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Abstract

We introduce a notion of volatility uncertainty in discrete time and define the corresponding analogue of
Peng’s G-expectation. In the continuous-time limit, the resulting sublinear expectation converges weakly to
the G-expectation. This can be seen as a Donsker-type result for the G-Brownian motion.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction

The so-called G-expectation [12–14] is a nonlinear expectation advancing the notions of
backward stochastic differential equations (BSDEs) [10] and g-expectations [11]; see also
[2,16] for a related theory of second-order BSDEs. A G-expectation ξ → E G(ξ) is a sublinear
function which maps random variables ξ on the canonical space Ω = C([0, T ]; R) to the real
numbers. The symbol G refers to a given function G : R → R of the form

G(γ ) =
1
2
(Rγ+

− rγ−) =
1
2

sup
a∈[r,R]

aγ,

∗ Corresponding author.
E-mail addresses: yan.dolinsky@math.ethz.ch (Y. Dolinsky), mnutz@math.columbia.edu (M. Nutz),

mete.soner@math.ethz.ch (H.M. Soner).

0304-4149/$ - see front matter c⃝ 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.spa.2011.09.009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82629321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/spa
http://dx.doi.org/10.1016/j.spa.2011.09.009
http://www.elsevier.com/locate/spa
mailto:yan.dolinsky@math.ethz.ch
mailto:mnutz@math.columbia.edu
mailto:mete.soner@math.ethz.ch
http://dx.doi.org/10.1016/j.spa.2011.09.009


Y. Dolinsky et al. / Stochastic Processes and their Applications 122 (2012) 664–675 665

where 0 ≤ r ≤ R < ∞ are fixed numbers. More generally, the interval [r, R] is replaced by a set
D of nonnegative matrices in the multivariate case. The extension to a random set D is studied
in [9].

The construction of E G(ξ) runs as follows. When ξ = f (BT ), where BT is the canonical
process at time T and f is a sufficiently regular function, then E G(ξ) is defined to be the initial
value u(0, 0) of the solution of the nonlinear backward heat equation −∂t u − G(uxx ) = 0 with
terminal condition u(·, T ) = f . The mapping E G can be extended to random variables of the
form ξ = f (Bt1 , . . . , Btn ) by a stepwise evaluation of the PDE and then to the completion L1

G
of the space of all such random variables. The space L1

G consists of so-called quasi-continuous
functions and contains in particular all bounded continuous functions on Ω ; however, not all
bounded measurable functions are included (cf. [3]). While this setting is not based on a single
probability measure, the so-called G-Brownian motion is given by the canonical process B
“seen” under E G (cf. [14]). It reduces to the standard Brownian motion if r = R = 1 since
E G is then the (linear) expectation under the Wiener measure.

In this note we introduce a discrete-time analogue of the G-expectation and we prove a
convergence result which resembles Donsker’s theorem for the standard Brownian motion; the
main purpose is to provide additional intuition for G-Brownian motion and volatility uncertainty.
Our starting point is the dual view on G-expectation via volatility uncertainty [3,4]: We consider
the representation

E G(ξ) = sup
P∈P

E P
[ξ ], (1.1)

where P is a set of probabilities on Ω such that under any P ∈ P , the canonical process B is
a martingale with volatility d⟨B⟩/dt taking values in D = [r, R], P × dt-a.e. Therefore, D can
be understood as the domain of (Knightian) volatility uncertainty and E G as the corresponding
worst-case expectation. In the discrete-time case, we translate this to uncertainty about the
conditional variance of the increments. Thus we define a sublinear expectation E n on the
n-step canonical space in the spirit of (1.1), replacing P by a suitable set of martingale laws.
A natural push-forward then yields a sublinear expectation on Ω , which we show to converge
weakly to E G as n → ∞, if the domain D of uncertainty is scaled by 1/n (cf. Theorem 2.2). The
proof relies on (linear) probability theory; in particular, it does not use the central limit theorem
for sublinear expectations [14,15]. The relation to the latter is nontrivial since our discrete-time
models do not have independent increments. We remark that quite different approximations of
the G-expectation (for the scalar case) can be found in discrete models for financial markets with
transaction costs [8] or illiquidity [5].

