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1. INTRODUCTION 

Let R be a complete discrete valuation ring, and (c, R, k) the class of all 
countably generated reduced R modules of torsion-free rank R. The purpose 
of this paper is to classify the members of (c, R, K), up to isomorphism, for all 
Randk. 

In 1933, Ulm [S] found his celebrated invariants, which classify all count- 
able reduced primary abelian groups. But, of course, such groups can be 
viewed in a natural manner as reduced modules over a complete discrete 
valuation ring, namely, the ring of p-adic integers. Indeed, the Ulm invariants 
classify (c, R, k), in case k = 0. In 1951, Kaplansky and Mackey [5] discovered 
other invariants, called height equivalences in this paper, which together with 
the Ulm invariants classify (c, R, k), in case k = 1. In 1961, Rotman and 
Yen [7] succeeded in generalizing the technique of Kaplansky and Mackey 
to classify (c, R, k), in case k is finite. In this paper we are able to push this 
technique to the point of classifying (c, R, k) for all values of k, by proving the 
following theorem. 

THEOREM. Let R be a complete discrete valuation ring, and M and M’ 
countably generated redwed R modules. Then M and M’ are isomorphic if, 
and only if, they have the same Ulm invariants and the same height equibalences. 

Since an R module decomposes into a direct sum of its unique maximal 
divisible submodule and a reduced submodule (unique up to isomorphism), 
and since the classification of all divisible R modules is completely known, we 
obtain with the above theorem a classification of all countably generated 
modules over complete discrete valuation rings. 

* The author’s work was supported in part, by NSF GP-8725. 
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2. BMIC NOTATIONS AND TFXMINOLOGY 

For the most part, we will follow the usual notations and terminology 
developed in the study of abelian groups (see [I] or [4]). Hereafter, R denotes 
an arbitrary discrete valuation ring, while p is a fixed but arbitrary prime of 
R. Then R is simply a local principal ideal domain with a prime element, p. 
Hence, (p) is the unique prime, in fact, a unique maximal, ideal of R, and all 
primes of R are associates of p. Since p is a uniformizing parameter [2], each 
nonzero element a E R can be written uniquely as up”, where u is a unit of R 
and n is a nonnegative integer. We write a = up” to indicate this unique 
representation. R is said to be complete if it is complete in its p-adic topology, 
equivalently, if the metric don R, induced by d(a, b) = e-* if a - b = up”, is 
complete. Q will denote the quotient field of R and K the residue field R/(p). 

We adopt the convention that the symbol co is greater than any ordinal. 
As usual, w is the first infinite ordinal. For the sake of brevity, we will call a a 
sordhal if 01 is an ordinal or the symbol co. Let a = {ai : i < K} with K < w. 
Then a = {a0 ,..., a, ,... : i < k} with the convention that a is an empty set if 
k = 0. We shall view a as an ordered set, a sequence of k terms, a row vector, 
or a column vector as the situation may demand. Furthermore, for any 
0 < r < W, a(r) will denote the ordered subset {ai E a : i < r}. Notice that 
a = a(r) if k < r, and a(0) is an empty set. 

Throughout this paper, M and M’ will denote reduced R modules. As 
usual, we define, for every element r E R, M[Y] = {x E M : TX = 0} and 
TM = {YX : x E M}. For each sordinalo1, the submodule p”M is defined induc- 
tively by paM = n {p(pflM) : /I < CX}. (Of course pOM = M.) We write 
h(x) = OL, if x .yM\pa+lM for some ordinal 01 and h(x) = co, otherwise. 
The sordinal h(x) will be called the height of x. Let 4 be a mapping from a 
subset S of M into M’. Then $ is said to be height preserving on S 
if k(x) = h[$(x)] f or all x E S (where the heights are computed in M and 
M’. respectively). If S is a subset of M, then [S] denotes the submodules 
generated by S. Finally, @ indicates a direct sum. 

