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Abstract

In this paper we describe graded antiautomorphisms of finite order on matrix algebras endowed with a
group gradings by a finite abelian group over an arbitrary algebraically closed field of characteristic different
from 2.
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1. Introduction

This paper is devoted to the correction of an error in the paper [5] in which the classification
of involution gradings on matrix algebras was derived from the fact that in the decomposition
of a graded matrix algebra as the tensor product of an elementary and a fine component, these
components remain invariant under the involution.
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2. Some notation and simple facts

Let F be an arbitrary field, A a not necessarily associative algebra over an F and G a group.
We say that A is a G-graded algebra, if there is a vector space sum decomposition

A =
⊕
g∈G

Ag, (1)

such that

AgAh ⊂ Agh for all g,h ∈ G. (2)

A subspace V ⊂ A is called graded (or homogeneous) if V = ⊕
g∈G(V ∩ Ag). An element

a ∈ R is called homogeneous of degree g if a ∈ Ag . We also write dega = g. The support of the
G-grading is a subset

SuppA = {g ∈ G | Ag �= 0}.

Suppose now that F is of characteristic different from 2. If A is an associative algebra with
involution ∗ and, in addition to (2), one has

(Ag)
∗ = Ag for all g ∈ G (3)

then we say that (1) is an involution preserving grading or simply an involution grading. In this
case, given a graded subspace B ⊂ A we set

H(B,∗) = {
b ∈ B | b∗ = b

}
, the set of symmetric elements of B (4)

and

K(B,∗) = {
b ∈ B | b∗ = −b

}
, the set of skew-symmetric elements of B. (5)

If B is an associative subalgebra of A then B(−) is a Lie subalgebra of A, that is, with respect to
[x, y] = xy −yx while B(+) is a Jordan subalgebra of A, that is, with respect to x ◦y = xy +yx.
We always have B = B(−) ⊕ B(+).

3. Reminder: Group gradings on matrix algebras

Below we briefly recall the results of [4], where the complete description of abelian group
gradings on the full matrix algebra has been given. For non-commutative gradings see [3].

A grading R = ⊕
g∈G Rg on the matrix algebra R = Mn(F) is called elementary if there

exists an n-tuple (g1, . . . , gn) ∈ Gn such that the matrix units Eij ,1 � i, j � n are homogeneous
and Eij ∈ Rg ⇔ g = g−1gj .
i
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A grading is called fine if dimRg = 1 for any g ∈ SuppR. A particular case of fine gradings
is the so-called ε-grading where ε is nth primitive root of 1. Let G = 〈a〉n × 〈b〉n be the direct
product of two cyclic groups of order n and

Xa =
⎛
⎜⎝

εn−1 0 . . . 0
0 εn−2 . . . 0
· · · · · · · · · · · ·
0 0 . . . 1

⎞
⎟⎠ , Xb =

⎛
⎜⎝

0 1 . . . 0
· · · · · · · · · · · ·
0 0 . . . 1
1 0 . . . 0

⎞
⎟⎠ . (6)

Then

XaXbX
−1
a = εXb, Xn

a = Xn
b = I (7)

and all Xi
aX

j
b , 1 � i, j � n, are linearly independent. Clearly, the elements Xi

aX
j
b , i, j = 1, . . . , n,

form a basis of R and all the products of these basis elements are uniquely defined by (7).
Now for any g ∈ G, g = aibj , we set Xg = Xi

aX
j
b and denote by Rg a one-dimensional

subspace

Rg = 〈
Xi

aX
j
b

〉
. (8)

Then from (7) it follows that R = ⊕
g∈G Rg is a G-grading on Mn(F) which is called an ε-

grading.
Now let R = Mn(F) be the full matrix algebra over F graded by an abelian group G. The fol-

lowing result has been proved in [4, Section 4, Theorems 5, 6] and [2, Subsection 2.2, Theorem 6,
Subsection 2.3, Theorem 8].

Theorem 1. Let F be an algebraically closed field of characteristic zero. Then as a G-graded
algebra R is isomorphic to the tensor product

R(0) ⊗ R(1) ⊗ · · · ⊗ R(k)

where R(0) = Mn0(F ) has an elementary G-grading, SuppR(0) = S is a finite subset of G,
R(i) = Mni

(F ) has the εi grading, εi being a primitive ni th root of 1, SuppR(i) = Hi
∼=

Zni
× Zni

, i = 1, . . . , k. Also H = H1 · · ·Hk
∼= H1 × · · · × Hk and S ∩ H = {e} in G.