The detailed setup and the main result are stated in Section 2, whereas the proofs and some
ramifications are given in Section 3.

2. The main result

We fix the dimension d ∈ N and denote by | · | the Euclidean norm on Rd . Moreover, we
denote by Sd the space of d × d symmetric matrices and by Sd

+ its subset of nonnegative definite
matrices. We fix a nonempty, convex and compact set D ⊆ Sd

+; the elements of D will be the
possible values of our volatility processes.

The continuous-time formulation. Let Ω = C([0, T ]; Rd) be the space of d-dimensional
continuous paths ω = (ωt )0≤t≤T with time horizon T ∈ (0,∞), endowed with the uniform
norm ‖ω‖∞ = sup0≤t≤T |ωt |. We denote by B = (Bt )0≤t≤T the canonical process Bt (ω) = ωt
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and by Ft := σ(Bs, 0 ≤ s ≤ t) the canonical filtration. A probability measure P on Ω is called
a martingale law if B is a P-martingale and B0 = 0P-a.s. (All our martingales will start at the
origin.) We set

PD =


P martingale law on Ω : d⟨B⟩t/dt ∈ D, P × dt-a.e.

,

where ⟨B⟩ denotes the matrix-valued process of quadratic covariations. We can then define the
sublinear expectation

ED(ξ) := sup
P∈PD

E P
[ξ ] for any random variable ξ : Ω → R

such that ξ is FT -measurable and E P
|ξ | < ∞ for all P ∈ PD. The mapping ED coincides

with the G-expectation (on its domain L1
G) if G : Sd

→ R is (half) the support function of
D; i.e., G(Γ ) = supA∈D trace(Γ A)/2. Indeed, this follows from [3] with an additional density
argument as detailed in Remark 3.6 below.

The discrete-time formulation. Given n ∈ N, we consider (Rd)n+1 as the canonical space of d-
dimensional paths in discrete time k = 0, 1, . . . , n. We denote by Xn

= (Xn
k )

n
k=0 the canonical

process defined by Xn
k (x) = xk for x = (x0, . . . , xn) ∈ (Rd)n+1. Moreover, F n

k = σ(Xn
i , i =

0, . . . , k) defines the canonical filtration (F n
k )

n
k=0. We also introduce 0 ≤ rD ≤ RD < ∞ such

that [rD, RD] is the spectrum of D; i.e.,

rD = inf
Γ∈D

‖Γ−1
‖
−1 and RD = sup

Γ∈D
‖Γ‖,

where ‖ · ‖ denotes the operator norm and we set rD := 0 if D has an element which is
not invertible. We note that [rD, RD] = D if d = 1. Finally, a probability measure P on
(Rd)n+1 is called a martingale law if Xn is a P-martingale and Xn

0 = 0P-a.s. Denoting by
∆Xn

k = Xn
k − Xn

k−1 the increments of Xn , we can now set

P n
D =


P martingale law on (Rd)n+1

: for k = 1, . . . , n,
E P

[∆Xn
k (∆Xn

k )
′
|F n

k−1] ∈ D and d2rD ≤ |∆Xn
k |

2
≤ d2 RD, P-a.s.


,

where prime (′) denotes transposition. Note that ∆Xn
k is a column vector, so ∆Xn(∆Xn)′ takes

values in Sd
+. We introduce the sublinear expectation

E n
D(ψ) := sup

P∈P n
D

E P
[ψ] for any random variable ψ : (Rd)n+1

→ R

such that ψ is F n
n -measurable and E P

|ψ | < ∞ for all P ∈ P n
D, and we think of E n

D as a discrete-
time analogue of the G-expectation.

Remark 2.1. The second condition in the definition of P n
D is motivated by the desire to generate

the volatility uncertainty by a small set of scenarios; we remark that the main results remain true
if, e.g., the lower bound rD is omitted and the upper bound RD replaced by any other condition
yielding tightness. Our bounds are chosen such that

P n
D =


P martingale law on (Rd)n+1

: ∆Xn(∆Xn)′ ∈ D, P-a.s.


if d = 1.