3. THE INVARIANTS 

Let R and p be as in the preceding section, and M a reduced R module. 
For each ordinal (Y, the factor module (p”M) Cp]/(p”+lM) [p] can be viewed 
in a natural way as a vector space over the residue field K. The uniquely 
determined dimension of the factor space is the ar-th Ulm invariant of M, 
denoted by f*(a); and fM , a cardinal-valued function on the class of all 
ordinals, will be called the Ulm invariant of M. Clearly, fM is an invariant 
of M. 
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We now define another kind of invariant. Let k be a fixed but arbitrary 
nonzero ordinal not exceeding w. We let Rk designate the direct sum of k 
copies of R. Every element a E Rk is a k-dimensional vector of the form 
{ai : i < k). Of course ai = 0 for almost all i, in case k = w. Next, define 
m”(Q) to be the collection of all k x k row-finite matrices over the field Q. A 
matrix c E m”(Q) is said to be integral if all components of c are elements of R. 
Identity, diagonal and nonsingular matrices are defined as usual even in case 
k = w. 

Letf(R”) be the class of all sordinal-valued functions on Rk, and suppose 
g, g’ Ed. Define g wg’ to mean that there is a fixed nonsingular integral 
matrix c E mk(Q) and a fixed nonsingular diagonal integral matrix d E m”(Q) 
such that g(ac) = g’(ad) f or all a E Rk. It is routine to prove that the relation 
“N” is an equivalence relation onf(R”). 

A torsion-free basis (or simply basis) of an R module, M, is a maximal 
linearly independent subset of M. A basis of M is not necessarily unique, but 
all bases of M have the same cardinality which is called the torsion-free rank 
(or simply rank) of M, and is denoted by r(M). The rank of M is precisely 
the dimension of the vector space Q OR M over Q. Suppose that r(M) is 
non-zero and at most countable, and set k = r(M). Let y = (yi : i < k} be 
an ordered basis of M. The basis y defines a sordinal-valued function g on 
Rk by g(u) = h(uy) = h(C {aiyi : i < k}) for all a E Rk. We will call g the 
height function of the basis y. Clearly, g Ed. Let y’ = {yi’ : i < k) be 
another ordered basis of M, and g’ its height function. Utilizing the maximal- 
ity of bases, we can show that g wg’. Thus, M determines uniquely an 
equivalence class of f(Rk), w ic we will call the height equivalence of M h’ h 
and denote by h(M). In addition, we adopt the convention that h(M) = 00 
if r(M) = 0. Obviously, h(M) is an invariant of M. For later use we state the 
following fact whose proof is a trivial generalization of Lemma 4.2 in [6]. 
Let M and M’ be countably generated reduced R modules having the same 
ranks. Then M and M’ have the same height equivalences if, and only if, 
there are ordered bases of y and y’ of M and M’, respectively, with a height 
preserving isomorphism 7r from the submodule [y] onto the submodule 
[ y’], such that V( yi) = yi’ for all yi E y and y(’ E y’. 

4. THE EXTENSION LEMMA 

In this section we consider an extension lemma that is crucial in the proof 
of our theorem. Hereafter, we assume that R is complete. Rotman and 
Yen [7] stated and utilized an incorrect fact that an arbitrary sequence in R 
either contains a convergent subsequence or contains a subsequence whose 
terms are of the form uipn, where n is a fixed nonnegative integer and ui’s are 
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incongruent units of R (that is, the difference of any two ui)s is also a unit). 
This is true if R is, for example, a ring of p-adic integers, but generally 
untrue. However, it can be proved that an arbitrary sequence in R either 
contains a convergent subsequence or contains a subsequence whose terms are 
of the form ai+l = a0 + b,p” such that, for all i < W, b,+l - bi is a unit of 
R and n is a fixed nonnegative integer. 

