Involutions on graded matrix algebras

Yuri Bahturin ${ }^{\text {a,b,*, },}$, Mikhail Zaicev ${ }^{\text {b,2 }}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL A1C5S7, Canada
${ }^{\mathrm{b}}$ Department of Algebra, Faculty of Mathematics and Mechanics, Moscow State University, Moscow, 119992, Russia

Received 14 September 2006
Available online 8 June 2007
Communicated by Efim Zelmanov

Abstract

In this paper we describe graded antiautomorphisms of finite order on matrix algebras endowed with a group gradings by a finite abelian group over an arbitrary algebraically closed field of characteristic different from 2.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Matrix algebras; Graded algebras; Involutions; Automorphisms and antiautomorphisms

1. Introduction

This paper is devoted to the correction of an error in the paper [5] in which the classification of involution gradings on matrix algebras was derived from the fact that in the decomposition of a graded matrix algebra as the tensor product of an elementary and a fine component, these components remain invariant under the involution.

[^0]
2. Some notation and simple facts

Let F be an arbitrary field, A a not necessarily associative algebra over an F and G a group. We say that A is a G-graded algebra, if there is a vector space sum decomposition

$$
\begin{equation*}
A=\bigoplus_{g \in G} A_{g} \tag{1}
\end{equation*}
$$

such that

$$
\begin{equation*}
A_{g} A_{h} \subset A_{g h} \quad \text { for all } g, h \in G \tag{2}
\end{equation*}
$$

A subspace $V \subset A$ is called graded (or homogeneous) if $V=\bigoplus_{g \in G}\left(V \cap A_{g}\right)$. An element $a \in R$ is called homogeneous of degree g if $a \in A_{g}$. We also write deg $a=g$. The support of the G-grading is a subset

$$
\text { Supp } A=\left\{g \in G \mid A_{g} \neq 0\right\} .
$$

Suppose now that F is of characteristic different from 2. If A is an associative algebra with involution $*$ and, in addition to (2), one has

$$
\begin{equation*}
\left(A_{g}\right)^{*}=A_{g} \quad \text { for all } g \in G \tag{3}
\end{equation*}
$$

then we say that (1) is an involution preserving grading or simply an involution grading. In this case, given a graded subspace $B \subset A$ we set

$$
\begin{equation*}
H(B, *)=\left\{b \in B \mid b^{*}=b\right\}, \quad \text { the set of symmetric elements of } B \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
K(B, *)=\left\{b \in B \mid b^{*}=-b\right\}, \quad \text { the set of skew-symmetric elements of } B . \tag{5}
\end{equation*}
$$

If B is an associative subalgebra of A then $B^{(-)}$is a Lie subalgebra of A, that is, with respect to $[x, y]=x y-y x$ while $B^{(+)}$is a Jordan subalgebra of A, that is, with respect to $x \circ y=x y+y x$. We always have $B=B^{(-)} \oplus B^{(+)}$.

3. Reminder: Group gradings on matrix algebras

Below we briefly recall the results of [4], where the complete description of abelian group gradings on the full matrix algebra has been given. For non-commutative gradings see [3].

A grading $R=\bigoplus_{g \in G} R_{g}$ on the matrix algebra $R=M_{n}(F)$ is called elementary if there exists an n-tuple $\left(g_{1}, \ldots, g_{n}\right) \in G^{n}$ such that the matrix units $E_{i j}, 1 \leqslant i, j \leqslant n$ are homogeneous and $E_{i j} \in R_{g} \Leftrightarrow g=g_{i}^{-1} g_{j}$.

A grading is called fine if $\operatorname{dim} R_{g}=1$ for any $g \in \operatorname{Supp} R$. A particular case of fine gradings is the so-called ε-grading where ε is nth primitive root of 1 . Let $G=\langle a\rangle_{n} \times\langle b\rangle_{n}$ be the direct product of two cyclic groups of order n and

$$
X_{a}=\left(\begin{array}{cccc}
\varepsilon^{n-1} & 0 & \ldots & 0 \tag{6}\\
0 & \varepsilon^{n-2} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 1
\end{array}\right), \quad X_{b}=\left(\begin{array}{cccc}
0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 1 \\
1 & 0 & \ldots & 0
\end{array}\right)
$$

Then

$$
\begin{equation*}
X_{a} X_{b} X_{a}^{-1}=\varepsilon X_{b}, \quad X_{a}^{n}=X_{b}^{n}=I \tag{7}
\end{equation*}
$$

and all $X_{a}^{i} X_{b}^{j}, 1 \leqslant i, j \leqslant n$, are linearly independent. Clearly, the elements $X_{a}^{i} X_{b}^{j}, i, j=1, \ldots, n$, form a basis of R and all the products of these basis elements are uniquely defined by (7).

Now for any $g \in G, g=a^{i} b^{j}$, we set $X_{g}=X_{a}^{i} X_{b}^{j}$ and denote by R_{g} a one-dimensional subspace

$$
\begin{equation*}
R_{g}=\left\langle X_{a}^{i} X_{b}^{j}\right\rangle \tag{8}
\end{equation*}
$$

Then from (7) it follows that $R=\bigoplus_{g \in G} R_{g}$ is a G-grading on $M_{n}(F)$ which is called an ε grading.

Now let $R=M_{n}(F)$ be the full matrix algebra over F graded by an abelian group G. The following result has been proved in $[4$, Section 4, Theorems 5, 6] and [2, Subsection 2.2, Theorem 6, Subsection 2.3, Theorem 8].

Theorem 1. Let F be an algebraically closed field of characteristic zero. Then as a G-graded algebra R is isomorphic to the tensor product

$$
R^{(0)} \otimes R^{(1)} \otimes \cdots \otimes R^{(k)}
$$

where $R^{(0)}=M_{n_{0}}(F)$ has an elementary G-grading, $\operatorname{Supp} R^{(0)}=S$ is a finite subset of G, $R^{(i)}=M_{n_{i}}(F)$ has the ε_{i} grading, ε_{i} being a primitive n_{i} th root of 1 , $\operatorname{Supp} R^{(i)}=H_{i} \cong$ $\mathbb{Z}_{n_{i}} \times \mathbb{Z}_{n_{i}}, i=1, \ldots, k$. Also $H=H_{1} \cdots H_{k} \cong H_{1} \times \cdots \times H_{k}$ and $S \cap H=\{e\}$ in G.

Remark 1. It follows from a very general lemma in [4] that the support T of a fine grading on $R=M_{n}$ is a subgroup of the grading group G. Thus we have $R=\bigoplus_{t \in T} R_{t}$ and $R_{t}=\left\langle X_{t}\right\rangle$, for a non-degenerate matrix X_{t}. Let us also recall that the product in $R=M_{n}(F)$ with fine grading as above is defined by a bicharacter $\alpha: T \times T \rightarrow F^{*}$ as follows: $X_{t} X_{u}=\alpha(t, u) X_{t u}$, for any $t, u \in T$. The commutation relations in R take the form $X_{t} X_{u}=\beta(t, u) X_{u} X_{t}$ where $\beta(t, u)=\alpha(t, u) / \alpha(u, t)$ is a skew-symmetric bicharacter on T (see [1]).