The continuous-time limit. To compare our objects from the two formulations, we shall extend
any discrete path x ∈ (Rd)n+1 to a continuous pathx ∈ Ω by linear interpolation. More precisely,
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we define the interpolation operator

: (Rd)n+1
→ Ω , x = (x0, . . . , xn) → x = (xt )0≤t≤T , wherext := ([nt/T ] + 1 − nt/T )x[nt/T ] + (nt/T − [nt/T ])x[nt/T ]+1

and [y] := max{m ∈ Z : m ≤ y} for y ∈ R. In particular, if Xn is the canonical process on
(Rd)n+1 and ξ is a random variable on Ω , then ξ(Xn) defines a random variable on (Rd)n+1.
This allows us to define the following push-forward of E n

D to a continuous-time object:E n
D(ξ) := E n

D(ξ(
Xn)) for ξ : Ω → R

which is suitably integrable.
Our main result states that this sublinear expectation with discrete-time volatility uncertainty

converges to the G-expectation as the number n of periods tends to infinity, if the domain of
volatility uncertainty is scaled as D/n := {n−1Γ : Γ ∈ D}.

Theorem 2.2. Let ξ : Ω → R be a continuous function satisfying |ξ(ω)| ≤ c(1 + ‖ω‖∞)
p for

some constants c, p > 0. Then E n
D/n(ξ) → ED(ξ) as n → ∞; that is,

sup
P∈P n

D/n

E P
[ξ(Xn)] → sup

P∈PD

E P
[ξ ]. (2.1)

We shall see that all expressions in (2.1) are well defined and finite. Moreover, we will show
in Theorem 3.8 that the result also holds true for a “strong” formulation of volatility uncertainty.

Remark 2.3. Theorem 2.2 cannot be extended to the case where ξ is merely in L1
G , which is

defined as the completion of Cb(Ω; R) under the norm ‖ξ‖L1
G

:= sup{E P
|ξ |, P ∈ PD}. This is

because ‖ · ‖L1
G

“does not see” the discrete-time objects, as illustrated by the following example.
Assume for simplicity that 0 ∉ D and let A ⊂ Ω be the set of paths with finite variation. Since
P(A) = 0 for any P ∈ PD, we have ξ := 1 − 1A = 1 in L1

G and the right hand side of (2.1)
equals one. However, the trajectories of Xn lie in A, so that ξ(Xn) ≡ 0 and the left hand side of
(2.1) equals zero.

In view of the previous remark, we introduce a smaller space L1
∗, defined as the completion

of Cb(Ω; R) under the norm

‖ξ‖∗ := sup
Q∈Q

E Q
|ξ |, Q := PD ∪


P ◦ (Xn)−1

: P ∈ P n
D/n, n ∈ N


. (2.2)

If ξ is as in Theorem 2.2, then ξ ∈ L1
∗ by Lemma 3.4 below and so the following is a generaliza-

tion of Theorem 2.2.

Corollary 2.4. Let ξ ∈ L1
∗. Then E n

D/n(ξ) → ED(ξ) as n → ∞.

Proof. This follows from Theorem 2.2 by approximation, using that the two norms ‖ξ‖∗ and
sup{E P

|ξ | : P ∈ PD} + sup{E P
|ξ(Xn)| : P ∈ P n

D/n, n ∈ N} are equivalent. �

3. Proofs and ramifications

In the next two subsections, we prove separately two inequalities that jointly imply
Theorem 2.2 and a slightly stronger result, reported in Theorem 3.8.
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3.1. The first inequality

In this subsection we prove the first inequality of (2.1), namely that

lim sup
n→∞

sup
P∈P n

D/n

E P
[ξ(Xn)] ≤ sup

P∈PD

E P
[ξ ]. (3.1)

The essential step in this proof is a stability result for the volatility (see Lemma 3.3(ii) below);
the necessary tightness follows from the compactness of D; i.e., from RD < ∞. We shall denote
λD = {λΓ : Γ ∈ D} for λ ∈ R.

