip systems exist in an HCP crystal
although very few slip systems could be activated at room temper-
ature. At the polycrystal level, an additional difficulty in constitu-
tive modeling for HCP polycrystals is that one must carefully
take into account the details of the interaction between crystals/
grains, because the effects of these details are more significant than
in FCC and BCC materials due to low crystallographic symmetry
and high anisotropy in the mechanical behavior of individual
grains.

Various polycrystal plasticity models have been developed for
polycrystals. Among them, the classic Taylor model (Taylor,
1938) has been the most used, for historic reasons and because
ll rights reserved.

092; fax: +1 (905) 572 7944.
of its easy implementation. The Taylor model assumes that all
grains must accommodate the same plastic strain equal to the
macroscopically imposed strain. This implies that the Taylor model
neglects strain variations from grain to grain in the polycrystalline
aggregate. As a consequence, the Taylor model does not consider
the interaction between crystals, which is believed to be less sig-
nificant in FCC and BCC materials due to their high crystallographic
symmetries. The Taylor model has played an important role in the
field of modeling of forming of aluminum and steel sheets (see e.g.
Wu et al., 1997; Dawson et al., 2003; Eyckens et al., 2009; Lévesque
et al., 2010). For metals like HCP polycrystals with low crystallo-
graphic symmetry, stress and strain variations from grain to grain
and interaction among grains in a polycrystalline aggregate are
significant and cannot be neglected in an attempt to accurately de-
scribe deformation behavior. Consequently, polycrystal plasticity
models based on the self-consistent approach originally proposed
by Kröner (1958), for the elastic case, and later extended to the elas-
toplastic (Hill, 1965) and viscoplastic (Hutchinson, 1976), are
becoming more popular than the Taylor model when modeling
HCP polycrystals. In general, self-consistent models allow for differ-
ent strain response in each grain, depending on the relative stiffness
between the grain and a surrounding homogeneous equivalent
medium (HEM). The consistency conditions require that the
averaged behavior over all the grains must be the same as the
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macroscopically imposed one. Among various self-consistent plas-
ticity models, the Visco-Plastic Self-Consistent (VPSC) model devel-
oped by Molinari et al. (1987) and extended by Lebensohn and Tomé
(1993, 1994) to account for anisotropy, has been widely used to
simulate large strain behavior and texture evolution of HCP poly-
crystalline Mg under various deformation modes (see e.g., Agnew
and Duygulu, 2005; Jain and Agnew, 2007; Neil and Agnew, 2009;
Proust et al., 2009; Signorelli et al., 2009). Recently, Wang et al.
(2010) have developed a finite strain Elastic–Viscoplastic Self-Con-
sistent (EVPSC) model for polycrystalline materials. The EVPSC
model is a completely general elastic–viscoplastic, fully anisotropic,
self-consistent polycrystal model, applicable at large strain and to
any crystal symmetry. However, it has been found that numerical
results are extremely sensitive to the stiffness of the grain–matrix
interaction associated with the various Self-Consistent Schemes
(SCSs) (see e.g. Wang et al., 2010). Therefore, it is necessary to carry
out an assessment of the predictive capability of the VPSC/EVPSC
model with various SCSs including Secant, Affine, Tangent and the
effective interaction meff.

It is worth mentioning that various SCSs have been evaluated by
comparing their predictions, in terms of mechanical responses and
texture evolutions, with finite element calculations, full field sim-
ulations or available experimental evidence for polycrystals (e.g.,
Molinari and Tóth, 1994; Tomé, 1999; Lebensohn et al., 2007). It
has been found that Secant and Tangent SCSs, among the first-or-
der SCSs, exhibit asymptotic trend to respectively the upper-bound
and lower-bound in the rate-insensitive limit, and thus are not
appropriate for highly anisotropic materials like HCP polycrystals.
The intermediate SCSs, Affine and meff give better overall predic-
tions, if appropriate artificial parameter meff is assigned according
to results of finite element calculations (e.g., Molinari and Tóth,
1994) or relative directional compliance approach (Tomé, 1999).
It has to be noted that those evaluations were based on the
assumption that all the material parameters at single crystal level
are the same for various SCSs. A real challenge in modeling HCP
polycrystals is that it is almost impossible to directly measure
the single crystal properties. It has been generally accepted that
the differences in stress experienced by differently orientated sin-
gle crystals in an HCP polycrystal are mainly due to the orientation
of a single crystal and the interaction of the single crystal with its
surrounding grains. The interaction is, of course, dependent on the
self-consistent scheme employed. Therefore, for a textured HCP
polycrystal, the only practical way to determine the single crystal
properties in a polycrystal plasticity model is by curve-fitting
numerical simulations based on the polycrystal model to the corre-
sponding macroscopic experimental data (see Xu et al., 2008). The
predicative capability of the polycrystal plasticity model is then as-
sessed by comparing its predictions based on the fitted material
constants to the corresponding experiment data other than those
used in the fitting. To the best of our knowledge, an assessment
for the VPSC and EVPSC models with various SCSs has not been sys-
tematically carried out for Mg alloys. However, it is clear that such
an assessment is meaningful only if the number of experiments
employed is large enough to cover various different deformation
processes for a given material. Here, we use for such matter the
Mg alloy AZ31B in sheet form, thoroughly characterized experi-
mentally by Jain and Agnew (2007).