Let 1cI be a reduced R module and N a submodule of M. Then, following 
Hill [3], we say that N is nice in M if for each element x E M\N the coset 
x + N contains an element t such that h(s) < h(t) for all s E x + N. In this 
case, t is said to be proper with respect to N. We can now establish the follow- 
ing important lemma which was first proved in the rank one case by Kaplansky 
and Mackey ([5], Lemma 2) and then generalized incorrectly by Rotman 
and Yen ([7], Lemma 2). 

LEMMA 4.1. Let M be a reduced R module. If N is a jinitely generated 
submodule of M, then N is nice in M. 

Proof. Since N is a finitely generated module over a principal ideal 
domain R, N is a direct sum of finitely many cyclic modules. Hence, we can 
write N = @ {[&I : i < s + I} f or some nonnegative integer s + 1. We use 
induction on s + 1. First, suppose that s + 1 = 0. Then N is nice in M, 
since N = 0. Next, assuming the induction hypothesis, we suppose that 
s + 1 is a positive integer. Take any element x E M\N. It suffices to show 
that there is an element t E x + N that is proper with respect to N. If only 
finitely many different heights occur in x + N, let t be simply an element in 
the coset x + N of the greatest height, Assume then that infinitely many 
different heights occur in the coset x + N. It is easy to see that no more 
than countably many different heights can occur. Hence, there is a sequence 
(zi : i < W> in x + N, such that (CQ = h(zJ : i < UJ> is a nondecreasing 
sequence of ordinals and for each height 01 that occurs in x + N, there is 
an m such that OL < am . Writez~=x+~{a,tj:j<s+l}foralli<w. 

Case 1 

A sequence {aij : i < W> contains no convergent subsequence. 
Without loss of generality, we may assume that {ais : i < W} contains no 

convergent subsequence. For brevity, let us write ai for ais for all i < w. 
From our remark at the beginning of this section, we can write, dropping to a 
suitable subsequence of {ai : i < U} if necessary, a,,, = a, + b,pn in such 
a way that, for all i < w, n is a fixed nonnegative integer and b,+l - bz is a 
unit of R. For all i < w define yi = (bi+I - b&l (b,,z, - b,zt+J. Notice 
that h( yi) > 0~~ and that {yi : i < w} is a sequence in the coset x’ + N’, 
where x’ = x + a,,& and N’ = @ {[ti] : i < s}. By our induction hypothesis, 
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x’ + N’ contains an element t that is proper with respect to N’. Clearly, 
t E x + N and h(t) > CQ for all i. 

Case 2 

There is a sequence {zi : i < W} such that each sequence {Q : < w}, 
j < s + 1, converges. 

Suppose that aij --f aj as i -+ w for each j < s + 1. Let 

t = x + C{a& :j <s + l}. 

For the verification that t is proper with respect to N, see [7], Lemma 2. 
It is, however, in this case that the completeness of A is essential. 

The following is a powerful extension lemma for height preserving isomor- 
phisms that has been the backbone of the classification techniques developed 
by Ulm, Kaplansky and Mackey, Rotman and Yen, Megibben, Hill, and 
others. It will also play an indispensable role in this paper. For its proof, 
which depends on our Lemma 4.1, readers are referred to [5], Lemma 3. 

LEMMA 4.2. Let M and M’ be reduced R modules having the same Ulm 
invariants, N and N’ finitely generated s&nodules of M and M’, respectively, 
and q5 a height preserving ismrphism from N onto N’. If x is an element of 
M\N such that px E N, then 9 can be extended to a height preserving isomor- 
phism, say 8, f;om [N, x] onto [N’, 6(x)]. 

5. PROOF OF THE THEOREM 

Let M and M’ be as in the statement of our theorem in Section 1. The 
necessity of the conditions of the theorem is, of course, obvious. Since M and 
M’ are countably generated and have the same rank, we may write 
r(M) = r(M’) = k for some ordinal k < w. Although we need only prove 
the theorem in case k = w, the proof we give is valid for all values of k < w. 