Lemma 3.1. Given p ∈ [1,∞), there exists a universal constant K > 0 such that for all
0 ≤ k ≤ l ≤ n and P ∈ P n

D,

(i) E P
[supk=0,...,n |Xn

k |
2p

] ≤ K (n RD)
p,

(ii) E P
|Xn

l − Xn
k |

4
≤ K R2

D(l − k)2,

(iii) E P
[(Xn

l − Xn
k )(X

n
l − Xn

k )
′
|F n

k ] ∈ (l − k)D P-a.s.

Proof. We set X := Xn to simplify the notation.
(i) Let p ∈ [1,∞). By the Burkholder–Davis–Gundy (BDG) inequalities there exists a

universal constant C = C(p, d) such that

E P
[

sup
k=0,...,n

|Xn
k |

2p
]

≤ C E P
‖[X ]n‖

p.

In view of P ∈ P n
D, we have ‖[X ]n‖ = ‖

∑n
i=1 ∆X i (∆X i )

′
‖ ≤ nd2 RD P-a.s.

(ii) The BDG inequalities yield a universal constant C such that

E P
|Xl − Xk |

4
≤ C E P

‖[X ]l − [X ]k‖
2.

Similarly to in (i), P ∈ P n
D implies that ‖[X ]l − [X ]k‖ ≤ (l − k)d2 RD P-a.s.

(iii) The orthogonality of the martingale increments yields that

E P
[(Xl − Xk)(Xl − Xk)

′
|F n

k ] =

l−
i=k+1

E P
[∆X i (∆X i )

′
|F n

k ].

Since E P
[∆X i (∆X i )

′
|F n

i−1] ∈ D P-a.s. and since D is convex,

E P
[∆X i (∆X i )

′
|F n

k ] = E P
E P

[∆X i (∆X i )
′
|F n

i−1]|F n
k


again takes values in D. It remains to observe that if Γ1, . . . ,Γm ∈ D, then Γ1 + · · · + Γm ∈ mD
by convexity. �

The following lemma shows in particular that all expressions in Theorem 2.2 are well defined
and finite.

Lemma 3.2. Let ξ : Ω → R be as in Theorem 2.2. Then ‖ξ‖∗ < ∞; that is,

sup
n∈N

sup
P∈P n

D/n

E P
|ξ(Xn)| < ∞ and sup

P∈PD

E P
|ξ | < ∞. (3.2)
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Proof. Let n ∈ N and P ∈ P n
D/n . By the assumption on ξ , there exist constants c, p > 0 such

that

E P
|ξ(Xn)| ≤ c + cE P

[
sup

0≤t≤T
|Xn

t |
p
]

≤ c + cE P
[

sup
k=0,...,n

|Xn
k |

p
]
.

Hence Lemma 3.1(i) and the observation that RD/n = RD/n yield that E P
|ξ(Xn)| ≤ K R p/2

D
and the first claim follows. The second claim similarly follows from the estimate that
E P

[sup0≤t≤T |Bt |
p
] ≤ C p for all P ∈ PD, which is obtained from the BDG inequalities by

using that D is bounded. �

We can now prove the key result of this subsection.

Lemma 3.3. For each n ∈ N, let {Mn
= (Mn

k )
n
k=0, P̃n

} be a martingale with law Pn
∈ P n

D/n on

(Rd)n+1 and let Qn be the law of Mn on Ω . Then,

(i) the sequence (Qn) is tight on Ω ,
(ii) any cluster point of (Qn) is an element of PD.

Proof. (i) Let 0 ≤ s ≤ t ≤ T . As RD/n = RD/n, Lemma 3.1(ii) implies that

E Qn
|Bt − Bs |

4
= E P̃n

|Mn
t − Mn

s |
4

≤ C |t − s|2

for a constant C > 0. Hence (Qn) is tight by the moment criterion.
(ii) Let Q be a cluster point; then B is a Q-martingale as a consequence of the uniform

integrability implied by Lemma 3.1(i) and it remains to show that d⟨B⟩t/dt ∈ D holds Q × dt-
a.e. It will be useful to characterize D by scalar inequalities: given Γ ∈ Sd , the separating
hyperplane theorem implies that

Γ ∈ D if and only if ℓ(Γ ) ≤ Cℓ
D := sup

A∈D
ℓ(A) for all ℓ ∈ (Sd)∗, (3.3)

where (Sd)∗ is the set of all linear functionals ℓ : Sd
→ R.