In the present study, various self-consistent polycrystal plastic-
ity models for HCP polycrystals are evaluated by studying large
strain behavior of magnesium alloy AZ31B sheet under different
deformation processes. In all the polycrystal plasticity models em-
ployed, both slip and twinning are assumed to contribute to plastic
deformations. Values of the material parameters for the various
models are fitted to experimental uniaxial tension and compres-
sion along the rolling direction (RD) and then used to predict uni-
axial tension and compression along the traverse direction (TD)
and uniaxial compression in the normal direction (ND). An assess-
ment of the predictive capability of the polycrystal plasticity mod-
els is made based on comparisons of the predicted and
experimental stress responses and R values. Differences between
the predictions of different models are emphasized. For the poly-
crystal plasticity model with the so-called effective interaction
‘‘meff” scheme, a broader set of parameters is obtained by best fit-
ting to the experimental stress–strain curves and R values under
slip-dominated cases of uniaxial tension along the RD and TD
and uniaxial compression along the ND. This final exercise permits
illustration of the continuum of results which are possible and,
notably, span the space between the secant and tangent
approximations.

2. Polycrystal plasticity models

Wang et al. (2010) have shown that the differences in the pre-
dicted stress–strain curves and texture evolutions based on the
EVPSC and the VPSC models are negligible at large strains for
monotonic loadings. For deformations involving unloading and
strain path changes, the EVPSC predicts a continuous elasto-plastic
transition, while the VPSC model gives a discontinuous response
due to the lack of elastic deformation. It has been also demon-
strated that the EVPSC model can capture some important experi-
mental features associated with elasto-plastic transitions, stress
relaxation, and unload, which cannot be simulated with the VPSC
model (Wang et al., 2010). Since the deformations studied in the
present paper do not involve unloading or strain path changes,
our assessment of the predictive capability of the VPSC model with
various SCSs also applies to the EVPSC model with the correspond-
ing SCS. For simplicity, the polycrystal SCSs described in what fol-
lows refer to the VPSC case.

Plastic deformation of a crystal is assumed to be due to the crys-
tallographic slip and twinning on slip and twinning systems
(sa,na). Here, sa and na are, respectively, the slip/twinning direc-
tion and normal direction of the slip/twinning system a in the
present configuration. The following equation gives the grain (crys-
tal) level plastic strain rate dg (see e.g. Asaro and Needleman,
1985):

dg ¼
X

a

_caPa; ð1Þ

where _ca is the shear rate of slip (twinning) system a, and Pa is the
associated Schmid tensor:

Pa ¼ 1
2

sana þ nasað Þ: ð2Þ

For slip,

_ca ¼ _c0
sa

sa
cr

����
����

1
m

sgnðsaÞ ð3Þ

and for twinning,

_ca ¼ _c0
sa

sa
cr

� �1
m

for sa > 0

0 for sa
6 0;

8<
: ð4Þ

where _c0 is a reference value of slip/twinning rate, m is the slip/
twinning rate sensitivity, and sa is the resolved shear stress:

sa ¼ rg : Pa ð5Þ

sa
cr is the critical resolved shear stress (CRSS), sgn is the sign func-

tion. The evolution of sa
cr is taken in the form of

_sa
cr ¼

dŝa

dcac

X
b

hab _cb; ð6Þ
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where cac ¼
P

ajcaj is the accumulated shear strain in the grain, hab

is the latent hardening coupling coefficient which empirically ac-
counts for the obstacles on system a associated with system b. ŝa

is the threshold stress and is characterized by

ŝa ¼ sa
0 þ sa

1 þ ha
1cac

� �
1� exp �ha

0

sa
1
cac

� �� �
: ð7Þ

Here, s0, h0, h1 and s0 + s1 are the initial CRSS, the initial hardening
rate, the asymptotic hardening rate and the back-extrapolated CRSS,
respectively. More complex hardening laws have been proposed for
Zr by Beyerlein and Tomé (2008) and Proust et al. (2009). These
laws regard grains as composite inclusions consisting of parent
grain and twin bands and are not considered here. The main pur-
pose of this paper is to analyze the grain–matrix interaction effects
on mechanical response of HCP polycrystals rather than the role
played by the hardening law.