Remark 1. It follows from a very general lemma in [4] that the support T of a fine grading on
R = Mn is a subgroup of the grading group G. Thus we have R = ⊕

t∈T Rt and Rt = 〈Xt 〉,
for a non-degenerate matrix Xt . Let us also recall that the product in R = Mn(F) with fine
grading as above is defined by a bicharacter α :T × T → F ∗ as follows: XtXu = α(t, u)Xtu,
for any t, u ∈ T . The commutation relations in R take the form XtXu = β(t, u)XuXt where
β(t, u) = α(t, u)/α(u, t) is a skew-symmetric bicharacter on T (see [1]).

Let us recall that any involution ∗ of R = Mn can always be written as

X∗ = Φ−1(tX
)
Φ (9)

where Φ is a non-degenerate matrix which is either symmetric or skew-symmetric and X �→ tX

is the ordinary transpose map. In the case where Φ is symmetric, we call ∗ a transpose involution.
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If Φ is skew-symmetric, ∗ is called a symplectic involution. Before we formulate the theorem
describing involution gradings on Mn in the case where the elementary and fine components are
invariant under the involution, we need three (slightly modified) lemmas from [5]. The general
restriction in [5] zero characteristic was not used in the proof of these particular lemmas. The
first two deal with elementary involution gradings while the last with certain fine involution
gradings. If R has an involution ∗ then by R(±) we denote the space of symmetric (respectively
skew-symmetric) matrices in R under ∗.

The next lemma handles the case of an elementary grading compatible with an involution
defined by a symmetric non-degenerate bilinear form.

Lemma 1. Let R = Mn(F), n a natural number, be a matrix algebra with involution ∗ defined by
a symmetric non-degenerate bilinear form. Let G be an abelian group and let R be equipped with
an elementary involution G-grading defined by an n-tuple (g1, . . . , gn). Then, after a renumber-
ing, g2

1 = · · · = g2
m = gm+1gm+l+1 = · · · = gm+lgm+2l for some 0 � l � n

2 and m + 2l = n. The
involution ∗ acts as X∗ = (Φ−1)tXΦ where

Φ =
(

Im 0 0
0 0 Il

0 Il 0

)
,

where Is is the s × s identity matrix. Moreover, R(−) consists of all matrices of the type

(
P S T

−tT A B

−tS C −tA

)
, (10)

where tP = −P , tB = −B , tC = −C and

P ∈ Mm(F), A,B,C,D ∈ Ml(F ), S,T ∈ Mm×l(F )

while R(+) consists of all matrices of the type

(
P S T
tT A B
tS C tA

)
, (11)

where tP = P , tB = B , tC = C and

P ∈ Mm(F), A,B,C,D ∈ Ml(F ), S,T ∈ Mm×l(F ).

The next lemma deals with the case of an elementary grading compatible with an involution
defined by a skew-symmetric non-degenerate bilinear form.

Lemma 2. Let R = Mn(F), n = 2k, be the matrix algebra with involution ∗ defined by a skew-
symmetric non-degenerate bilinear form. Let G be an abelian group and let R be equipped with
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an elementary involution G-grading defined by an n-tuple (g1, . . . , gn). Then, after a renumber-
ing, g1gk+1 = · · · = gkg2k , the involution ∗ acts as X∗ = (Φ−1)tXΦ where

Φ =
(

0 I

−I 0

)
,

I is the k × k identity matrix, R(−) consists of all matrices of the type(
A B

C −tA

)
, A,B,C ∈ Mk(F), tB = B, tC = C (12)

while R(+) consists of all matrices of the type(
A B

C tA

)
, A,B,C ∈ Mk(F), tB = −B, tC = −C. (13)

Lemma 3. Let R = M2(F ) be a 2×2 matrix algebra endowed with an involution ∗ :R → R cor-
responding to a symmetric or skew-symmetric non-degenerate bilinear form with the matrix Φ .
The (−1)-grading of M2 by G = 〈a〉2 × 〈b〉2 is an involution grading if and only if one of the
following holds:

(1) Φ is skew-symmetric,

Φ =
(

0 1
−1 0

)
, K(R,∗) = Span{Xa,Xb,Xab}, H(R,∗) = Span{Xe};

(2) Φ is symmetric,

Φ =
(

0 1
1 0

)
, K(R,∗) = Span{Xa}, H(R,∗) = Span{Xe,Xb,Xab};

(3) Φ is symmetric,

Φ =
(

1 0
0 1

)
, K(R,∗) = Span{Xab}, H(R,∗) = Span{Xe,Xa,Xb};

(4) Φ is symmetric,

Φ =
(

1 0
0 −1

)
, K(R,∗) = Span{Xb}, H(R,∗) = Span{Xe,Xa,Xab}.

Notice that the involution in each case is already defined, say, in case (1) one has

(αXe + βXa + γXb + δXab)
∗ = αXe − βXa − γXb − δXab.