Let H : [0, T ] × Ω → [0, 1] be a continuous and adapted function and let ℓ ∈ (Sd)∗. We fix
0 ≤ s < t ≤ T and define ∆s,t Y := Yt − Ys for a process Y = (Yu)0≤u≤T . Let ε > 0 and let D̃
be any neighborhood of D; then for n sufficiently large,

E P̃n

(∆s,t Mn)(∆s,t Mn)′

 σ Mn
u , 0 ≤ u ≤ s − ε


∈ (t − s)D P̃n-a.s.

as a consequence of Lemma 3.1(iii). Since D̃ was arbitrary, it follows by (3.3) that

lim sup
n→∞

E Qn 
H(s − ε, B)


ℓ

(∆s,t B)(∆s,t B)′


− Cℓ

D(t − s)


= lim sup
n→∞

E P̃n 
H(s − ε,Mn)


ℓ

(∆s,t Mn)(∆s,t Mn)′


− Cℓ

D(t − s)


≤ 0.

Using (3.2) with ξ(ω) = ‖ω‖
2
∞, we may pass to the limit and conclude that

E Q
H(s − ε, B) ℓ


(∆s,t B)(∆s,t B)′


≤ E Q

H(s − ε, B)Cℓ
D(t − s)


. (3.4)

Since H(s − ε, B) is Fs-measurable and

E Q
[(∆s,t B)(∆s,t B)′|Fs] = E Q

[Bt B ′
t − Bs B ′

s |Fs] = E Q
[⟨B⟩t − ⟨B⟩s |Fs]
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as B is a square-integrable Q-martingale, (3.4) is equivalent to

E Q
H(s − ε, B) ℓ


⟨B⟩t − ⟨B⟩s


≤ E Q

H(s − ε, B)Cℓ
D(t − s)


.

Using the continuity of H and dominated convergence as ε → 0, we obtain

E Q
H(s, B) ℓ


⟨B⟩t − ⟨B⟩s


≤ E Q

H(s, B)Cℓ
D(t − s)


and then it follows that

E Q
[∫ T

0
H(t, B) ℓ(d⟨B⟩t )

]
≤ E Q

[∫ T

0
H(t, B)Cℓ

D dt

]
.

By an approximation argument, this inequality extends to functions H which are measurable
instead of continuous. It follows that ℓ(d⟨B⟩t/dt) ≤ Cℓ

D holds Q × dt-a.e., and since ℓ ∈ (Sd)∗

was arbitrary, (3.3) shows that d⟨B⟩t/dt ∈ D holds Q × dt-a.e. �

We can now deduce the first inequality of Theorem 2.2 as follows.

Proof of (3.1). Let ξ be as in Theorem 2.2 and let ε > 0. For each n ∈ N there exists an
ε-optimizer Pn

∈ P n
D/n ; i.e., if Qn denotes the law of Xn on Ω under Pn , then

E Qn
[ξ ] = E Pn

[ξ(Xn)] ≥ sup
P∈P n

D/n

E P
[ξ(Xn)] − ε.

By Lemma 3.3, the sequence (Qn) is tight and any cluster point belongs to PD. Since ξ
is continuous and (3.2) implies supn E Qn |ξ | < ∞, tightness yields that lim supn E Qn

[ξ ] ≤

supP∈PD
E P

[ξ ]. Therefore,

lim sup
n→∞

sup
P∈P n

D/n

E P
[ξ(Xn)] ≤ sup

P∈PD

E P
[ξ ] + ε.

Since ε > 0 was arbitrary, it follows that (3.1) holds. �

Finally, we also prove the statement preceding Corollary 2.4.

Lemma 3.4. Let ξ : Ω → R be as in Theorem 2.2. Then ξ ∈ L1
∗.