Various homogenization methods have been developed to char-
acterize the mechanical behavior of a polycrystalline aggregate from
the responses of their single crystals. Among them, the most popular
Taylor model assumes that the strains of each grain are equal to the
imposed macroscopic strains, and the macroscopic stresses are the
average of the stresses over all the grains. Another popular homog-
enizing method is the self-consistent approach, which assumes each
grain as an ellipsoidal inclusion embedded in a homogeneous effec-
tive medium (HEM), which is the aggregate of the grains. The Eshel-
by inclusion formalism (Eshelby, 1957), modified for incompressible
media by Lebensohn et al. (1998) is used to describe the interaction
between each grain and the aggregate. During each deformation
step, the single crystal constitutive rule, which describes the grain-
level response, and the self-consistency criteria are solved simulta-
neously. This enables the grain-level stresses and strain rates to be
consistent with the boundary conditions imposed on the surround-
ing polycrystalline aggregate.

To apply the inclusion formalism, in connection with the non-
linear visco-plastic response, it is first necessary to linearize the re-
sponse. For a comprehensive discussion and comparison of the dif-
ferent linearization procedures the reader is referred to Lebensohn
et al. (2007). In this Section we only report the relevant equations
and in the following Sections we concentrate on discussing the
predictions of the different approaches for Mg AZ31, by compari-
son with available experimental information. The linearized
behavior of an inclusion (single crystal) can be written as

dg ¼Mg : rg þ dg
0; ð8Þ

where Mg and dg
0 are the visco-plastic compliance and the back-

extrapolated term of grain g, respectively. The linearized behavior of
the HEM (polycrystal) is analogous to the inclusion and is written as

D ¼M : Rþ D0; ð9Þ

where M;D;R and D0 are the visco-plastic compliance, strain rate,
stress and the back-extrapolated term of the HEM, respectively.

Different SCSs depend on different choices for the linearization.
Among various SCSs, the Secant SCS employs the following
linearization:

Mg;secant
ijkl ¼ _c0

X
a

sa

sa
cr

� �1
m�1 Pa

ijP
a
kl

sa
cr

;

dg;secant
0ij ¼ 0;

ð10Þ

while the Affine SCS applies the linearization:

Mg;Affine
ijkl ¼

_c0

m

X
a

sa

sa
cr

� �1
m�1 Pa

ijP
a
kl

sa
cr

;

dg;Affine
0ij ¼ 1� 1

m

� �
dg

ij:

ð11Þ
The relation of grain-level stress and strain rate to the aggregate
response is obtained self-consistently by

ðdg � DÞ ¼ �fM : ðrg � RÞ ð12aÞ

with the interaction tensor fM being given by

fM ¼ ðI � SÞ�1 : S : M; ð12bÞ

where S is the Eshelby tensor for a given grain, I is the identity ten-
sor. The condition that D = <dg> and R = hrgi (where h� � �i denotes
the volume average), leads to a self-consistent equation giving the
macroscopic compliance as:

M ¼ hMg : Bgi : hBgi�1 ð13aÞ

with

Bg ¼ ðMg þfMÞ : ðM þfMÞ�1
: ð13bÞ

As can be seen in Eq. (12b), the interaction tensor fM is approx-
imately proportional to the macroscopic visco-plastic compliance
M, which is itself given by a weighted average of the visco-plastic
compliances, Mg, of grains (Eq. (13a)). As a consequence, a larger
visco-plastic compliance for Affine SCS leads to a larger interaction
tensor fM and, as Eq. (12) indicates, will have associated a higher
strain heterogeneity compared to Secant SCS. Clearly, since the
macroscopic compliance is a weighted average of the single grain
compliances, it will be of the same order of magnitude. An example
of this is the relation: MTangent ¼Msecant=m (Hutchinson, 1976). As a
consequence, the interaction tensor in the Tangent self-consistent
scheme is given by:

fM ¼ 1
m
ðI � SÞ�1 : S : Msecant: ð14Þ

Based on the upper and lower limits represented by the Secant and
Tangent approaches, Molinari and Tóth (1994) and Tomé (1999) ex-
plore using an empirical adjustable parameter meff, such that
m < meff < 1. The meff scheme provides an intermediate interaction
tensor:

fM ¼ 1
meff
ðI � SÞ�1 : S : Msecant: ð15Þ

For details concerning the self-consistent equations associated with
the different visco-plastic self-consistent algorithms, we refer the
interested reader to Lebensohn et al. (2007).