Remark 2. If R = Mn has a fine grading by a group G whose support is an elementary abelian
2-subgroup T then it is immediate from the previous lemma and a Remark 1 after Theorem 1
that R has a basis {Xt | t ∈ T } such that XtXu = α(t, u)Xtu where α(t, u) = ±1 and for each
u ∈ T we have X−1

u = tXu = α(u,u)Xu.
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We can now formulate the most general result available earlier, which describes gradings on
a matrix algebra with involution (a weaker form of [5, Theorem 2], which is not true). With our
additional assumption that the involution respects the fine and the elementary components of the
grading, the proof of [5] works without changes. We remark here that this condition is always
satisfied provided that the Sylow 2-subgroup of G is cyclic.

Theorem 2. Let R = Mn(F) = ⊕
g∈G Rg be a matrix algebra over an algebraically closed field

of characteristic zero graded by the group G and SuppR generates G. Suppose that ∗ :R → R

is a graded involution. Then G is abelian, and R as a G-graded algebra is isomorphic to the
tensor product R(0) ⊗ R(1) ⊗ · · · ⊗ R(k) of a matrix subalgebra R(0) with elementary grading
and R(1) ⊗ · · · ⊗ R(k) a matrix subalgebra with fine grading. Suppose further that both these
subalgebras are invariant under the involution. Then n = 2km and

(1) R(0) = Mm(F) is as in Lemma 2 if ∗ is symplectic on R(0) or as in Lemma 1 if ∗ is transpose
on R0;

(2) R(1) ⊗ · · · ⊗ R(k) is a T = T1 × · · · × Tk-graded algebra and any R(i),1 � i � k, is Ti
∼=

Z2 × Z2-graded algebra as in Lemma 3.
(3) A graded basis of R is formed by the elements Y ⊗ Xt1 ⊗ · · · ⊗ Xtk , where Y is an element

of a graded basis of R(0) and the elements Xti are of the type (8), with n = 2, ti ∈ Ti . The
involution on these elements is given canonically by

(Y ⊗ Xt1 ⊗ · · · ⊗ Xtk )
∗ = Y ∗ ⊗ X∗

t1
⊗ · · · ⊗ X∗

tk
= sgn(t)

(
Y ∗ ⊗ Xt1 ⊗ · · · ⊗ Xtk

)
,

where Y ∈ R(0), Xti are the elements of the basis of the canonical (−1)-grading of M2,
i = 1, . . . , k, t = t1 · · · tk ∈ T , sgn(t) = ±1, depending on the cases in Lemma 3.

In the next two sections we describe the antiautomorphisms of graded matrix algebras in the
general case, including that now we only assume that the base field is algebraically closed of
characteristic different from 2.

4. Antiautomorphisms of graded matrix algebras

We start this section with a result about the structure of fine gradings of R = Mn compati-
ble with an antiautomorphism. This result is a far going generalization of [5, Lemma 2]. Any
antiautomorphism ϕ of R = Mn can always be written as

ϕ ∗ X = Φ−1(tX
)
Φ (14)

where Φ is a non-degenerate matrix and X �→ tX is the ordinary transpose map. It is well known
that ϕ is an involution if and only if Φ is either symmetric or skew-symmetric. Recall that in the
case where Φ is symmetric, ϕ is called a transpose involution and if Φ is skew-symmetric then
ϕ is called a symplectic involution.

Lemma 4. Let R = Mn(F) = ⊕
t∈T Rt be the n × n-matrix algebra with an ε-grading, T =

〈a〉n × 〈b〉n. Let also ϕ :R → R be an antiautomorphism of R defined by ϕ ∗ X = Φ−1tXΦ . If
ϕ ∗ Rt = Rt for all t ∈ T then n = 2, Φ coincides with the scalar multiple one of the matrices I ,
Xa , Xb or Xab (see (6)).
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Proof. First we consider the ϕ-action on Xa . Since Ra is stable under ϕ,

Φ−1 tXaΦ = Φ−1XaΦ = αXa

for some scalar α �= 0. Then

XaΦX−1
a = αΦ. (15)

Since Xn
a = I , we obtain αn = 1, so that α = εj for some 0 � j � n − 1.