Proof. We show that ξm
:= (ξ ∧ m) ∨ m converges to ξ in the norm ‖ · ‖∗ as m → ∞, or

equivalently, that the upper expectation sup{E Q
[ · ] : Q ∈ Q} is continuous along the decreasing

sequence |ξ − ξm
|, where Q is as in (2.2). Indeed, Q is tight by (the proof of) Lemma 3.3. Using

that ‖ξ‖∗ < ∞ by Lemma 3.2, we can then argue as in the proof of [3, Theorem 12] to obtain
the claim. �

3.2. The second inequality

The main purpose of this subsection is to show the second inequality “≥” of (2.1). Our proof
will yield a more precise version of Theorem 2.2. Namely, we will include “strong” formulations
of volatility uncertainty both in discrete and in continuous time; i.e., consider laws generated by
integrals with respect to a fixed random walk and Brownian motion, respectively. In the financial
interpretation, this means that the uncertainty can be generated by complete market models.
The strong formulation in continuous time. Here we shall consider Brownian martingales: with
P0 denoting the Wiener measure, we define

QD =


P0 ◦

∫
f (t, B) d Bt

−1

: f ∈ C

[0, T ] × Ω;

√
D


adapted


,
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where
√

D = {
√

Γ : Γ ∈ D}. (For Γ ∈ Sd
+,

√
Γ denotes the unique square root in Sd

+.) We note
that QD is a (typically strict) subset of PD. The elements of QD with nondegenerate f have the
predictable representation property; i.e., they correspond to a complete market in the terminology
of mathematical finance. We have the following density result; the proof is deferred to the end of
the section.

Proposition 3.5. The convex hull of Q D is a weakly dense subset of PD.

We can now deduce the connection between ED and the G-expectation associated with D.

Remark 3.6. (i) Proposition 3.5 implies that

sup
P∈QD

E P
[ξ ] = sup

P∈PD

E P
[ξ ], ξ ∈ Cb(Ω; R). (3.5)

In [3, Section 3] it is shown that the G-expectation as introduced in [12,13] coincides with the
mapping ξ → supP∈Q∗

D
E P

[ξ ] for a certain set Q∗

D satisfying QD ⊆ Q∗

D ⊆ PD. In particular,
we deduce that the right hand side of (3.5) is indeed equal to the G-expectation, as claimed in
Section 2.

(ii) A result similar to Proposition 3.5 can also be deduced from [17, Proposition 3.4.], which
relies on a PDE-based verification argument of stochastic control. We include a (possibly more
enlightening) probabilistic proof at the end of the section.

The strong formulation in discrete time. For fixed n ∈ N, we consider

Ωn :=

ω = (ω1, . . . , ωn) : ωi ∈ {1, . . . , d + 1}, i = 1, . . . , n


equipped with its power set and let Pn := {(d +1)−1, . . . , (d +1)−1

}
n be the product probability

associated with the uniform distribution. Moreover, let ξ1, . . . , ξn be an i.i.d. sequence of Rd -
valued random variables on Ωn such that |ξk | = d and such that the components of ξk are
orthonormal in L2(Pn), for each k = 1, . . . , n. Let Zk =

∑k
l=1 ξl be the associated random

walk. Then, we consider martingales M f which are discrete-time integrals of Z of the form

M f
k =

k−
l=1

f (l − 1, Z)∆Zl ,

where f is measurable and adapted with respect to the filtration generated by Z ; i.e., f (l, Z)
depends only on Z |{0,...,l}. We define

Qn
D =


Pn ◦ (M f )−1

; f : {0, . . . , n − 1} × (Rd)n+1
→

√
D measurable, adapted


.

To see that Qn
D ⊆ P n

D, we note that ∆k M f
= f (k − 1, Z)ξk and the orthonormality property of

ξk yield

E Pn

∆k M f ∆k M f ′

|σ(Z1, . . . , Zk−1)


= f (k − 1, Z)2 ∈ D Pn-a.s.,

while |ξk | = d and f 2
∈ D imply that∆k M f ∆k M f ′
 = | f (k − 1, Z)ξk |

2
∈


d2rD, d2 RD


Pn-a.s.
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Remark 3.7. We recall from [7] that such ξ1, . . . , ξn can be constructed as follows. Let A be an
orthogonal (d + 1) × (d + 1) matrix whose last row is ((d + 1)−1/2, . . . , (d + 1)−1/2) and let
vl ∈ Rd be column vectors such that [v1, . . . , vd+1] is the matrix obtained from A by deleting
the last row. Setting ξk(ω) := (d + 1)1/2vωk for ω = (ω1, . . . , ωn) and k = 1, . . . , n, the above
requirements are satisfied.