The Predominant Twin Reorientation (PTR) scheme proposed by
Tomé et al. (1991) is used in the present paper to model the reori-
entation by twinning. Within each grain g, the PTR scheme tracks
the shear strain ca,g contributed by each twinning system a, and
the associated volume fraction Va,g = ca,g/ctw as well. Here ctw is
the characteristic shear (constant) associated with twinning. Crys-
tallographically equivalent twins belong to the same twin mode.
For example, the {10.2} twinning systems which are activated by
c-axis tension constitute the tensile twin mode. The sum over all
twin systems associated with a given twin mode, and then over
all the grains, represents the ‘accumulated twin fraction’ Vacc,mode

in the aggregate for the particular twin mode:

Vacc;mode ¼
X

g

X
a

Va;g : ð16Þ

In the PTR scheme developed by Tomé et al. (1991), after each
deformation increment, a grain is randomly selected to check if
the predominant twinning system exceeds a threshold value. If
so, the grain is entirely reoriented to a new orientation according
to predominant twinning system. The volume fraction of this
reoriented grain is added to the so called ‘effective twin fraction’,
Veff,mode. The process is repeated until either all grains are checked
or the effective twin fraction exceeds the accumulated twin frac-



Fig. 1. Initial texture of AZ31B sheet represented in terms of the {00.2} pole figure (a) and {10.0} pole figure (b).
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tion. In the latter case, the reorientation by twinning is ceased and
the next deformation step is considered. The aforementioned
threshold value is defined as

Vth;mode ¼ Ath1 þ Ath2 Veff ;mode

Vacc;mode
; ð17Þ

where Ath1 and Ath2 are two material constants. This approach sta-
tistically solves the practical problem that the number of orienta-
tions would grow continually if each activated twinning system
was represented by a new orientation. Additionally, it maintains
the twinned volume fraction at a level that is consistent with the
shear activity of the twins contributing to the deformation.

For simplicity, VPSC models with Affine, Secant, Tangent and
meff SCSs are, respectively, called Affine, Secant, Tangent and meff

models in the rest of the present paper.
Fig. 2. Plastic deformation modes in hexagonal structure: (a) Basal hai slip systems, (b)
3. Results and discussions

The material studied in the present paper is magnesium alloy
AZ31B sheet, which has a hexagonal crystallographic structure
with c/a = 1.624. The initial texture, shown in Fig. 1 as {00.2} and
{10.0} pole figures, and the room temperature mechanical behavior
of the sheet have been reported by Jain and Agnew (2007). Plastic
deformation of AZ31B sheet is assumed to be due to Basal hai
({00.1}h11.0i), Prismatic hai ({10.0}h11.0i) and Pyramidal hc + ai
({11.2}h11.3i) slip systems, and {10.2}h10.1i tensile twin system
(Fig. 2). In all the numerical simulations reported in the present pa-
per, uniaxial tension/compression is characterized by imposing the
strain rate in the loading direction, while the only non-zero stress
component is the normal stress along the loading direction. Thus,
in addition to the normal strains in the width and thickness direc-
prismatic h ai slip systems, (c) pyramidal h c + ai slip systems, and (d) tensile twin.



Table 1
List of material constants for various self-consistent models.

Model Mode s0 s1 h0 h1 Latent Ath1 Ath2

Affine Basal 9 1 5000 25 4
Prismatic 79 40 590 50 4
Pyramidal 100 100 5000 0 2
Tensile twin 47 0 0 0 4 0.72 0

Secant Basal 13 4 5000 30 4
Prismatic 73 35 400 60 4
Pyramidal 110 83 2500 0 2
Tensile twin 31 0 0 0 4 0.82 0

meff (meff = 0.1) Basal 17 6 3800 100 4
Prismatic 77 33 650 50 4
Pyramidal 148 35 9600 0 2
Tensile twin 33 0 0 0 4 0.81 0

Tangent Basal 21 5 3000 140 4
Prismatic 90 15 580 4
Pyramidal 145 30 9600 70 2
Tensile twin 38 0 0 0 4 0.81 0
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tions, three shear strains are allowed to develop in uniaxial ten-
sion/compression. The true stress and true plastic strain curves
are plotted in terms of their absolute values.