Since M and iW have the same height equivalences, there are bases 
y={yi:i<k} and y’=(yi : i < k} of M and M’, respectively, with a 
height preserving isomorphism 7r from [y] onto [y’], such that ?I( yi) = yi 
for all i < k. Obviously, there are countable subsets x and x’ of M and M’, 
respectively, such that M = [x, y] and M’ = [x’, y’], with pxt E [x(i), y(i)] 
and px,’ E [x’(i), y’(i)]. 

Let A, and A,’ be the zero submodules of M and M’, respectively, and +a 
the map from A, onto A,‘. Assume that, for a positive integer n + 1, we have 
constructed n + 1 mappings {& : i < n + l}, such that 
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(l*) each & is a height preserving isomorphism from Ai onto A*‘, where 
Ai and Ai’ are submodules of M and M’, respectively; 

(2*) Ai and Ai’ are given by 

Ai = [4>, Y(i), K’bw u 3wl1, 
Ai’ = [x’(i), y’(i), A[#> u y(m 

(3”) each At1 is an extension of & , that is, & < *.. < +n; and 

(4*) there exists a nonnegative integer r(n), depending on n, such that 
prcn)A, C [y(n)] and prcn)&’ C [y’(n)], and, furthermore, & = ?T, as height 
preserving isomorphisms from p7(n)A, onto p+(n)A,‘. 

Clearly, {A , A,, Ai, r(0) = 0} sa is t’ fi es conditions (l *)-(4*). Suppose that 
we can construct, for each nonnegative integer n, a mapping $,, satisfying 
the above four conditions. Set 4 = sup{& : i < w}. 4 will be an isomorphism 
from M onto M’ and the proof will be fineshed. Thus, our task in the remain- 
der of this paper is to construct a mapping+,+, satisfying conditions (l *)-(4*), 
assuming that & ,..., +n with the desired properties exist. 

Suppose that there is (6, , B, , B,‘} for some nonnegative integer m, such 
that 

(1) 0, is a height preserving isomorphism from B, onto B,‘, where B,,, 
and B,’ are submodules of M and M’, respectively; 

(2) B, and B,’ are given by 

&n = [An 3 P”‘Y,& B,’ = L%‘, P~Y~,‘I; 

(3) 0, is an extension of +n ; and 

(4) p+tn)B, C [y(n + l)], prcn)B,,,’ _C [y’(n + l)], and 0, agrees with n 
on prfn)B,,, . 

Then by applying Lemma 4.2 at most 2(m + 1) times, possibly m + 1 times 
forward and m + 1 times backward, we can extend 6, to &+r satisfying 
conditions (l *)-(4*), with r(n + 1) = r(n) + m + 1. Thus, our task reduces 
now to finding a 0, as described above. 

In case K < n < w, already ym E A,, and yn’ E A,‘. Hence, in this case, our 
task is finished by setting 0, = $,, , B, = A,, and B,,,’ = A,,‘. Assume then 
that n < K. For convenience of notation, let us write t and t’ for ym and y,,‘, 
respectively, and, u and w, with or without subscripts, for units of R. 

For each nonnegative integer m, define B, = [An, pmt] and 
B,’ = [An ,‘pY]. Obviously, B, = A,, @ CpVJ and B,,,’ = A,’ @ Ip?‘], 
and B,> B,3 me* and B,,’ 3 B,’ I -** . Hence, we can write every element 
z E B, in a unique way as z = a + upit with a E A,, . We shall write 
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z = a i upjt to indicate the uniqueness of this representation and shall 
follow the same convention for elements z’ of B,‘. Define a mapping 19, on 
B, by e,(a + upjt) =&(a) + upjt’ for all a i upjt E B, . Notice that 

0, >, . ..>e > . ..* I m/ Clearly, for each nonnegative integer m, (8, , B, , B,‘) 
satisfies the conditions (l-), (2), (3), and (4), where the condition (l-) is the 
condition (1) without the words “height preserving.” Hence, our task will be 
completed if there is a mapping 8, that is also height preserving. For the 
sake of brevity, let us write B for BO , B’ for B,,‘, and B for f3a . 

