population. The aim of the study was to evaluate the impact of skin diseases on health state utilities in the population. METHODS: A postal survey was carried out on a sample of the population 20–84 years of age (n = 8000) of the county of Uppland, Sweden. Information on dermatological problems was obtained by self-report. Rating Scale was used to measure health state utilities. RESULTS: The response rate was 68% (5404 individuals). A large proportion (20.5%) reported dermatological problems and/or use of topical dermatological drugs. Skin disease was evenly distributed over age but was more frequent among women (23.3%) than among men (17.3%). Persons reporting dermatological problems also reported lower health state utility than others, 0.807 as compared to 0.836 (p < 0.001). Dermatological problems had an independent and statistically significant (p < 0.01) effect on utility when age, gender, somatic and psychiatric comorbidity were included in a multivariate analysis. CONCLUSIONS: The study shows that skin disorders are a considerable problem in the population, and that they do cause a decrease in health state utility as measured by the Rating Scale (RS). The result of this study emphasizes the need for further epidemiological studies analysing health state utilities in relation to severity and type of skin disease.

INFECTION—Economic Outcomes

THE COSTS OF SEVERE SEPSIS—THE NETHERLANDS, 2000
Van Gestel A1, Bakker J1, Veraart C1, Van Hout B1
1PharMerit BV, Capelle ad Yssel, Netherlands; 2Isala Klinieken, Zwolle, Netherlands; 3Eli Lilly Nederland BV, Houten, Netherlands

OBJECTIVES: New therapies for the treatment of severe sepsis are in development and estimates are required of treatment costs, annual incidence and the national burden-of-illness. This study concerns the Netherlands. METHODS: Cost data were collected for 100 patients consecutively admitted to a general hospital ICU from 1998 to 2000 for treatment of a first episode of severe sepsis. Costs were limited to direct medical ICU costs from a societal perspective and collected with an activity based information system. Annual incidence was estimated with a point-prevalence survey in Dutch ICU’s, collecting the clinical information concerning all patients at the ICU on a single day. Patients were regarded as severely septic if infection was present, two or more SIRS criteria were fulfilled and when there was at least one dysfunctional organ system. RESULTS: Daily costs were estimated to be log-normally distributed with a mean of €1,244 ± 404. ICU length of stay was estimated to be geometrically distributed with a mean of 15.3 ± 15.8 days. Total treatment costs were estimated at €19,509 ± 26,966 (log-normal). Main cost items were fixed costs (43%), nursing costs (28%), diagnostic tests (7%), medication (5%), renal replacement therapy (5%) and blood (4%). The presence of shock and/or renal failure was significantly associated with higher treatment costs, whereas ICU survival only showed a trend towards increase. Forty-seven ICU’s participated in the prevalence survey and 143 patients were found to meet the criteria for severe sepsis. The national incidence was estimated at 8,643 ± 929 patients per year. CONCLUSIONS: Costs of severe sepsis treatment within the ICU are estimated at €168.6 ± €29.5 million per year. This equals 1.7% of the national hospital budget and 0.51% of all healthcare expenses in 2000 in the Netherlands.

SEVERE SEPSIS: CLINICAL TRIAL VERSUS DAILY PRACTICE. A COST ANALYSIS IN BELGIUM
Laterre PF1, Moeremans K2, Gilis P3, Annemans L4
1Cliniques Universitaires St Luc, Bruxelles, Belgium; 2HEDM, Meise, Belgium; 3Eli Lilly Benelux s.a, Brussels, Belgium; 4Ghent University, HEDM, Meise, Belgium

OBJECTIVES: To determine and compare costs and cost driving factors in the management of severe sepsis either within a clinical trial setting or in daily practice. METHODS: One hundred fifty-two patients (from 4 Belgian centres) fulfilling criteria for severe sepsis between 1998 and 2000 were included in a chart review. Ninety-one were clinical trial patients (rhAPC, TFPI or ATIII); 61 were non-trial patients. All healthcare costs (payers perspective) between sepsis diagnosis and discharge were collected from patient invoices by independent researchers. RESULTS: Trial and non-trial patients were comparable with regard to age, status (medical or surgical), underlying conditions including COPD, alcohol or tobacco abuse and immunosuppression. Differences were observed in mortality (45% versus 50%, trial versus non-trial patients respectively), positive blood cultures (39% versus 75%), renal replacement therapy (22% versus 31%), hypertension (41% versus 31%) cardiomyopathy (16% versus 29%) cerebrovascular disease (5% versus 13%) and malignancy (19.8% versus 8%). There was no difference (trial versus non-trial) in hospital (28 versus 27 days) or ICU length of stay (16 days both) after sepsis diagnosis. Overall costs were similar in trial and non-trial patients: €19,292 (St E:1,574) versus €16,314 (St E: 1,684) respectively. Multivariate regression (OLS on log-transformed cost) revealed the following explaining factors for total cost: death (neg. p = 0.003), pos. blood culture (pos. p = 0.009), university hospital (pos. p = 0.035), mechanical ventilation (pos. p = 0.002) and renal replacement therapy (pos. p = 0.002). The variable “trial patient or not” revealed a p-value of 0.624. CONCLUSIONS: Factors influencing costs in severe sepsis include death, pos. blood culture, university hospital setting, renal replacement therapy and ventilation. Trial and non-trial patients appear to be comparable with regard to