In the present paper, the reference slip/twinning rate _c0 and
rate sensitivity m are assumed to be the same for all slip/twinning
systems, and are taken as _c0 ¼ 0:001 s�1 and m = 0.05, respectively.
Values of the other material parameters in the Taylor and VPSC
model with various SCSs are estimated by curve-fitting numerical
simulations of uniaxial tension and compression along the RD to
the corresponding experimental data. Although the fitting is done
manually, using a systematic approach facilitates doing so. For
example, during in-plane uniaxial tension of a sheet with strong
basal texture, tensile twinning and pyramidal slip occur rarely.
Thus, uniaxial tension along the RD allows us to independently
fit the material parameters associated with the basal and prismatic
slip systems. On the other hand, uniaxial compression along the RD
is dominated by twinning at small strains, while at large strains
pyramidal slip becomes very active. Therefore, the measured stress
and strain curve under uniaxial compression along the RD at small
and large strains allows us to, respectively, determine the material
parameters associated with the tensile twinning and pyramidal
slip. The determined values of the material constants are listed in
Table 1. It is important to point out that the values of the material
parameters for the Taylor and Secant models are found to be the
Fig. 3. Stress and strain curves under uniaxial tension along the RD.
same, and the predictions of these two models are almost the same
for all the deformation processes studied in the present paper. An
assessment of the predictive capability of the VPSC model with the
Secant scheme also applies to the classic Taylor model. Conse-
quently, the results obtained for the Secant approach will be iden-
tified with those given by the Taylor model and the latter will not
be presented in the present paper.

Figs. 3 and 4 present the uniaxial tension and compression
stress and strain curves along the RD, respectively. It is found that
all the models employed can reasonably fit the experimental
curves. Figs. 5 and 6 present relative activities of slip/twinning un-
der uniaxial tension and compression along the RD, respectively.
As expected, there is negligible twinning activity under uniaxial
tension (Fig. 5), while twinning is very active at small strains in
all the models under uniaxial compression (Fig. 6). All models pre-
dict that, under uniaxial tension along the RD, mostly Basal and
Prismatic slip accommodate the plastic deformation. Little or no
Pyramidal slip or tensile twinning activity is predicted by any mod-
el. Under uniaxial compression along the RD and at strains
jej < 0.04, tensile twinning is very active, most grains reorient their
c-axis along the RD, and the remaining plasticity is accommodated
by Basal slip. When the tensile twining activity is dramatically re-
duced, at a strain e � �0.04, the Basal slip activity significantly in-
creases in Affine, the Tangent and meff = 0.1 models, while it
Fig. 4. Stress and strain curves under uniaxial compression along the RD.



Fig. 5. Predicted slip/twinning activities for the sheet under uniaxial tension along the RD based on various polycrystal plasticity models.
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slightly decreases in Secant model. For strains jej > 0.04 all the
models predict increasing Pyramidal slip activity and little to no
Prismatic slip. Both observations are a consequence of the previous
twinning activity, which reorients the grains for tension along the
c-axis. Fig. 7 shows the predicted deformation textures under uni-
axial compression along the RD at strain e = �0.11. Since, texture
evolution is dominated by twinning reorientation, the deformation
textures given by the various models are very close and are similar
to the deformed texture measured experimentally (Jain and
Agnew, 2007).

We proceed by numerically predicting the behavior of the sheet
under uniaxial tension (Fig. 8) and compression (Fig. 9) along the
TD, using the models and the corresponding values of material
parameters determined above. It is clear that all the models
numerically reproduce, with reasonable accuracy, the experimen-
tal stress and strain curves along the TD. Fig. 10 shows the
predicted deformation textures under uniaxial compression along
the TD at strain e = �0.11. It is again found that the deformation
textures predicted by the various models are all similar to the mea-
sured textures (Jain and Agnew, 2007).

Fig. 11 presents the predicted and measured stress and strain
curves under uniaxial compression along the ND. This comparison
is an independent test of the model parameters. It is found that the
Affine and Secant models give close agreement with the experi-
mental curve at strains jej < 0.05. At large strains, the Affine shows
a non-zero hardening rate and overestimates the flow stress. The
Tangent and meff = 0.1 models remarkably underestimate the flow
stress when jej < 0.05 and slightly overestimate the hardening at
large strains. Although the stress and strain curves based on vari-
ous models are quite different, the predicted textures, not shown
here, are found to be very similar because twinning is not active
and little texture evolution takes place at these strains. The differ-
ences in the predicted stress responses between various models
(Fig. 11) result from the different slip activities in these models.
Fig. 12 presents relative activities of slip/twinning under uniaxial
compression along the ND. It is seen that the predicted activities
in Prismatic slip and tensile twinning are low or zero for all the
models throughout the deformation process. The Basal and Pyra-
midal activities, however, differ substantially from model to mod-
el: while Basal slip is the most important contributor (65–80%) in
the Affine, Pyramidal slip dominates and contributes about 60%
of the plastic deformation in the Secant. The predicted slip/twin-
ning activities in the Tangent and meff = 0.1 models are quite simi-
lar, but different from Secant and Affine: Basal slip dominates
when deformation is small and Pyramidal slip is the most active
slip system at large strain. The prevalence of Basal slip at small
strains results in the very low flow stresses predicted by the Tan-
gent and meff = 0.1 models at small strains.