Let us recall that any involution $*$ of $R=M_{n}$ can always be written as

$$
\begin{equation*}
X^{*}=\Phi^{-1}\left({ }^{t} X\right) \Phi \tag{9}
\end{equation*}
$$

where Φ is a non-degenerate matrix which is either symmetric or skew-symmetric and $X \mapsto^{t} X$ is the ordinary transpose map. In the case where Φ is symmetric, we call $*$ a transpose involution.

If Φ is skew-symmetric, $*$ is called a symplectic involution. Before we formulate the theorem describing involution gradings on M_{n} in the case where the elementary and fine components are invariant under the involution, we need three (slightly modified) lemmas from [5]. The general restriction in [5] zero characteristic was not used in the proof of these particular lemmas. The first two deal with elementary involution gradings while the last with certain fine involution gradings. If R has an involution $*$ then by $R^{(\pm)}$we denote the space of symmetric (respectively skew-symmetric) matrices in R under $*$.

The next lemma handles the case of an elementary grading compatible with an involution defined by a symmetric non-degenerate bilinear form.

Lemma 1. Let $R=M_{n}(F)$, n a natural number, be a matrix algebra with involution $*$ defined by a symmetric non-degenerate bilinear form. Let G be an abelian group and let R be equipped with an elementary involution G-grading defined by an n-tuple $\left(g_{1}, \ldots, g_{n}\right)$. Then, after a renumbering, $g_{1}^{2}=\cdots=g_{m}^{2}=g_{m+1} g_{m+l+1}=\cdots=g_{m+l} g_{m+2 l}$ for some $0 \leqslant l \leqslant \frac{n}{2}$ and $m+2 l=n$. The involution $*$ acts as $X^{*}=\left(\Phi^{-1}\right)^{t} X \Phi$ where

$$
\Phi=\left(\begin{array}{ccc}
I_{m} & 0 & 0 \\
0 & 0 & I_{l} \\
0 & I_{l} & 0
\end{array}\right)
$$

where I_{s} is the $s \times s$ identity matrix. Moreover, $R^{(-)}$consists of all matrices of the type

$$
\left(\begin{array}{ccc}
P & S & T \tag{10}\\
-^{t} T & A & B \\
-^{t} S & C & -{ }^{t} A
\end{array}\right)
$$

where ${ }^{t} P=-P,{ }^{t} B=-B,{ }^{t} C=-C$ and

$$
P \in M_{m}(F), \quad A, B, C, D \in M_{l}(F), \quad S, T \in M_{m \times l}(F)
$$

while $R^{(+)}$consists of all matrices of the type

$$
\left(\begin{array}{ccc}
P & S & T \tag{11}\\
{ }^{t} T & A & B \\
{ }^{t} S & C & { }^{t} A
\end{array}\right),
$$

where ${ }^{t} P=P,{ }^{t} B=B,{ }^{t} C=C$ and

$$
P \in M_{m}(F), \quad A, B, C, D \in M_{l}(F), \quad S, T \in M_{m \times l}(F) .
$$

The next lemma deals with the case of an elementary grading compatible with an involution defined by a skew-symmetric non-degenerate bilinear form.

Lemma 2. Let $R=M_{n}(F), n=2 k$, be the matrix algebra with involution $*$ defined by a skewsymmetric non-degenerate bilinear form. Let G be an abelian group and let R be equipped with
an elementary involution G-grading defined by an n-tuple $\left(g_{1}, \ldots, g_{n}\right)$. Then, after a renumbering, $g_{1} g_{k+1}=\cdots=g_{k} g_{2 k}$, the involution $*$ acts as $X^{*}=\left(\Phi^{-1}\right)^{t} X \Phi$ where

$$
\Phi=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)
$$

I is the $k \times k$ identity matrix, $R^{(-)}$consists of all matrices of the type

$$
\left(\begin{array}{cc}
A & B \tag{12}\\
C & -{ }^{t} A
\end{array}\right), \quad A, B, C \in M_{k}(F), \quad{ }^{t} B=B, \quad{ }^{t} C=C
$$

while $R^{(+)}$consists of all matrices of the type

$$
\left(\begin{array}{cc}
A & B \tag{13}\\
C & { }^{t} A
\end{array}\right), \quad A, B, C \in M_{k}(F), \quad{ }^{t} B=-B, \quad{ }^{t} C=-C .
$$

Lemma 3. Let $R=M_{2}(F)$ be a 2×2 matrix algebra endowed with an involution $*: R \rightarrow R$ corresponding to a symmetric or skew-symmetric non-degenerate bilinear form with the matrix Φ. The (-1)-grading of M_{2} by $G=\langle a\rangle_{2} \times\langle b\rangle_{2}$ is an involution grading if and only if one of the following holds:
(1) Φ is skew-symmetric,

$$
\Phi=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad K(R, *)=\operatorname{Span}\left\{X_{a}, X_{b}, X_{a b}\right\}, \quad H(R, *)=\operatorname{Span}\left\{X_{e}\right\}
$$

(2) Φ is symmetric,

$$
\Phi=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad K(R, *)=\operatorname{Span}\left\{X_{a}\right\}, \quad H(R, *)=\operatorname{Span}\left\{X_{e}, X_{b}, X_{a b}\right\}
$$

(3) Φ is symmetric,

$$
\Phi=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad K(R, *)=\operatorname{Span}\left\{X_{a b}\right\}, \quad H(R, *)=\operatorname{Span}\left\{X_{e}, X_{a}, X_{b}\right\}
$$

(4) Φ is symmetric,

$$
\Phi=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad K(R, *)=\operatorname{Span}\left\{X_{b}\right\}, \quad H(R, *)=\operatorname{Span}\left\{X_{e}, X_{a}, X_{a b}\right\}
$$

Notice that the involution in each case is already defined, say, in case (1) one has

$$
\left(\alpha X_{e}+\beta X_{a}+\gamma X_{b}+\delta X_{a b}\right)^{*}=\alpha X_{e}-\beta X_{a}-\gamma X_{b}-\delta X_{a b} .
$$

Remark 2. If $R=M_{n}$ has a fine grading by a group G whose support is an elementary abelian 2-subgroup T then it is immediate from the previous lemma and a Remark 1 after Theorem 1 that R has a basis $\left\{X_{t} \mid t \in T\right\}$ such that $X_{t} X_{u}=\alpha(t, u) X_{t u}$ where $\alpha(t, u)= \pm 1$ and for each $u \in T$ we have $X_{u}^{-1}={ }^{t} X_{u}=\alpha(u, u) X_{u}$.