Denote by P the linear span of I,Xa, . . . ,X
n−1
a . Then R = P ⊕ XbP ⊕ · · · ⊕ Xn−1

b P as a
vector space and the conjugation by Xa acts on Xi

bP as the multiplication by εi . In particular,

all eigenvectors with eigenvalue εj are in X
j
bP . It follows that Φ ∈ X

j
bP , that is, Φ = X

j
bQ for

some Q ∈ P .
Now we consider the action of ϕ on Xb:

ϕ ∗ Xb = Φ−1 tXbΦ = Φ−1X−1
b Φ = γXb,

that is, XbΦXb = μΦ with μ = γ −1 �= 0. If we write Q = ∑
αiX

i
a then

XbΦXb = X
j
b

∑
i

αiXbX
i
aXb = X

j
b

∑
i

α′
iX

i
aX

2
b = μΦ = μX

j
b

∑
i

αiX
i
a. (16)

In this case X
j
b

∑
i α

′
iX

i
aX

2
b = μX

j
b

∑
i αiX

i
a where the scalars α′

i can be explicitly computed
using (15). Since the degrees in Xa,Xb define the degrees in the T -grading, we can see that (16)
immediately implies X2

b = I , i.e. n = 2.

As we have shown before, (15) implies Φ = X
j
bQ with Q = α0I + α1Xa . Since n = 2, the

argument following (15) applies if we change a and b places so that Φ = Xk
a(β0I + β1Xb).

Comparing these two expressions we obtain that Φ must be one of I , Xa , Xb , or Xab , up to a
scalar multiple. �

Now we make few remarks about the structure of elementary gradings on Mn(F). Recall that a
grading Mn = R = ⊕

g∈G Rg is elementary if there exists an n-tuple τ = (g1, . . . , gn) ∈ Gn such

that the matrix units Eij , 1 � i, j � n are homogeneous and Eij ∈ Rg ⇔ g = g−1
i gj . Elementary

gradings arise from the gradings on vector spaces. Let V = Span{v1, . . . , vn} be a graded vector
space and {v1, . . . , vn} is a graded basis such that degvi = g−1

i . Then any Eij is a homogeneous
linear transformation of V and degEij = g−1

i gj . Any permutation vi �→ vσ(i) of basis elements
induces a graded automorphism of Mn = EndV and the corresponding permutation on the n-
tuple τ = (g1, . . . , gn). Hence we may permute the components of τ . Now suppose τ has the
form

τ = (t1, . . . , t1︸ ︷︷ ︸
p1

, . . . , tm, . . . , tm︸ ︷︷ ︸
pm

)

with t1, . . . , tm pairwise distinct. In this case the identity component Re is isomorphic to A1 ⊕
· · · ⊕ Am where Ai

∼= Mpi
, for any i = 1, . . . ,m and consists of all block-diagonal matrices

X = diag{X1,X2, . . . ,Xm}
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where Xj is a pj × pj -matrix. Moreover, for any i �= j the subspace AiRAj is graded and all
X ∈ AiRAj are of degree t−1

i tj in the G-grading. As an easy consequence of this realization we
obtain

Lemma 5. Let R = Mn = ⊕
g∈G Rg be a matrix algebra with an elementary G-grading. If Re

is simple then the grading is trivial. If Re is the sum of two simple components, Re = A1 ⊕ A2,
then there exists g ∈ G, g �= e, such that A1RA2 ⊆ Rg .

Now we consider a matrix algebra R = Mn with an involution ∗ :R → R preserving Re.
Permuting t1, . . . , tm in τ we may assume that for any 1 � j � m − 1 either A∗

j = Aj or
A∗

j = Aj+1, A∗
j+1 = Aj . In the first case Aj is simple and AjRAj = Aj . In the second case

B = Aj ⊕Aj+1 is not simple but ∗-simple and Aj � Aj+1, i.e. Aj and Aj+1 are matrix algebras
of the same size s. It is convenient to consider the subalgebra BRB as a subset of all matrices

diag{0, . . . ,0,X,0, . . . ,0}
where X is 2s × 2s-matrix on the respective position.

Next we consider a general G-graded matrix algebra R = Mn. According to Theorem 1,
R = C ⊗ D where C ⊗ I is a matrix algebra with elementary grading while I ⊗ D is an algebra
with fine grading.

Lemma 6. Let R = C ⊗ D = ⊕
g∈G Rg be a G-graded matrix algebra with an elementary

grading on C and a fine grading on D. Let ϕ :R → R be an antiautomorphism on R preserving
G-grading. Let also ϕ acts as an involution on the identity component Re i.e. ϕ2|

Re
= Id. Then

(1) Ce ⊗ I is ϕ-stable where I is the unit of D and hence ϕ induces an involution ∗ on Ce;
(2) there are subalgebras B1, . . . ,Bk ⊆ Ce such that Ce = B1 ⊕ · · · ⊕ Bk , B1 ⊗ I, . . . ,Bk ⊗ I

are ϕ-stable and all B1, . . . ,Bk are ∗-simple algebras;
(3) ϕ acts on Re = Ce ⊗ I as ϕ ∗ X = S−1tXS where S = S1 ⊗ I + · · · + Sk ⊗ I , Si ∈ BiCBi

and Si = Ipi
if Bi is pi × pi -matrix algebra with transpose involution, Si = ( 0 Ipi