We can now formulate a result which includes Theorem 2.2.

Theorem 3.8. Let ξ : Ω → R be as in Theorem 2.2. Then

lim
n→∞

sup
P∈Qn

D/n

E P
[ξ(Xn)] = lim

n→∞
sup

P∈P n
D/n

E P
[ξ(Xn)]

= sup
P∈QD

E P
[ξ ]

= sup
P∈PD

E P
[ξ ]. (3.6)

Proof. Since Qn
D/n ⊆ P n

D/n for each n ≥ 1, the inequality (3.1) yields that

lim sup
n→∞

sup
P∈Qn

D/n

E P
[ξ(Xn)] ≤ sup

P∈PD

E P
[ξ ].

As the equality in (3.6) follows from Proposition 3.5, it remains to show that

lim inf
n→∞

sup
P∈Qn

D/n

E P
[ξ(Xn)] ≥ sup

P∈QD

E P
[ξ ].

To this end, let P ∈ QD; i.e., P is the law of a martingale of the form

M =

∫
f (t,W ) dWt ,

where W is a Brownian motion and f ∈ C

[0, T ] × Ω;

√
D


is an adapted function. We shall

construct martingales M (n) whose laws are in Qn
D/n and tend to P .

For n ≥ 1, let Z (n)k =
∑k

l=1 ξl be the random walk on (Ωn, Pn) as introduced before
Remark 3.7. Let

W (n)
t := n−1/2

[nt/T ]−
k=1

ξk, 0 ≤ t ≤ T

be the piecewise constant càdlàg version of the scaled random walk and let Ŵ (n)
:= n−1/2 Z (n)

be its continuous counterpart obtained by linear interpolation. It follows from the central limit
theorem that

W (n), Ŵ (n)
⇒ (W,W ) on D([0, T ]; R2d),

the space of càdlàg paths equipped with the Skorohod topology. Moreover, since f is continuous,
we also have that

W (n), f

[nt/T ]T/n, Ŵ (n)

⇒ (W, f (t,W )) on D([0, T ]; Rd+d2
).

Thus, if we introduce the discrete-time integral
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M (n)
k :=

k−
l=1

f

(l − 1)T/n, Ŵ (n)Ŵ (n)

lT/n − Ŵ (n)
(l−1)T/n


,

it follows from the stability of stochastic integrals (see [6, Theorem 4.3 and Definition 4.1]) that
M (n)

[nt/T ]


0≤t≤T

⇒ M on D([0, T ]; Rd).

Moreover, since the increments of M (n) uniformly tend to 0 as n → ∞, it also follows thatM (n)
⇒ M on Ω .

As f 2/n takes values in D/n, the law of M (n) is contained in Qn
D/n and the proof is com-

plete. �

It remains to give the proof of Proposition 3.5, which we will obtain by a randomization
technique. Since similar arguments, at least for the scalar case, can be found elsewhere (e.g.,
[8, Section 5]), we shall be brief.

Proof of Proposition 3.5. We may assume without loss of generality that

there exists an invertible element Γ∗ ∈ D. (3.7)

Indeed, using that D is a convex subset of Sd
+, we observe that (3.7) is equivalent to K = {0} for

K :=


Γ∈D ker Γ . If k = dim K > 0, a change of coordinates brings us to the situation where
K corresponds to the last k coordinates of Rd . We can then reduce all considerations to Rd−k

and thereby recover the situation of (3.7).
1. Regularization. We first observe that the set

P ∈ PD : d⟨B⟩t/dt ≥ ε1d P × dt-a.e. for some ε > 0


(3.8)

is weakly dense in PD. (Here 1d denotes the unit matrix.) Indeed, let M be a martingale whose
law is in PD. Recall (3.7) and let N be an independent continuous Gaussian martingale with
d⟨N ⟩t/dt = Γ∗. For λ ↑ 1, the law of λM + (1 − λ)N tends to the law of M and is contained in
the set (3.8), since D is convex.