We can now formulate the most general result available earlier, which describes gradings on a matrix algebra with involution (a weaker form of [5, Theorem 2], which is not true). With our additional assumption that the involution respects the fine and the elementary components of the grading, the proof of [5] works without changes. We remark here that this condition is always satisfied provided that the Sylow 2-subgroup of G is cyclic.

Theorem 2. Let $R=M_{n}(F)=\bigoplus_{g \in G} R_{g}$ be a matrix algebra over an algebraically closed field of characteristic zero graded by the group G and Supp R generates G. Suppose that $*: R \rightarrow R$ is a graded involution. Then G is abelian, and R as a G-graded algebra is isomorphic to the tensor product $R^{(0)} \otimes R^{(1)} \otimes \cdots \otimes R^{(k)}$ of a matrix subalgebra $R^{(0)}$ with elementary grading and $R^{(1)} \otimes \cdots \otimes R^{(k)}$ a matrix subalgebra with fine grading. Suppose further that both these subalgebras are invariant under the involution. Then $n=2^{k} m$ and
(1) $R^{(0)}=M_{m}(F)$ is as in Lemma 2 if $*$ is symplectic on $R^{(0)}$ or as in Lemma 1 if $*$ is transpose on R^{0};
(2) $R^{(1)} \otimes \cdots \otimes R^{(k)}$ is a $T=T_{1} \times \cdots \times T_{k}$-graded algebra and any $R^{(i)}, 1 \leqslant i \leqslant k$, is $T_{i} \cong$ $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$-graded algebra as in Lemma 3 .
(3) A graded basis of R is formed by the elements $Y \otimes X_{t_{1}} \otimes \cdots \otimes X_{t_{k}}$, where Y is an element of a graded basis of $R^{(0)}$ and the elements $X_{t_{i}}$ are of the type (8), with $n=2, t_{i} \in T_{i}$. The involution on these elements is given canonically by

$$
\left(Y \otimes X_{t_{1}} \otimes \cdots \otimes X_{t_{k}}\right)^{*}=Y^{*} \otimes X_{t_{1}}^{*} \otimes \cdots \otimes X_{t_{k}}^{*}=\operatorname{sgn}(t)\left(Y^{*} \otimes X_{t_{1}} \otimes \cdots \otimes X_{t_{k}}\right)
$$

where $Y \in R^{(0)}, X_{t_{i}}$ are the elements of the basis of the canonical (-1)-grading of M_{2}, $i=1, \ldots, k, t=t_{1} \cdots t_{k} \in T, \operatorname{sgn}(t)= \pm 1$, depending on the cases in Lemma 3.

In the next two sections we describe the antiautomorphisms of graded matrix algebras in the general case, including that now we only assume that the base field is algebraically closed of characteristic different from 2.

4. Antiautomorphisms of graded matrix algebras

We start this section with a result about the structure of fine gradings of $R=M_{n}$ compatible with an antiautomorphism. This result is a far going generalization of [5, Lemma 2]. Any antiautomorphism φ of $R=M_{n}$ can always be written as

$$
\begin{equation*}
\varphi * X=\Phi^{-1}\left({ }^{t} X\right) \Phi \tag{14}
\end{equation*}
$$

where Φ is a non-degenerate matrix and $X \mapsto{ }^{t} X$ is the ordinary transpose map. It is well known that φ is an involution if and only if Φ is either symmetric or skew-symmetric. Recall that in the case where Φ is symmetric, φ is called a transpose involution and if Φ is skew-symmetric then φ is called a symplectic involution.

Lemma 4. Let $R=M_{n}(F)=\bigoplus_{t \in T} R_{t}$ be the $n \times n$-matrix algebra with an ε-grading, $T=$ $\langle a\rangle_{n} \times\langle b\rangle_{n}$. Let also $\varphi: R \rightarrow R$ be an antiautomorphism of R defined by $\varphi * X=\Phi^{-1 t} X \Phi$. If $\varphi * R_{t}=R_{t}$ for all $t \in T$ then $n=2$, Φ coincides with the scalar multiple one of the matrices I, X_{a}, X_{b} or $X_{a b}$ (see (6)).

Proof. First we consider the φ-action on X_{a}. Since R_{a} is stable under φ,

$$
\Phi^{-1 t} X_{a} \Phi=\Phi^{-1} X_{a} \Phi=\alpha X_{a}
$$

for some scalar $\alpha \neq 0$. Then

$$
\begin{equation*}
X_{a} \Phi X_{a}^{-1}=\alpha \Phi \tag{15}
\end{equation*}
$$

Since $X_{a}^{n}=I$, we obtain $\alpha^{n}=1$, so that $\alpha=\varepsilon^{j}$ for some $0 \leqslant j \leqslant n-1$.
Denote by P the linear span of $I, X_{a}, \ldots, X_{a}^{n-1}$. Then $R=P \oplus X_{b} P \oplus \cdots \oplus X_{b}^{n-1} P$ as a vector space and the conjugation by X_{a} acts on $X_{b}^{i} P$ as the multiplication by ε^{i}. In particular, all eigenvectors with eigenvalue ε^{j} are in $X_{b}^{j} P$. It follows that $\Phi \in X_{b}^{j} P$, that is, $\Phi=X_{b}^{j} Q$ for some $Q \in P$.

Now we consider the action of φ on X_{b} :

$$
\varphi * X_{b}=\Phi^{-1 t} X_{b} \Phi=\Phi^{-1} X_{b}^{-1} \Phi=\gamma X_{b}
$$

that is, $X_{b} \Phi X_{b}=\mu \Phi$ with $\mu=\gamma^{-1} \neq 0$. If we write $Q=\sum \alpha_{i} X_{a}^{i}$ then

$$
\begin{equation*}
X_{b} \Phi X_{b}=X_{b}^{j} \sum_{i} \alpha_{i} X_{b} X_{a}^{i} X_{b}=X_{b}^{j} \sum_{i} \alpha_{i}^{\prime} X_{a}^{i} X_{b}^{2}=\mu \Phi=\mu X_{b}^{j} \sum_{i} \alpha_{i} X_{a}^{i} \tag{16}
\end{equation*}
$$

In this case $X_{b}^{j} \sum_{i} \alpha_{i}^{\prime} X_{a}^{i} X_{b}^{2}=\mu X_{b}^{j} \sum_{i} \alpha_{i} X_{a}^{i}$ where the scalars α_{i}^{\prime} can be explicitly computed using (15). Since the degrees in X_{a}, X_{b} define the degrees in the T-grading, we can see that (16) immediately implies $X_{b}^{2}=I$, i.e. $n=2$.

As we have shown before, (15) implies $\Phi=X_{b}^{j} Q$ with $Q=\alpha_{0} I+\alpha_{1} X_{a}$. Since $n=2$, the argument following (15) applies if we change a and b places so that $\Phi=X_{a}^{k}\left(\beta_{0} I+\beta_{1} X_{b}\right)$. Comparing these two expressions we obtain that Φ must be one of I, X_{a}, X_{b}, or $X_{a b}$, up to a scalar multiple.