Fig. 6. Predicted slip/twinning activities for the sheet under uniaxial compression along the RD based on various polycrystal plasticity models.

Fig. 7. Deformed textures under uniaxial compression along the RD at strain e = �0.11.
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In the sheet metal forming industry, the so-called R value, de-
fined as transverse-to-thickness plastic strain-ratio under uniaxial
tension within the sheet plane, is often used to characterize the
anisotropy of the sheet. The measured R values are often used to
calculate material parameters involved in anisotropic yield func-
tions (see e.g. Wu et al., 2003; Barlat et al., 2006; Plunkett et al.,
2008). Here, the prediction of R values will provide an independent
test of the validity of each model. Fig. 13 shows the predicted and
measured in-plane R value vs. angle with respect to the RD, for uni-
axial tension at strain e = 0.11. It is important to point out that the
results in Fig. 13a and b are the same but plotted in different scales.
It is observed that the Secant model (also the Taylor model) grossly
overestimates the R values (Fig. 13a). The results based on the Af-
fine and meff = 0.1 models are in good agreement with the experi-



Fig. 8. Stress and strain curves under uniaxial tension along the TD.

Fig. 9. Stress and strain curves under uniaxial compression along the TD.

Fig. 11. Stress and strain curves under uniaxial compression along the ND.
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mental data, while the Tangent model underestimates R slightly
(Fig. 13b). As mentioned previously, the measured R values are of-
ten used to calculate material parameters involved in anisotropic
yield functions. These anisotropic yield functions are such that R
is often assumed to be constant with strain. This assumption,
although not necessary, is reasonable in the yield functions
Fig. 10. Deformed textures under uniaxial com
designed for FCC and BCC polycrystalline sheets because variations
in R values with applied deformation are relatively small (Barlat
et al., 2006). However, for HCP materials, such as the magnesium
alloy AZ31B sheet studied in the present paper, the predicted R va-
lue evolves significantly with straining, as shown in Fig. 14 for the
sheet under uniaxial tension along the TD. It is very important to
point out that the variation in R value with imposed tensile strain-
ing shown in Fig. 14 is confirmed by the experimental works on
magnesium alloys at room temperature (Avery et al., 1965; Kaiser
et al., 2003; Agnew and Duygulu, 2005; Hartig et al., 2005; Lou
et al., 2007; Del Valle and Ruano, 2009). One may argue that signif-
icant change in R value with deformation is mainly due to texture
evolution. However, even when texture evolution is excluded in
the numerical simulations, the predicted R value still noticeably
evolves with deformation, except in the simulation based on Affine
model, where a constant R value (R � 3.6) is calculated. In short,
Fig. 14 clearly indicates that the assumption of constant in-plane
R value under uniaxial tension for determining material constants
in anisotropic yield functions for HCP polycrystalline sheets is not
appropriate. One may then ask a question: is it appropriate to use
the in-plane R value under uniaxial compression for developing
anisotropic yield functions for HCP polycrystalline sheets?

Fig. 15 plots the predicted R value vs. true plastic strain, based on
the Affine model, under uniaxial compression along 0, 45� and 90�
with respect to the RD. It is found that the predicted R value at small
strains is negative. For isotropic materials and anisotropic FCC and
BCC sheet metals under uniaxial compression, the width strain ew

and thickness strain et are both tensile. However, in the AZ31B sheet
pression along the TD at strain e = �0.11.



Fig. 12. Predicted slip/twinning activities for the sheet under uniaxial compression along the ND based on various polycrystal plasticity models.
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under uniaxial compression, the Affine model predicts ew < 0 and
et > 0 at small strains when the tensile twinning occurs (see
Fig. 10). At large strains, the predicted R value becomes positive be-
cause the width strain ew and thickness strain et are both tensile. The
other models predicted R value trends similar to those shown in
Fig. 15. It should be pointed out that the predicted negative R value
at small strains shown in Fig. 15 is not an artifact of the rigid, visco-
plastic formulation of the VPSC model. The calculated R values pre-
dicted by the EVPSC model (when elasticity is accounted for) with
the Affine self-consistent scheme are very close to the ones shown
in Fig. 15 even at very small plastic strains. The predicted and mea-
sured R values under uniaxial compression within the sheet plane
are presented in Fig. 16. It is seen that the meff = 0.1 and Tangent
models give the best prediction, the Affine reasonably reproduces
the experimental data, and the Secant model underestimates the
experimental R value under uniaxial compression along the TD.