2. Discretization. Next, we reduce to martingales with piecewise constant volatility. Let M be
a martingale whose law belongs to (3.8). We have

M =

∫
σt dWt for σt :=


d⟨M⟩/dt and W :=

∫
σ−1

t d Mt ,

where W is a Brownian motion by Lévy’s theorem. For n ≥ 1, we introduce M (n)
=


σ
(n)
t dWt ,

where σ (n) is an Sd
+-valued piecewise constant process satisfying


σ
(n)
t

2
= ΠD


n

T

∫ kT/n

(k−1)T/n
σs ds

2
, t ∈


kT/n, (k + 1)T/n


for k = 1, . . . , n − 1, where ΠD: Sd

→ D is the Euclidean projection. On [0, T/n] one can take,
e.g., σ (n) :=

√
Γ∗. We then have

E


M − M (n)

T

 = E
∫ T

0

σt − σ
(n)
t

2
dt → 0

and in particular M (n) converges weakly to M .
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3. Randomization. Consider a martingale of the form M =

σt dWt , where W is a Brownian

motion on some given filtered probability space and σ is an adapted
√

D-valued process which
is piecewise constant; i.e.,

σ =

n−1−
k=0

1[tk ,tk+1)σ(k) for some 0 = t0 < t1 < · · · < tn = T

and some n ≥ 1. Consider also a second probability space carrying a Brownian motion
W̃ and a sequence U 1, . . . ,U n of Rd×d -valued random variables such that the components
{U k

i j : 1 ≤ i, j ≤ d; 1 ≤ k ≤ n} are i.i.d. uniformly distributed on (0, 1) and independent

of W̃ .
Using the existence of regular conditional probability distributions, we can construct functions

Θk : C([0, tk]; Rd) × (0, 1)d
2

× · · · × (0, 1)d
2

→
√

D such that the random variables
σ̃ (k) := Θk(W̃ |[0,tk ],U

1, . . . ,U k) satisfy
W̃ , σ̃ (0), . . . , σ̃ (n − 1)


=


W, σ (0), . . . , σ (n − 1)


in law. (3.9)

We can then consider the volatility corresponding to a fixed realization of U 1, . . . ,U n . Indeed,
for u = (u1, . . . , un) ∈ (0, 1)nd2

, let

σ̃ (k; u) := Θk

W̃ |[0,tk ], u1, . . . , uk

and consider M̃u
=


σ̃ u

t dW̃t , where σ̃ u
:=

∑n−1
k=0 1[tk ,tk+1)σ̃ (k; u). For any F ∈ Cb


Ω; R), the

equality (3.9) and Fubini’s theorem yield that

E[F(M)] = E

F


M̃ (U 1,...,U n)


=

∫
(0,1)nd2

E[F(M̃u)] du

≤ sup
u∈(0,1)nd2

E[F(M̃u)].

Hence, by the Hahn–Banach theorem, the law of M is contained in the weak closure of the convex
hull of the laws of {M̃u

: u ∈ (0, 1)nd2
}. We note that M̃u is of the form M̃u

=


g(t, W̃ ) dW̃t

with a measurable, adapted,
√

D-valued function g, for each fixed u.
4. Smoothing. As Q D is defined through continuous functions, it remains to approximate g by

a continuous function f . Let g : [0, T ]×Ω →
√

D be a measurable adapted function and δ > 0.
By standard density arguments there exists f̃ ∈ C


[0, T ] × Ω; Sd


such that

E
∫ T

0
‖ f̃ (t, W̃ )− g(t, W̃ )‖2 dt ≤ δ.

Let f (t, x) :=


ΠD


f̃ (t, x)2


. Then f ∈ C


[0, T ] × Ω;

√
D


and

‖ f − g‖
2

≤ ‖ f 2
− g2

‖ ≤ ‖ f̃ 2
− g2

‖ ≤ (‖ f̃ ‖ + ‖g‖)‖ f̃ − g‖ ≤ 2


RD ‖ f̃ − g‖

(see [1, Theorem X.1.1] for the first inequality). By Jensen’s inequality we conclude that
E

 T
0 ‖ f (t, W̃ ) − g(t, W̃ )‖2 dt ≤ 2

√
T RDδ, which, in view of the above steps, completes the

proof. �
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