Now we make few remarks about the structure of elementary gradings on $M_{n}(F)$. Recall that a grading $M_{n}=R=\bigoplus_{g \in G} R_{g}$ is elementary if there exists an n-tuple $\tau=\left(g_{1}, \ldots, g_{n}\right) \in G^{n}$ such that the matrix units $E_{i j}, 1 \leqslant i, j \leqslant n$ are homogeneous and $E_{i j} \in R_{g} \Leftrightarrow g=g_{i}^{-1} g_{j}$. Elementary gradings arise from the gradings on vector spaces. Let $V=\operatorname{Span}\left\{v_{1}, \ldots, v_{n}\right\}$ be a graded vector space and $\left\{v_{1}, \ldots, v_{n}\right\}$ is a graded basis such that $\operatorname{deg} v_{i}=g_{i}^{-1}$. Then any $E_{i j}$ is a homogeneous linear transformation of V and $\operatorname{deg} E_{i j}=g_{i}^{-1} g_{j}$. Any permutation $v_{i} \mapsto v_{\sigma(i)}$ of basis elements induces a graded automorphism of $M_{n}=\operatorname{End} V$ and the corresponding permutation on the n tuple $\tau=\left(g_{1}, \ldots, g_{n}\right)$. Hence we may permute the components of τ. Now suppose τ has the form

$$
\tau=(\underbrace{t_{1}, \ldots, t_{1}}_{p_{1}}, \ldots, \underbrace{t_{m}, \ldots, t_{m}}_{p_{m}})
$$

with t_{1}, \ldots, t_{m} pairwise distinct. In this case the identity component R_{e} is isomorphic to $A_{1} \oplus$ $\cdots \oplus A_{m}$ where $A_{i} \cong M_{p_{i}}$, for any $i=1, \ldots, m$ and consists of all block-diagonal matrices

$$
X=\operatorname{diag}\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}
$$

where X_{j} is a $p_{j} \times p_{j}$-matrix. Moreover, for any $i \neq j$ the subspace $A_{i} R A_{j}$ is graded and all $X \in A_{i} R A_{j}$ are of degree $t_{i}^{-1} t_{j}$ in the G-grading. As an easy consequence of this realization we obtain

Lemma 5. Let $R=M_{n}=\bigoplus_{g \in G} R_{g}$ be a matrix algebra with an elementary G-grading. If R_{e} is simple then the grading is trivial. If R_{e} is the sum of two simple components, $R_{e}=A_{1} \oplus A_{2}$, then there exists $g \in G, g \neq e$, such that $A_{1} R A_{2} \subseteq R_{g}$.

Now we consider a matrix algebra $R=M_{n}$ with an involution $*: R \rightarrow R$ preserving R_{e}. Permuting t_{1}, \ldots, t_{m} in τ we may assume that for any $1 \leqslant j \leqslant m-1$ either $A_{j}^{*}=A_{j}$ or $A_{j}^{*}=A_{j+1}, A_{j+1}^{*}=A_{j}$. In the first case A_{j} is simple and $A_{j} R A_{j}=A_{j}$. In the second case $B=A_{j} \oplus A_{j+1}$ is not simple but $*$-simple and $A_{j} \simeq A_{j+1}$, i.e. A_{j} and A_{j+1} are matrix algebras of the same size s. It is convenient to consider the subalgebra $B R B$ as a subset of all matrices

$$
\operatorname{diag}\{0, \ldots, 0, X, 0, \ldots, 0\}
$$

where X is $2 s \times 2 s$-matrix on the respective position.
Next we consider a general G-graded matrix algebra $R=M_{n}$. According to Theorem 1, $R=C \otimes D$ where $C \otimes I$ is a matrix algebra with elementary grading while $I \otimes D$ is an algebra with fine grading.

Lemma 6. Let $R=C \otimes D=\bigoplus_{g \in G} R_{g}$ be a G-graded matrix algebra with an elementary grading on C and a fine grading on D. Let $\varphi: R \rightarrow R$ be an antiautomorphism on R preserving G-grading. Let also φ acts as an involution on the identity component R_{e} i.e. $\left.\varphi^{2}\right|_{R_{e}}=\mathrm{Id}$. Then
(1) $C_{e} \otimes I$ is φ-stable where I is the unit of D and hence φ induces an involution $*$ on C_{e};
(2) there are subalgebras $B_{1}, \ldots, B_{k} \subseteq C_{e}$ such that $C_{e}=B_{1} \oplus \cdots \oplus B_{k}, B_{1} \otimes I, \ldots, B_{k} \otimes I$ are φ-stable and all B_{1}, \ldots, B_{k} are $*$-simple algebras;
(3) φ acts on $R_{e}=C_{e} \otimes I$ as $\varphi * X=S^{-1 t} X S$ where $S=S_{1} \otimes I+\cdots+S_{k} \otimes I, S_{i} \in B_{i} C B_{i}$ and $S_{i}=I_{p_{i}}$ if B_{i} is $p_{i} \times p_{i}$-matrix algebra with transpose involution, $S_{i}=\left(\begin{array}{cc}0 & I_{p_{i}} \\ -I_{p_{i}} & 0\end{array}\right)$ if B_{i} is $2 p_{i} \times 2 p_{i}$-matrix algebra with symplectic involution or $S_{i}=\left(\begin{array}{cc}0 & I_{p_{i}} \\ I_{p_{i}} & 0\end{array}\right)$ if $B_{i} \simeq M_{p_{i}} \oplus M_{p_{i}}$;
(4) the centralizer of $R_{e}=C_{e} \otimes I$ in R can be decomposed as $Z_{1} D_{1} \oplus \cdots \oplus Z_{k} D_{k}$ where D_{1}, \ldots, D_{k} are φ-stable graded subalgebras of R isomorphic to D and $Z_{i}=Z_{i}^{\prime} \otimes I$ where Z_{i}^{\prime} is the center of B_{i};
(5) D as a graded algebra is isomorphic to $M_{2} \otimes \cdots \otimes M_{2}$ where any factor M_{2} has the fine (-1)-grading.

Proof. From Theorem 1 it follows that the identity component R_{e} equals to $C_{e} \otimes I$. Since R_{e} is φ-stable and $\varphi^{2}=\operatorname{Id}$ on R_{e}, the φ-action induces an involution $*$ on C_{e}. Since C_{e} is semisimple it is a direct sum of $*$-simple algebras,

$$
\begin{equation*}
C_{e}=B_{1} \oplus \cdots \oplus B_{k} \tag{17}
\end{equation*}
$$

Now (1), (2) and (3) follows from the classification of involution simple algebras [6].
Denote by e_{1}, \ldots, e_{k} the units of B_{1}, \ldots, B_{k}, respectively. Clearly, the centralizer Z of C_{e} in C is equal to $Z_{1}^{\prime} \oplus \cdots \oplus Z_{k}^{\prime}$ where Z_{i}^{\prime} is the center of B_{i} and the centralizer of R_{e} in R coincides
with $Z \otimes D=Z_{1} D_{1} \oplus \cdots \oplus Z_{k} D_{k}$ where $Z_{i}=Z_{i}^{\prime} \otimes I$ and $D_{i}=e_{i} \otimes D$. Obviously the map $e_{i} \otimes d \mapsto d \in D$ is an isomorphism of graded algebras. Hence for proving (4) we only need to check that all D_{1}, \ldots, D_{k} are φ-stable.