Under uniaxial compression along the ND, the R value is defined
as the ratio of plastic strain in the RD to the plastic strain in the TD
(Jain and Agnew, 2007). Fig. 17 shows the predicted R values based
on the models and their comparison with the corresponding exper-
imental R. It is found that the predicted R values are below, but rel-
atively close to, the experimental R value. Detailed observation
indicates that the Affine, meff = 0.1 and Tangent models give better
agreement than the Secant.
We recall that Secant model predicts extremely high R values
under uniaxial tension within the sheet plane (Fig. 13a and
Fig. 14). Our numerical testing indicates that the predicted in-plane
R value under uniaxial tension monotonically decreases with
increasing CRSS ratio of Prismatic slip to Basal slip (see also Agnew
and Duygulu, 2005), and monotonically increases with increasing
CRSS ratio of Pyramidal slip to Prismatic slip. Based on these obser-
vations, we tried adjusting the values of the material parameters in
Secant model to model the measured R values and the uniaxial ten-
sile stress curve along RD. However, we found that there was no
combination of parameters for which the Secant model could
simultaneously predict reasonably the R values and measured
stress–strain curves along the TD and ND. We also recall that the
Tangent and meff = 0.1 models significantly underestimate the mea-
sured flow stress at small strains under uniaxial compression along
ND (Fig. 11). We adjusted the material parameters in these models
and found that, while the prediction of uniaxial compression along
ND was truly improved, the predictions of other strain paths wors-
ened. It seems that values of the material parameters, determined
by fitting uniaxial tension and compression stress curves along the
RD and listed in Table 1, give the best overall performance for each
individual model.

Based on the numerical results, it can be concluded that among
the examined models, those with interaction stiffness halfway be-



Fig. 13. R values under uniaxial tension within the sheet plane. Same results are
plotted in different scales in (a) and (b).
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tween the Secant (stiff) and Tangent (compliant) give the best re-
sults. In particular, no model gives a better overall performance
than the Affine self-consistent. The fact that the Affine gives a good
overall performance is a promising indication, because the Affine
model requires no artificial ‘‘tuning” like the meff, but is based on
a formal Tangent linearization of the response of grains and med-
ium, as opposed to making the Tangent modulus proportional to
the Secant modulus as suggested by Hutchinson (1976).

The advantage of the Affine scheme over the meff is further dem-
onstrated in Fig. 18. In this figure, the dependence of the critical re-
solved shear stress (CRSS) ratios of non-Basal, namely Prismatic
slip and Pyramidal slip to Basal slip are depicted for different meff

values. The grain–matrix interaction stiffness (see Eq. (15)) is ad-
justed within the range meff = 0.002 � 0.5, which includes the com-
pliant Tangent approximation meff = 0.05 and approaches the stiff
Secant approximation, meff = 1. For this final aspect of the study,
the slip system hardening parameters which give the best overall
fits to the slip-dominated cases (uniaxial tension along RD and
TD and uniaxial compression along ND) are determined. The cases
involving significant twinning (e.g., in-plane compression) were
avoided in order to simply characterize the impact of grain interac-
tion stiffness on the slip system fit parameters. As the meff scheme
is tuned to a stiffer grain–matrix interaction, i.e. as the meff value
goes up, the non-Basal to Basal CRSS ratios necessary to obtain a
good fit to the experimental results also increases. Interestingly,
the best overall fits to the experimental data were obtained for
the meff scheme when 0.1 < meff

6 0.2, and the CRSS ratios obtained
within this range of meff values are very similar to those obtained
via the Affine scheme.

Finally, we would like to underscore the previously observed
fact that the relative strengths of slip systems determined from
polycrystal simulations of magnesium alloys have been found to
be at odds with historical single crystal magnesium results (see
e.g. Koike and Ohyama, 2005). As an example, the non-basal to ba-
sal CRSS ratios obtained in the present study for the initial CRSS’s
associated with the Affine linearization schemes are in the range
of 8–12. This range of ratios is higher than those of many recently
published reports, which emphasizes the importance of the inter-
action stiffness in such studies. Nevertheless, it is still much lower
than those empirically measured on pure Mg single crystals
(Sheerly and Nash, 1960; Yoshinaga and Horiuchi, 1963; Akhtar
and Teghtsoonian, 1969a,b; Obara et al., 1973). We attribute such
difference to the fact that a single crystal deforms mainly by single
slip, dislocations have to overcome only the Peierls stress, and they
can exit through the free surface of the crystal. For a grain within
the bulk of an aggregate, on the other hand, dislocations are
arrested at grain boundaries, which induce reaction stresses, cross
slip, a rapid increase of the dislocation population and a rapid
hardening rate.