−Ipi
0

)
if Bi

is 2pi × 2pi -matrix algebra with symplectic involution or Si = ( 0 Ipi

Ipi
0

)
if Bi � Mpi

⊕ Mpi
;

(4) the centralizer of Re = Ce ⊗ I in R can be decomposed as Z1D1 ⊕ · · · ⊕ ZkDk where
D1, . . . ,Dk are ϕ-stable graded subalgebras of R isomorphic to D and Zi = Z′

i ⊗ I where
Z′

i is the center of Bi ;
(5) D as a graded algebra is isomorphic to M2 ⊗ · · · ⊗ M2 where any factor M2 has the fine

(−1)-grading.

Proof. From Theorem 1 it follows that the identity component Re equals to Ce ⊗ I . Since Re is
ϕ-stable and ϕ2 = Id on Re, the ϕ-action induces an involution ∗ on Ce . Since Ce is semisimple
it is a direct sum of ∗-simple algebras,

Ce = B1 ⊕ · · · ⊕ Bk. (17)

Now (1), (2) and (3) follows from the classification of involution simple algebras [6].
Denote by e1, . . . , ek the units of B1, . . . ,Bk , respectively. Clearly, the centralizer Z of Ce in

C is equal to Z′ ⊕ · · · ⊕ Z′ where Z′ is the center of Bi and the centralizer of Re in R coincides
1 k i
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with Z ⊗ D = Z1D1 ⊕ · · · ⊕ ZkDk where Zi = Z′
i ⊗ I and Di = ei ⊗ D. Obviously the map

ei ⊗ d �→ d ∈ D is an isomorphism of graded algebras. Hence for proving (4) we only need to
check that all D1, . . . ,Dk are ϕ-stable.

We fix 1 � i � k and consider R′ = (ei ⊗ I )R(ei ⊗ I ) = C′ ⊗ D where C′ = eiCei and
Di = ei ⊗ D is a graded subalgebra of R′. Then R′ is ϕ-stable since ϕ ∗ (ei ⊗ I ) = ei ⊗ I . Also
R′

e = C′
e ⊗ I with C′

e = Bi . If Bi is simple then C′ = C′
e by Lemma 5. In this case Di is ϕ-stable

since ϕ preserves R′
e and Di is the centralizer of R′

e in R′.
Now suppose Bi = A1 ⊕A2 is the sum of two matrix algebras. First we will show that C′ ⊗ I

is a ϕ-stable graded subalgebra of R. Denote by f1, f2 the units of A1 and A2 respectively. Then
f1, f2 ∈ Re and ϕ permutes f1, f2. Moreover, f1C

′f2 ⊗ I and f2C
′f1 ⊗ I are graded subspaces.

Since ϕ ∗ f1 ⊗ I = f2 ⊗ I,ϕ ∗ f2 ⊗ I = f1 ⊗ I we have

ϕ ∗ (
f1C

′f2 ⊗ I
) ⊆ (f1 ⊗ I )R(f2 ⊗ I ) = f1C

′f2 ⊗ D.

On the other hand, since by Lemma 5 there is g ∈ G such that f1C
′f2 ⊆ C′

g for some g ∈ G it
follows that

ϕ ∗ (
f1C

′f2 ⊗ I
) ⊆ Rg.

Suppose now that x ∈ f1C
′f2, y ∈ D, x and y are homogeneous, degx = g,degy = h. Then

deg(x ⊗ y) = g if and only if h = e that is y = λI , for some scalar λ. It follows that f1C
′f2 ⊗ I

is a ϕ-stable subspace. Similarly, ϕ ∗ f2C
′f1 ⊗ I ⊆ f2C

′f1 ⊗ I , hence C′ ⊗ I is ϕ-stable.
Now from the decomposition R′ = C′ ⊗ D it follows that Di = ei ⊗ D is a ϕ-stable graded

subalgebra.
For proving (5) we remark that D is isomorphic to, say, D1 as a G-graded algebra and D1

is ϕ-stable. So, it is enough to prove that D1 is the tensor product of several copies of M2. We
decompose D1 as the tensor product

D1 � R1 ⊗ · · · ⊗ Rm

where each Ri is a matrix algebra Mni
with a fine εi -grading. Recall that H = SuppD1 = H1 ×