We fix $1 \leqslant i \leqslant k$ and consider $R^{\prime}=\left(e_{i} \otimes I\right) R\left(e_{i} \otimes I\right)=C^{\prime} \otimes D$ where $C^{\prime}=e_{i} C e_{i}$ and $D_{i}=e_{i} \otimes D$ is a graded subalgebra of R^{\prime}. Then R^{\prime} is φ-stable since $\varphi *\left(e_{i} \otimes I\right)=e_{i} \otimes I$. Also $R_{e}^{\prime}=C_{e}^{\prime} \otimes I$ with $C_{e}^{\prime}=B_{i}$. If B_{i} is simple then $C^{\prime}=C_{e}^{\prime}$ by Lemma 5. In this case D_{i} is φ-stable since φ preserves R_{e}^{\prime} and D_{i} is the centralizer of R_{e}^{\prime} in R^{\prime}.

Now suppose $B_{i}=A_{1} \oplus A_{2}$ is the sum of two matrix algebras. First we will show that $C^{\prime} \otimes I$ is a φ-stable graded subalgebra of R. Denote by f_{1}, f_{2} the units of A_{1} and A_{2} respectively. Then $f_{1}, f_{2} \in R_{e}$ and φ permutes f_{1}, f_{2}. Moreover, $f_{1} C^{\prime} f_{2} \otimes I$ and $f_{2} C^{\prime} f_{1} \otimes I$ are graded subspaces. Since $\varphi * f_{1} \otimes I=f_{2} \otimes I, \varphi * f_{2} \otimes I=f_{1} \otimes I$ we have

$$
\varphi *\left(f_{1} C^{\prime} f_{2} \otimes I\right) \subseteq\left(f_{1} \otimes I\right) R\left(f_{2} \otimes I\right)=f_{1} C^{\prime} f_{2} \otimes D
$$

On the other hand, since by Lemma 5 there is $g \in G$ such that $f_{1} C^{\prime} f_{2} \subseteq C_{g}^{\prime}$ for some $g \in G$ it follows that

$$
\varphi *\left(f_{1} C^{\prime} f_{2} \otimes I\right) \subseteq R_{g}
$$

Suppose now that $x \in f_{1} C^{\prime} f_{2}, y \in D, x$ and y are homogeneous, $\operatorname{deg} x=g, \operatorname{deg} y=h$. Then $\operatorname{deg}(x \otimes y)=g$ if and only if $h=e$ that is $y=\lambda I$, for some scalar λ. It follows that $f_{1} C^{\prime} f_{2} \otimes I$ is a φ-stable subspace. Similarly, $\varphi * f_{2} C^{\prime} f_{1} \otimes I \subseteq f_{2} C^{\prime} f_{1} \otimes I$, hence $C^{\prime} \otimes I$ is φ-stable.

Now from the decomposition $R^{\prime}=C^{\prime} \otimes D$ it follows that $D_{i}=e_{i} \otimes D$ is a φ-stable graded subalgebra.

For proving (5) we remark that D is isomorphic to, say, D_{1} as a G-graded algebra and D_{1} is φ-stable. So, it is enough to prove that D_{1} is the tensor product of several copies of M_{2}. We decompose D_{1} as the tensor product

$$
D_{1} \simeq R_{1} \otimes \cdots \otimes R_{m}
$$

where each R_{i} is a matrix algebra $M_{n_{i}}$ with a fine ε_{i}-grading. Recall that $H=\operatorname{Supp} D_{1}=H_{1} \times$ $\cdots \times H_{m}$ where $H_{i} \simeq \mathbb{Z}_{n_{i}} \times \mathbb{Z}_{n_{i}}=\operatorname{Supp} R_{i}, 1 \leqslant i \leqslant m$. Now since the G-grading on D_{1} is φ-stable and

$$
R_{i}=\bigoplus_{h \in H_{i}}\left(D_{1}\right)_{h}
$$

it follows that $\varphi * R_{i}=R_{i}$. Since any antiautomorphism φ on a matrix algebra acts as $\varphi * X=$ $\Phi^{-1} X \Phi$, we can apply Lemma 4 . Now the proof of our lemma is complete.

In what follows we discuss the canonical form of the involution φ on the whole of R. As mentioned, the φ-action on R is defined by

$$
\varphi * A=\Phi^{-1 t} A \Phi
$$

for some matrix Φ. First let $A \in R_{e}$. Consider the decomposition $C_{e}=B_{1} \oplus \cdots \oplus B_{k}$ found in Lemma 6. Then $A=A_{1} \otimes I+\cdots+A_{k} \otimes I$ with $A_{i} \in B_{i}, 1 \leqslant i \leqslant k$. By Lemma 6φ acts on A as

$$
\varphi * A=S^{-1 t} A S
$$

Hence the matrix ΦS^{-1} commutes with ${ }^{t} A$ for any $A \in R_{e}$, that is ΦS^{-1} is an element of the centralizer of R_{e} in R. Applying claim (4) of Lemma 6 we obtain

$$
\begin{equation*}
\Phi=S_{1} Y_{1} \otimes Q_{1}+\cdots+S_{k} Y_{k} \otimes Q_{k} \tag{18}
\end{equation*}
$$

where $Q_{i} \in D, Y_{i} \in Z_{i}^{\prime}, 1 \leqslant i \leqslant k$. Compute now the action of φ^{2} on an arbitrary $A \in R$:

$$
\varphi^{2} * A=\varphi *\left(\Phi^{-1 t} A \Phi\right)=\Phi^{-1 t}\left(\Phi^{-1 t} A \Phi\right) \Phi=\left({ }^{t} \Phi^{-1} \Phi\right)^{-1} A\left({ }^{t} \Phi^{-1} \Phi\right)
$$