4. Conclusions

In this paper, various self-consistent polycrystal plasticity mod-
els have been evaluated by studying large strain behavior of mag-
nesium alloy AZ31B sheet under different deformation processes.
In all the polycrystal plasticity models considered, both slip and
twinning contribute to plastic deformations. The material parame-
ters for the various models were first fitted to experimental uniax-
ial tension and compression curves along the RD and then used to
predict uniaxial tension and compression along the TD and uniax-
ial compression in the ND. An assessment of the predictive capabil-
ity of the polycrystal plasticity models has been made based on
comparisons of the predicted and experimental stress responses
and R values. It is interesting to point out that the estimated values
of the material parameters for the classical Taylor and Secant mod-
els were found to be the same, and the predictions of these two
models were almost the same for all the deformation processes
studied in the present paper. An assessment of the predictive capa-
bility of the VPSC model with the Secant scheme also applied to the
classic Taylor model. It has been demonstrated that, among the
models examined, the VPSC model with the Affine self-consistent
model gives the best overall performance and requires no artificial
tuning as does the meff scheme.

Our numerical results have clearly indicated that the R values
under uniaxial tension and compression within the sheet plane
evolve remarkably with imposed strain. This suggests that using
R values measured at a given strain to determine anisotropic con-
stants in anisotropic yield functions for HCP polycrystals is not
appropriate for other strains.

It is important to point out that the main purpose of the present
paper is to evaluate various homogenization assumptions for pre-
dicting the mechanical behavior of polycrystalline materials from
the responses of their single crystals, while the basic descriptions
of plastic deformation of the single crystals are the same for all
the models. More specifically, the slip/twining hardening is de-
scribed by (6) and (7) and twinning is characterized by the PTR
model. The evaluation made in the present paper depends on the
single crystal plasticity linearization employed. More advanced slip
and twinning models have been developed (see e.g. Kalidindi,



Fig. 14. Predicted R value vs. true plastic strain curves under uniaxial tension within the sheet plane based on various polycrystal plasticity models.
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1998, 2001; Staroselsky and Anand, 2003; Wu et al., 2007a; Beyer-
lein and Tomé, 2008; Proust et al., 2009). An assessment of the
validity of the various homogenization methods by comparison
Fig. 15. Predicted R value vs. true plastic strain curves under uniaxial compression
within the sheet plane based on Affine model.
with local field calculations done by Fast Fourier Transform tech-
nique have been reported by Lebensohn et al. (2007). The authors
conclude that a linearization based on accounting for (first order)
Fig. 16. R values under uniaxial compression within the sheet plane.



Fig. 17. R values under uniaxial compression along the ND.

Fig. 18. Dependence of the fitted critical resolved shear stress (CRSS) ratios of
Prismatic and Pyramidal slips to Basal slip on the grain interaction stiffness
(different meff values). CRSS values determined from fits to experimental stress–
strain curves and R values of slip-dominated strain paths. Corresponding ratios for
Affine self-consistent scheme also depicted.
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stress fluctuations inside the grains provides a good match with
the results of a full-field calculation, especially when the plastic
anisotropy of the grains is large (see Fig. 2 in Lebensohn et al.
(2007)).

It is important to mention that self-consistent polycrystal plas-
ticity models consider the interaction between a given grain and a
‘‘homogenized matrix” representing the rest of the materials, but
they do not take into account the specific interaction between an
individual grain and its neighboring grains. When the phenomenon
to be studied depends on the local characteristics and heterogene-
ity of such interaction (stress–strain response, Lankford coefficient
and texture evolution are not particularly sensitive to local effects),
then Crystal Plasticity Finite Element Models (CPFEM) may be re-
quired. In CPFEM simulations, an element of the finite element
mesh represents either a single crystal or a part of a single crystal,
and the constitutive response at an integration point is described
by the single crystal constitutive model. This approach enforces
both equilibrium and compatibility throughout the polycrystalline
aggregate in the weak finite element sense (see e.g. Anand and
Kalidindi, 1994; Wu et al., 2004). Furthermore, this approach facil-
itates taking into account grain morphology and modeling of inho-
mogeneous deformations at the crystal level (Wu et al., 2006,
2007b; Shi et al., 2010).
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