· · · × Hm where Hi � Zni
× Zni

= SuppRi , 1 � i � m. Now since the G-grading on D1 is
ϕ-stable and

Ri =
⊕
h∈Hi

(D1)h

it follows that ϕ ∗ Ri = Ri . Since any antiautomorphism ϕ on a matrix algebra acts as ϕ ∗ X =
Φ−1XΦ , we can apply Lemma 4. Now the proof of our lemma is complete. �

In what follows we discuss the canonical form of the involution ϕ on the whole of R. As
mentioned, the ϕ-action on R is defined by

ϕ ∗ A = Φ−1tAΦ
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for some matrix Φ . First let A ∈ Re . Consider the decomposition Ce = B1 ⊕ · · · ⊕ Bk found in
Lemma 6. Then A = A1 ⊗ I + · · · + Ak ⊗ I with Ai ∈ Bi,1 � i � k. By Lemma 6 ϕ acts on A

as

ϕ ∗ A = S−1tAS.

Hence the matrix ΦS−1 commutes with tA for any A ∈ Re , that is ΦS−1 is an element of the
centralizer of Re in R. Applying claim (4) of Lemma 6 we obtain

Φ = S1Y1 ⊗ Q1 + · · · + SkYk ⊗ Qk (18)

where Qi ∈ D,Yi ∈ Z′
i , 1 � i � k. Compute now the action of ϕ2 on an arbitrary A ∈ R:

ϕ2 ∗ A = ϕ ∗ (
Φ−1tAΦ

) = Φ−1t
(
Φ−1tAΦ

)
Φ = (

tΦ−1Φ
)−1

A
(
tΦ−1Φ

)
.

Set P = tΦ−1Φ . Note that for any Ti, T
′
i ∈ BiCBi and Qi,Q

′
i ∈ D, i = 1, . . . , k, the relation

(∑
i

Ti ⊗ Qi

)(∑
i

T ′
i ⊗ Q′

i

)
=

∑
i

TiT
′
i ⊗ QiQ

′
i

holds.
We compute the value of P :

P = tΦ−1Φ =
k∑

i=1

t(SiYi)
−1SiYi ⊗ tQi

−1Qi =
∑

i

tSi
−1tYi

−1SiYi ⊗ tQi
−1Qi. (19)

Lemma 7. All Qi in (19) satisfy tQi
−1Qi = ±I .

Proof. Obviously it is sufficient to prove the relation

ei ⊗ tQ−1
i Qi = ±ei ⊗ I

in Di = ei ⊗ D. Recall that Di is ϕ-stable (see Lemma 6) and ϕ acts on ei ⊗ X, X ∈ D as

ϕ ∗ (ei ⊗ X) = Φ−1t(ei ⊗ X)Φ = (SiYi)
−1(ei)(SiYi) ⊗ Q−1

i
tXQi = ei ⊗ Q−1

i
tXQi

i.e. ϕ-action induces an antiautomorphism ei ⊗ X �→ ei ⊗ Q−1
i

tXQi on Di . By Lemma 6(5) Di

is the tensor product M
(1)
2 ⊗ · · · ⊗ M

(r)
2 of 2 × 2-matrix algebras with fine grading. As in the

proof of Lemma 6(5) we remark that all factors are ϕ-stable. Fix a factor M
(j)

2 and consider the

action of ϕ on M
(j)

2 . Then

ϕ ∗ Y = T −1tYTj
j
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and by Lemma 4 Tj = I,Xa,Xb or Xab . In particular, tTj
−1Tj = ±I2 where I2 is 2 × 2 identity

matrix. Since ei ⊗ Q−1
i

tXQi = T −1(ei ⊗ tX)T for all X ∈ D where T = T1 ⊗ · · · ⊗ Tr it fol-
lows that ei ⊗ Qi = λT for some non-zero scalar λ. Hence ei ⊗ Qi satisfies a similar relation
ei ⊗ tQ−1

i Qi = ±I . �
We summarize what was done in this section as follows.

Proposition 1. Suppose R = Mn(F) is the full matrix algebra over an algebraically closed field
of characteristic different from 2, graded by a finite abelian group G. Let ϕ be a G-graded
antiautomorphism of R whose restriction to the identity component Re is of order two. Then ϕ

can be given as ϕ ∗ X = Φ−1tXΦ where

Φ = S1Y1 ⊗ Q1 + · · · + SkYk ⊗ Qk (20)

where Si and Yi are described in Lemma 6 and each Qi ∈ ei ⊗ D is such that tQ−1
i Qi = ±I .

5. Involutions on group graded matrix algebras

In this section we preserve the notation introduced earlier except that we write ϕ ∗ X = X∗.
Our aim is to describe involutions on group graded matrix algebras. We will start with Eq. (18),
in which we additionally know from Lemma 7 that tQi

−1Qi = ±I . Let g(p) mean g, . . . , g︸ ︷︷ ︸
q

. Our

aim is to prove the following.