Set $P={ }^{t} \Phi^{-1} \Phi$. Note that for any $T_{i}, T_{i}^{\prime} \in B_{i} C B_{i}$ and $Q_{i}, Q_{i}^{\prime} \in D, i=1, \ldots, k$, the relation

$$
\left(\sum_{i} T_{i} \otimes Q_{i}\right)\left(\sum_{i} T_{i}^{\prime} \otimes Q_{i}^{\prime}\right)=\sum_{i} T_{i} T_{i}^{\prime} \otimes Q_{i} Q_{i}^{\prime}
$$

holds.
We compute the value of P :

$$
\begin{equation*}
P={ }^{t} \Phi^{-1} \Phi=\sum_{i=1}^{k}{ }^{t}\left(S_{i} Y_{i}\right)^{-1} S_{i} Y_{i} \otimes{ }^{t} Q_{i}^{-1} Q_{i}=\sum_{i}{ }^{t} S_{i}{ }^{-1 t} Y_{i}{ }^{-1} S_{i} Y_{i} \otimes{ }^{t} Q_{i}^{-1} Q_{i} \tag{19}
\end{equation*}
$$

Lemma 7. All Q_{i} in (19) satisfy ${ }^{t} Q_{i}^{-1} Q_{i}= \pm I$.
Proof. Obviously it is sufficient to prove the relation

$$
e_{i} \otimes^{t} Q_{i}^{-1} Q_{i}= \pm e_{i} \otimes I
$$

in $D_{i}=e_{i} \otimes D$. Recall that D_{i} is φ-stable (see Lemma 6) and φ acts on $e_{i} \otimes X, X \in D$ as

$$
\varphi *\left(e_{i} \otimes X\right)=\Phi^{-1 t}\left(e_{i} \otimes X\right) \Phi=\left(S_{i} Y_{i}\right)^{-1}\left(e_{i}\right)\left(S_{i} Y_{i}\right) \otimes Q_{i}^{-1 t} X Q_{i}=e_{i} \otimes Q_{i}^{-1 t} X Q_{i}
$$

i.e. φ-action induces an antiautomorphism $e_{i} \otimes X \mapsto e_{i} \otimes Q_{i}^{-1 t} X Q_{i}$ on D_{i}. By Lemma 6(5) D_{i} is the tensor product $M_{2}^{(1)} \otimes \cdots \otimes M_{2}^{(r)}$ of 2×2-matrix algebras with fine grading. As in the proof of Lemma 6(5) we remark that all factors are φ-stable. Fix a factor $M_{2}^{(j)}$ and consider the action of φ on $M_{2}^{(j)}$. Then

$$
\varphi * Y=T_{j}^{-1 t} Y T_{j}
$$

and by Lemma $4 T_{j}=I, X_{a}, X_{b}$ or $X_{a b}$. In particular, ${ }^{t} T_{j}{ }^{-1} T_{j}= \pm I_{2}$ where I_{2} is 2×2 identity matrix. Since $e_{i} \otimes Q_{i}^{-1 t} X Q_{i}=T^{-1}\left(e_{i} \otimes^{t} X\right) T$ for all $X \in D$ where $T=T_{1} \otimes \cdots \otimes T_{r}$ it follows that $e_{i} \otimes Q_{i}=\lambda T$ for some non-zero scalar λ. Hence $e_{i} \otimes Q_{i}$ satisfies a similar relation $e_{i} \otimes^{t} Q_{i}^{-1} Q_{i}= \pm I$.

We summarize what was done in this section as follows.
Proposition 1. Suppose $R=M_{n}(F)$ is the full matrix algebra over an algebraically closed field of characteristic different from 2, graded by a finite abelian group G. Let φ be a G-graded antiautomorphism of R whose restriction to the identity component R_{e} is of order two. Then φ can be given as $\varphi * X=\Phi^{-1 t} X \Phi$ where

$$
\begin{equation*}
\Phi=S_{1} Y_{1} \otimes Q_{1}+\cdots+S_{k} Y_{k} \otimes Q_{k} \tag{20}
\end{equation*}
$$

where S_{i} and Y_{i} are described in Lemma 6 and each $Q_{i} \in e_{i} \otimes D$ is such that ${ }^{t} Q_{i}^{-1} Q_{i}= \pm I$.

5. Involutions on group graded matrix algebras

In this section we preserve the notation introduced earlier except that we write $\varphi * X=X^{*}$. Our aim is to describe involutions on group graded matrix algebras. We will start with Eq. (18), in which we additionally know from Lemma 7 that ${ }^{t} Q_{i}^{-1} Q_{i}= \pm I$. Let $g^{(p)}$ mean $\underbrace{g, \ldots, g}_{q}$. Our aim is to prove the following.

Theorem 3. Let $\varphi: X \rightarrow \Phi^{-1 t} X \Phi$ be an involution compatible with a grading of a matrix algebra R by a finite abelian group G. Then, after a G-graded conjugation, we can reduce Φ to the form

$$
\begin{equation*}
\Phi=S_{1} \otimes X_{t_{1}}+\cdots+S_{k} \otimes X_{t_{k}} \tag{21}
\end{equation*}
$$

where S_{i} is one of the matrices $I,\left(\begin{array}{cc}0 & I \\ I & 1\end{array}\right)$, or $\left(\begin{array}{cc}0 & I \\ -I & 0\end{array}\right)$ and each $X_{t_{i}}$ is a matrix spanning $D_{t_{i}}, t_{i} \in T$. The defining tuple of the elementary grading on C should satisfy the following condition. We assume that the first l of summands in (21) correspond to those B_{i} in (17) which are simple and the remaining $k-l$ to B_{i} which are not simple. Let the dimension of a simple B_{i} be equal to p_{i}^{2} and that of a non-simple B_{j} to $2 p_{j}^{2}$. Then the defining tuple has the form

$$
\begin{gather*}
\left(g_{1}^{\left(p_{1}\right)}, \ldots, g_{l}^{\left(p_{l}\right)},\left(g_{l+1}^{\prime}\right)^{\left(p_{l+1}\right)},\left(g_{l+1}^{\prime \prime}\right)^{\left(p_{l+1}\right)}, \ldots,\left(g_{k}^{\prime}\right)^{\left(p_{k}\right)},\left(g_{k}^{\prime \prime}\right)^{\left(p_{k}\right)} t\right), \tag{22}\\
g_{1}^{2} t_{1}=\cdots=g_{l}^{2} t_{l}=g_{l+1}^{\prime} g_{l+1}^{\prime \prime} t_{l+1}=\cdots=g_{k}^{\prime} g_{k}^{\prime \prime} t_{k} . \tag{23}
\end{gather*}
$$

Additionally, if φ is a transpose involution then each i, S_{i} is symmetric (skew-symmetric) at the same time as $X_{t_{i}}$, for any $i=1, \ldots$, k. If φ is a symplectic involution, then each S_{i} is symmetric (skew-symmetric) if and only if the respective $X_{t_{i}}$ is skew-symmetric (symmetric), $i=1, \ldots, k$.

Conversely, if we have a grading by a group G on a matrix algebra R defined by a tuple as in (22), for the component C with elementary grading, and by an elementary abelian 2 -subgroup T as the support of the component D with fine grading and all of the above conditions are satisfied then (21) defines a graded involution on R.