Let us call z E B good if h(x) = Q(z)] and bad, otherwise. It is clear, then, 
that we need only establish the following lemma. 

LEMMA 5.1. {j : a i upjt is bud} is bounded above. 

Proof. Since A, is a finitely generated module over the principal ideal 
domain R, we can write A, = @ ([tJ : i < s + l} for some nonnegative 
integer s + 1. Since +n is an isomorphism from A, onto A,‘, we can also 
write A,’ = @{[ti’] : i < s + l}, where 0(tJ = ti’ for all i ==c s + 1. Let 
us deny the assertion of the lemma and show that contradictions arise. Observe 
that the lemma is false if, and only if, there exists a sequence {z( : i < W} of 
bad elements, such that 

Case 1 

2e = c {uijtj :j < s + l} + uipn9, 

{n(i) : i < U} is unbounded above. 

There is an ordinal i < w such that p 7(m) is a common divisor of the coef- 
ficients {Uij :j < S + l}. 

Since (0, B, B’, r(n)} satisfies condition (4), f?(z,) = +zJ. Hence, 
h(q) = h[e(2,)], th a is, zi is good. Thus, zi is bad as well as good, which t 
is a contradiction. 

Case 2 

Without loss of generality, dropping to a subsequence if necessary, we may 
assume that {ai = uSr : i < w} is of the form ui = uipm, where m < y(n) 
is a fixed nonnegative integer for all i. Let us use induction on s + 1. Firstly, 
in case s + 1 = 0, clearly all xi’s are good, which is a contradiction. Secondly, 
in case s + 1 is a positive integer, with the induction hypothesis, we proceed 
as follows. For notational convenience, we write x’ for the image e(s), or, 
for h(zJ, and ori’ for h(z;). 

S&use a. 
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Define ti = (~~+r)-l .ai+i - (z&l xi and 5’ = (~~+r)-l zi +r - (u&l zi’ for 
all i < W. It is clear that h([J = 0~~ , h(ci’) = CQ’, and e([J = &‘. Thus, 
{& : i < W} is a sequence of bad elements of the form 

{m(i) : i < W} is unbounded above. 

This, however, contradicts the induction hypothesis. 

Subcase b. 

q) = ... = q = . . . , %’ < ... < ai’ < ... , 

OIi’ < afJ for all i < w. 

Construct sequences {& : i < UJ} and {ti’ : i < W} in the same manner as 
in the preceding subcase. Then h([J > ai , h(&‘) = ai’, and 0(Q = &’ 
for all i. But then we have a contradiction precisely as in Subcase a. 

Subcase c. 

cyo = .*- S (yi = ... ) “ol = . . . = ai’ = . . . , 

OIO -==c oIo’- 

Since A, is a finitely generated submodule of M, by Lemma 4.1, A,, is nice 
in M. Let z = pnco)t. Since z E M\A, , the coset z + A, contains an element 
5 = a + z that is proper with respect to A, . Define ti = zi - z~p*(~)-~c~)[ 
for all i, such that 0 < i < w. It is clear that & E A, , &’ E A,‘, h(&) = c+, , 
h(L’) > ab 9 and &a(&) = e(L) = 5i’* Th ese observations however contradict 
the fact that +n is height preserving. 

Subcase d. 

a0 zxz .*. = ai z --. , (Yo’ < *‘* < OLi’ < *‘* 9 

%I -=I %’ for all i. 

Construct sequences {Si : i < W} and {&’ : i < W} exactly as in Subcase c. 
Notice that A(&) = oli and h(&‘) > 0~~ for all i, such that 0 < i < w. This is 
again a contradiction. 

It is easily seen now that all possibilities under Case 2 reduce to one of the 
four subcases above by passing to subsequences and exploiting the symmetry 
between B and B’. Our proof is, therefore, complete. 
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