Theorem 3. Let ϕ :X → Φ−1tXΦ be an involution compatible with a grading of a matrix alge-
bra R by a finite abelian group G. Then, after a G-graded conjugation, we can reduce Φ to the
form

Φ = S1 ⊗ Xt1 + · · · + Sk ⊗ Xtk (21)

where Si is one of the matrices I ,
( 0 I

I 0

)
, or

( 0 I
−I 0

)
and each Xti is a matrix spanning Dti , ti ∈ T .

The defining tuple of the elementary grading on C should satisfy the following condition. We
assume that the first l of summands in (21) correspond to those Bi in (17) which are simple and
the remaining k − l to Bi which are not simple. Let the dimension of a simple Bi be equal to p2

i

and that of a non-simple Bj to 2p2
j . Then the defining tuple has the form

(
g

(p1)

1 , . . . , g
(pl)
l ,

(
g′

l+1

)(pl+1),
(
g′′

l+1

)(pl+1), . . . ,
(
g′

k

)(pk),
(
g′′

k

)(pk)t
)
, (22)

g2
1 t1 = · · · = g2

l tl = g′
l+1g

′′
l+1tl+1 = · · · = g′

kg
′′
k tk. (23)

Additionally, if ϕ is a transpose involution then each i, Si is symmetric (skew-symmetric) at the
same time as Xti , for any i = 1, . . . , k. If ϕ is a symplectic involution, then each Si is symmetric
(skew-symmetric) if and only if the respective Xti is skew-symmetric (symmetric), i = 1, . . . , k.

Conversely, if we have a grading by a group G on a matrix algebra R defined by a tuple as in
(22), for the component C with elementary grading, and by an elementary abelian 2-subgroup T

as the support of the component D with fine grading and all of the above conditions are satisfied
then (21) defines a graded involution on R.
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Proof. Choose Xu ∈ Du, u ∈ T , and consider (I ⊗Xu)
∗. Since Span{e1, . . . , ek} ⊗D is invariant

with respect to ϕ we must have (I ⊗ Xu)
∗ = α1e1 ⊗ Xu + · · · + αkek ⊗ Xu, for some scalars

α1, . . . , αk . Now by Proposition 1 we have

(I ⊗ Xu)
∗ = Φ−1t(I ⊗ Xu)Φ

= (
Y−1

1 S−1
1 ⊗ Q−1

1 + · · · + Y−1
k S−1

k ⊗ Q−1
k

)
× (

e1 ⊗ tXu + · · · + ek ⊗ tXu

)
(S1Y1 ⊗ Q1 + · · · + SkYk ⊗ Qk)

= e1 ⊗ Q−1
1

tXuQ1 + · · · + ek ⊗ Q−1
k

tXuQk

= e1 ⊗ α1Xu + · · · + ek ⊗ αkXu.

It follows then that for each i = 1, . . . , k we must have Q−1
i

tXuQi = αiXu for all Xu ∈ ei ⊗ Du.
As a result, the mapping X → Q−1

i
tXQi is a graded involution of an algebra with fine grading

ei ⊗ D. By Lemma 4 this mapping must have the form Xu �→ X−1
ti

XuXti , for some ti ∈ T . This
allows us to conclude that our matrix Φ can be chosen in the form

Φ = S1Y1 ⊗ Xt1 + · · · + SkYk ⊗ Xtk (24)

where each Yi is in the center of Bi . We have that Yi = λiei in every case where Bi is simple
and Yi = ξie

′
i + ζie

′′
i in every case where Bi is not simple. Here e′

i , e′′
i are the identities of simple

components of Bi and ei = e′
i + e′′

i . Also any Xti is either symmetric or skew-symmetric.
Now let us check the conditions (23). This is done on case-by-case basis. If U = eiUej ∈ C,

1 � i, j � l then degU = g−1
i gj . Also, using (18) we obtain that U∗ = ejY

−1
j S−1

j
tUSiYiei ⊗

X−1
tj

Xti which is of degree g−1
j gi tj ti (we recall that by Lemma 4 all elements in T are of order

1 or 2). Therefore, we have an equality g2
i ti = g2

j tj . If U = eiUe′
j , 1 � i � l, l + 1 � j � k,

then degU = g−1
i g′

j . We also have that U∗ = e′′
j Y−1

j S−1
j

tUSiYiei ⊗ X−1
tj

Xti , which is of de-

gree (g′′
j )−1giti tj . It follows then that g′

j g
′′
j tj = g2

i ti , also in accordance with (23). Finally, if

U = e′
iUe′′

j , l + 1 � i, j � k, then degU = (g′
i )

−1g′′
j while U∗ = e′

jY
−1
j S−1

j
tUSiYie

′′
i ⊗X−1

tj
Xti .