Proof. Choose $X_{u} \in D_{u}, u \in T$, and consider $\left(I \otimes X_{u}\right)^{*}$. Since $\operatorname{Span}\left\{e_{1}, \ldots, e_{k}\right\} \otimes D$ is invariant with respect to φ we must have $\left(I \otimes X_{u}\right)^{*}=\alpha_{1} e_{1} \otimes X_{u}+\cdots+\alpha_{k} e_{k} \otimes X_{u}$, for some scalars $\alpha_{1}, \ldots, \alpha_{k}$. Now by Proposition 1 we have

$$
\begin{aligned}
(I \otimes & \left.X_{u}\right)^{*}=\Phi^{-1 t}\left(I \otimes X_{u}\right) \Phi \\
= & \left(Y_{1}^{-1} S_{1}^{-1} \otimes Q_{1}^{-1}+\cdots+Y_{k}^{-1} S_{k}^{-1} \otimes Q_{k}^{-1}\right) \\
& \times\left(e_{1} \otimes X_{u}^{t}+\cdots+e_{k} \otimes{ }^{t} X_{u}\right)\left(S_{1} Y_{1} \otimes Q_{1}+\cdots+S_{k} Y_{k} \otimes Q_{k}\right) \\
= & e_{1} \otimes Q_{1}^{-1 t} X_{u} Q_{1}+\cdots+e_{k} \otimes Q_{k}^{-1 t} X_{u} Q_{k} \\
= & e_{1} \otimes \alpha_{1} X_{u}+\cdots+e_{k} \otimes \alpha_{k} X_{u} .
\end{aligned}
$$

It follows then that for each $i=1, \ldots, k$ we must have $Q_{i}^{-1 t} X_{u} Q_{i}=\alpha_{i} X_{u}$ for all $X_{u} \in e_{i} \otimes D_{u}$. As a result, the mapping $X \rightarrow Q_{i}^{-1 t} X Q_{i}$ is a graded involution of an algebra with fine grading $e_{i} \otimes D$. By Lemma 4 this mapping must have the form $X_{u} \mapsto X_{t_{i}}^{-1} X_{u} X_{t_{i}}$, for some $t_{i} \in T$. This allows us to conclude that our matrix Φ can be chosen in the form

$$
\begin{equation*}
\Phi=S_{1} Y_{1} \otimes X_{t_{1}}+\cdots+S_{k} Y_{k} \otimes X_{t_{k}} \tag{24}
\end{equation*}
$$

where each Y_{i} is in the center of B_{i}. We have that $Y_{i}=\lambda_{i} e_{i}$ in every case where B_{i} is simple and $Y_{i}=\xi_{i} e_{i}^{\prime}+\zeta_{i} e_{i}^{\prime \prime}$ in every case where B_{i} is not simple. Here $e_{i}^{\prime}, e_{i}^{\prime \prime}$ are the identities of simple components of B_{i} and $e_{i}=e_{i}^{\prime}+e_{i}^{\prime \prime}$. Also any $X_{t_{i}}$ is either symmetric or skew-symmetric.

Now let us check the conditions (23). This is done on case-by-case basis. If $U=e_{i} U e_{j} \in C$, $1 \leqslant i, j \leqslant l$ then $\operatorname{deg} U=g_{i}^{-1} g_{j}$. Also, using (18) we obtain that $U^{*}=e_{j} Y_{j}^{-1} S_{j}^{-1 t} U S_{i} Y_{i} e_{i} \otimes$ $X_{t_{j}}^{-1} X_{t_{i}}$ which is of degree $g_{j}^{-1} g_{i} t_{j} t_{i}$ (we recall that by Lemma 4 all elements in T are of order 1 or 2). Therefore, we have an equality $g_{i}^{2} t_{i}=g_{j}^{2} t_{j}$. If $U=e_{i} U e_{j}^{\prime}, 1 \leqslant i \leqslant l, l+1 \leqslant j \leqslant k$, then $\operatorname{deg} U=g_{i}^{-1} g_{j}^{\prime}$. We also have that $U^{*}=e_{j}^{\prime \prime} Y_{j}^{-1} S_{j}^{-1 t} U S_{i} Y_{i} e_{i} \otimes X_{t_{j}}^{-1} X_{t_{i}}$, which is of degree $\left(g_{j}^{\prime \prime}\right)^{-1} g_{i} t_{i} t_{j}$. It follows then that $g_{j}^{\prime} g_{j}^{\prime \prime} t_{j}=g_{i}^{2} t_{i}$, also in accordance with (23). Finally, if $U=e_{i}^{\prime} U e_{j}^{\prime \prime}, l+1 \leqslant i, j \leqslant k$, then $\operatorname{deg} U=\left(g_{i}^{\prime}\right)^{-1} g_{j}^{\prime \prime}$ while $U^{*}=e_{j}^{\prime} Y_{j}^{-1} S_{j}^{-1 t} U S_{i} Y_{i} e_{i}^{\prime \prime} \otimes X_{t_{j}}^{-1} X_{t_{i}}$. Therefore, $\operatorname{deg} U^{*}=\left(g_{j}^{\prime}\right)^{-1} g_{i}^{\prime \prime} t_{i} t_{j}$. It then follows that $g_{j}^{\prime} g_{j}^{\prime \prime} t_{j}=g_{i}^{\prime} g_{i}^{\prime \prime} t_{i}$, as required. The remaining three cases are in symmetry with the previous ones and produce the same results. By the way, these calculations also show that if a mapping is given by (14) where Φ is as in (21) satisfying (23) that this mapping is G-graded.

Now we need to eliminate Y_{1}, \ldots, Y_{k} from the formula for Φ. Recall the decomposition $R_{e}=$ $B_{1} \oplus \cdots \oplus B_{k}$ from Lemma 6. Each summand in (24) correspond to one of subalgebras B_{i}. Notice that if we apply an inner automorphism to R then Φ is changed as a matrix of a bilinear form. If this automorphism is a conjugation by a matrix P with identity grading then it is an isomorphism of graded algebras. In this isomorphic copy of $R=M_{n}$ the matrix of the involution φ will take the form of $\Phi^{\prime}={ }^{t} P \Phi P$. We build P as $P=P_{1} \otimes I+\cdots+P_{k} \otimes I$ where $P_{i} \in B_{i} C B_{i}$, for each $i=1, \ldots, k$. If B_{i} is simple then $Y_{i}=\xi_{i} I$. If B_{i} is not simple then $Y_{i}=\zeta_{i} e_{i}^{\prime}+\xi_{i} e_{i}^{\prime \prime}$. Here $e_{i}^{\prime}, e_{i}^{\prime \prime}$ are the identities of simple components of B_{i} and $e_{i}=e_{i}^{\prime}+e_{i}^{\prime \prime}$. In the matrix form, $Y_{i}=\left(\begin{array}{cc}\zeta_{i} I_{p_{i}} & 0 \\ 0 & \xi_{i} I_{p_{i}}\end{array}\right)$. Also, $S_{i}=\left(\begin{array}{cc}0 & I_{p_{i}} \\ I_{p_{i}} & 0\end{array}\right)$.

Notice that since φ is an involution, ${ }^{t} \Phi^{-1} \Phi=\omega I$ where $\omega= \pm 1$. In other words, $\Phi=\omega^{t} \Phi$. Now

$$
\begin{aligned}
{ }^{t} \Phi & =Y_{1}^{t} S_{1} \otimes{ }^{t} X_{t_{1}}+\cdots+Y_{k}{ }^{t} S_{k} \otimes{ }^{t} X_{t_{k}} \\
& =Y_{1}^{t} S_{1} \otimes \alpha\left(t_{1}, t_{1}\right) X_{t_{1}}+\cdots+Y_{k}^{t} S_{k} \otimes \alpha\left(t_{k}, t_{k}\right) X_{t_{k}}
\end{aligned}
$$

Let us set $P_{i}=\frac{1}{\sqrt{\xi_{i}}} e_{i}$. If B_{i} is simple then

$$
S_{i}^{\prime}={ }^{t} P_{i} S_{i} Y_{i} P_{i}=P_{i} S_{i} Y_{i} P_{i}=S_{i}
$$

If B_{i} is not simple then it follows from ${ }^{t} \Phi=\omega \Phi$ that $\zeta_{i}=\xi_{i} \omega \alpha\left(t_{i}, t_{i}\right)$. Then

$$
S_{i}^{\prime}={ }^{t} P_{i} S_{i} Y_{i} P_{i}=P_{i} S_{i} Y_{i} P_{i}=\frac{1}{\xi_{i}}\left(\begin{array}{cc}
0 & \xi_{i} I_{p_{i}} \\
\xi_{i} \omega \alpha\left(t_{i}, t_{i}\right) I_{p_{i}} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & I_{p_{i}} \\
\omega \alpha\left(t_{i}, t_{i}\right) I_{p_{i}} & 0
\end{array}\right) .
$$

For example, if φ is a transpose involution, that is, Φ is symmetric, then $\omega=1$ and the conjugation by P as above reduces Φ to the form

$$
\Phi=S_{1}^{\prime} \otimes X_{t_{1}}+\cdots+S_{k}^{\prime} \otimes X_{t_{k}}
$$

with

$$
{ }^{t} \Phi={ }^{t} S_{1}^{\prime} \otimes \alpha\left(t_{1}, t_{1}\right) X_{t_{1}}+\cdots+{ }^{t} S_{k}^{\prime} \otimes \alpha\left(t_{k}, t_{k}\right) X_{t_{k}}
$$

so that, according to Remark 2, each S_{i}^{\prime} is symmetric if and only if $X_{t_{i}}$ is symmetric, as claimed. If φ is a symplectic involution then $\omega=-1$ and using the same equations implies that S_{i}^{\prime} is symmetric if and only if $X_{t_{i}}$ is skew-symmetric.

The converse in the above theorem is immediate.

Now, for the determination of the gradings on simple matrix Jordan and Lie algebras, it is important to be able to compute the sets of symmetric and skew-symmetric elements of $R=$ $M_{n}(F)$ under the involution just computed. A very simple remark is as follows:

$$
\begin{aligned}
H(R, *) & =\operatorname{Span}\left\{A+A^{*} \mid A \text { from a spanning set of } R\right\} \\
K(R, *) & =\operatorname{Span}\left\{A-A^{*} \mid A \text { from a spanning set of } R\right\} .
\end{aligned}
$$

If $A=e_{i} U e_{j} \otimes X_{u}$ then $A^{*}=e_{j} S_{j}^{-1 t} U S_{i} e_{i} \otimes{ }^{t} X_{t_{j}}{ }^{t} X_{u} X_{t_{i}}$. If we perform obvious calculations we obtain the sets of symmetric and skew-symmetric elements of φ in the following form

$$
\begin{equation*}
H(R, *)=\operatorname{Span}\left\{e_{i} U e_{j} \otimes X_{u}+e_{j} S_{j}{ }^{t} U S_{i} e_{i} \otimes X_{t_{j}}{ }^{t} X_{u} X_{t_{i}}\right\} \tag{25}
\end{equation*}
$$

where $1 \leqslant i, j \leqslant k, u \in T$, and $U=e_{i} U e_{i} \in C$.
Quite similarly,

$$
\begin{equation*}
K(R, *)=\operatorname{Span}\left\{e_{i} U e_{j} \otimes X_{u}-e_{j} S_{j}{ }^{t} U S_{i} e_{i} \otimes X_{t_{j}}{ }^{t} X_{u} X_{t_{i}}\right\} \tag{26}
\end{equation*}
$$

where $1 \leqslant i, j \leqslant k, u \in T$, and $U=e_{i} U e_{i} \in C$. Here we simultaneously replaced S_{j}^{-1} and $X_{t_{j}}^{-1}$ by S_{j} and $X_{t_{j}}$.

Incidentally, this gives a canonical form for the simple graded Jordan algebras of the types $H\left(M_{n}, *\right)$ where $*$ is either transpose or symplectic involution (formula (25)), or a simple Lie algebra of the type $B_{l}, l \geqslant 2, C_{l}, l \geqslant 3$, or $D_{l}, l \geqslant 5$ (formula (26)), of which the forms suggested in [5] are a particular case.

References

[1] Yu.A. Bahturin, S. Montgomery, M.V. Zaicev, Generalized Lie solvability of associative algebras, in: Proceedings of the International Workshop on Groups, Rings, Lie and Hopf Algebras, St. John's, Kluwer, Dordrecht, 2003, pp. 1-23.
[2] Y. Bahturin, M. Zaicev, Graded algebras and graded identities, in: Polynomial Identities and Combinatorial Methods, Pantelleria, 2001, in: Lect. Notes Pure Appl. Math., vol. 235, Dekker, New York, 2003, pp. 101-139.
[3] Y. Bahturin, M. Zaicev, Group gradings on matrix algebras, Canad. Math. Bull. 45 (2002) 499-508.
[4] Y. Bahturin, S. Sehgal, M. Zaicev, Group gradings on associative algebras, J. Algebra 241 (2001) 677-698.
[5] Y. Bahturin, I. Shestakov, M. Zaicev, Gradings on simple Jordan and Lie algebras, J. Algebra 283 (2005) 849-868.
[6] L.H. Rowen, Polynomial Identities in Ring Theory, Academic Press, New York, 1980.

[^0]: * Corresponding author at: Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL A1C5S7, Canada.

 E-mail addresses: yuri@ math.mun.ca (Y. Bahturin), zaicev@ mech.math.msu.su (M. Zaicev).
 1 Work is partially supported by NSERC grant \#227060-04 and URP grant, Memorial University of Newfoundland.
 2 Work is partially supported by RFBR, grant 06-01-00485a, and SSH-5666.2006.1.