Therefore, degU∗ = (g′
j )

−1g′′
i ti tj . It then follows that g′

j g
′′
j tj = g′

ig
′′
i ti , as required. The remain-

ing three cases are in symmetry with the previous ones and produce the same results. By the way,
these calculations also show that if a mapping is given by (14) where Φ is as in (21) satisfying
(23) that this mapping is G-graded.

Now we need to eliminate Y1, . . . , Yk from the formula for Φ . Recall the decomposition Re =
B1 ⊕· · ·⊕Bk from Lemma 6. Each summand in (24) correspond to one of subalgebras Bi . Notice
that if we apply an inner automorphism to R then Φ is changed as a matrix of a bilinear form. If
this automorphism is a conjugation by a matrix P with identity grading then it is an isomorphism
of graded algebras. In this isomorphic copy of R = Mn the matrix of the involution ϕ will take
the form of Φ ′ = tPΦP . We build P as P = P1 ⊗ I + · · · + Pk ⊗ I where Pi ∈ BiCBi , for each
i = 1, . . . , k. If Bi is simple then Yi = ξiI . If Bi is not simple then Yi = ζie

′
i +ξie

′′
i . Here e′

i , e
′′
i are

the identities of simple components of Bi and ei = e′
i + e′′

i . In the matrix form, Yi = ( ζi Ipi
0

0 ξi Ipi

)
.

Also, Si = ( 0 Ipi

Ipi
0

)
.

Notice that since ϕ is an involution, tΦ−1Φ = ωI where ω = ±1. In other words,Φ = ωtΦ .
Now
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tΦ = Y1
tS1 ⊗ tXt1 + · · · + Yk

tSk ⊗ tXtk

= Y1
tS1 ⊗ α(t1, t1)Xt1 + · · · + Yk

tSk ⊗ α(tk, tk)Xtk .

Let us set Pi = 1√
ξi

ei . If Bi is simple then

S′
i = tPiSiYiPi = PiSiYiPi = Si.

If Bi is not simple then it follows from tΦ = ωΦ that ζi = ξiωα(ti , ti ). Then

S′
i = tPiSiYiPi = PiSiYiPi = 1

ξi

(
0 ξiIpi

ξiωα(ti , ti )Ipi
0

)
=

(
0 Ipi

ωα(ti , ti)Ipi
0

)
.

For example, if ϕ is a transpose involution, that is, Φ is symmetric, then ω = 1 and the conju-
gation by P as above reduces Φ to the form

Φ = S′
1 ⊗ Xt1 + · · · + S′

k ⊗ Xtk

with

tΦ = tS′
1 ⊗ α(t1, t1)Xt1 + · · · + tS′

k ⊗ α(tk, tk)Xtk

so that, according to Remark 2, each S′
i is symmetric if and only if Xti is symmetric, as claimed.

If ϕ is a symplectic involution then ω = −1 and using the same equations implies that S′
i is

symmetric if and only if Xti is skew-symmetric.
The converse in the above theorem is immediate. �
Now, for the determination of the gradings on simple matrix Jordan and Lie algebras, it is

important to be able to compute the sets of symmetric and skew-symmetric elements of R =
Mn(F) under the involution just computed. A very simple remark is as follows:

H(R,∗) = Span
{
A + A∗ | A from a spanning set of R

}
,

K(R,∗) = Span
{
A − A∗ | A from a spanning set of R

}
.

If A = eiUej ⊗ Xu then A∗ = ejS
−1
j

tUSiei ⊗ tXtj
tXuXti . If we perform obvious calculations

we obtain the sets of symmetric and skew-symmetric elements of ϕ in the following form

H(R,∗) = Span
{
eiUej ⊗ Xu + ejSj

tUSiei ⊗ Xtj
tXuXti

}
(25)

where 1 � i, j � k, u ∈ T , and U = eiUei ∈ C.
Quite similarly,

K(R,∗) = Span
{
eiUej ⊗ Xu − ejSj

tUSiei ⊗ Xtj
tXuXti

}
(26)

where 1 � i, j � k, u ∈ T , and U = eiUei ∈ C. Here we simultaneously replaced S−1
j and X−1

tj
by Sj and Xtj .
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Incidentally, this gives a canonical form for the simple graded Jordan algebras of the types
H(Mn,∗) where ∗ is either transpose or symplectic involution (formula (25)), or a simple Lie
algebra of the type Bl , l � 2, Cl , l � 3, or Dl , l � 5 (formula (26)), of which the forms suggested
in [5] are a particular case.
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