
 Procedia IUTAM   14  ( 2015 )  503 – 510 

Available online at www.sciencedirect.com

2210-9838 © 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Selection and peer-review under responsibility of ABCM (Brazilian Society of Mechanical Sciences and Engineering)
doi: 10.1016/j.piutam.2015.03.080 

ScienceDirect

IUTAM ABCM Symposium on Laminar Turbulent Transition

Global instability analysis of laminar boundary layer flow over a

bump at transonic conditions
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Abstract

Modal three-dimensional BiGlobal linear instability analysis is performed in steady, spanwise-homogeneous two-dimensional

laminar compressible boundary-layer flow past a millimeter-tall hemispherical bump at transonic conditions. Starting with subsonic

inlet flow, at the flow conditions considered a stationary shock is formed near the downstream end of the bump. The interplay of

shock and adverse-pressure-gradient results in a steady spanwise homogeneous laminar two-dimensional laminar separation bubble

being formed at the downstream end of the bump.

The objective of the present analysis is to interrogate this basic flow with respect to its potential to sustain low-frequency

unsteadiness arising from linear amplification of unstable traveling global flow eigenmodes. Such unsteadiness, coupled to eigen-

frequencies of the structure, can lead to resonance phenomena that are detrimental for the performance and adversely affect the

efficiency of systems on which the bump configuration is employed. Only damped global eigenmodes have been identified at the

parameters examined, pointing to the possibility of the above mentioned unsteadiness being the result of algebraic instability.
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Nomenclature

hbump Bump height

Lbump Bump width

L Length of computational domain

H Height of computational domain

ξ0 Stagnation value of variable ξ
ξ∞ Free-stream value of variable ξ

ξ̂ Amplitude perturbation of variable ξ
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1. Introduction

Shock-wave laminar boundary layer interactions (SWLBLI) are present on aerodynamic systems in the transonic

and supersonic regimes. Enhance by the presence of flow separation, SWLBLI may produce low-frequency unsteadi-

ness which can be coupled to eigenfrequencies of the structure and lead to resonance phenomena that are detrimental

for the performance and adversely affect the efficiency of such systems. Flow instability analysis may shed light on

the origin of this interaction processes. However the geometrically complex nature of the surfaces on which SWLBLI

typically appears (wedges, λ−shaped shock waves impinging upon the boundary layer, etc) has mostly confined such

analysis efforts to idealized regions of the flow, on which classic local instability analysis could be employed3.

Two types of flow configurations have been used in the literature in order to investigate transonic flow over bumps:

those in confined channels and bumps in open channels. The difference between these configurations is that in the

former case reflections exist at the top walls. In addition, two different types of bumps are mostly considered in the

literature: a variable-curvature bump (the so-called Delery bump1 geometry) as well as a circular-arc or hemispherical

bump geometry2. Finally, most studies consider application-related, high Reynolds numbers. For example Batten et

al. 11 used RANS model in order to study a flow over the Delery bump while Sandham et al. 10 used LES in the

case of a flow over a circular bump. In all cases, a strong normal shock impinges on the bump and is modified by the

interaction with the geometry in inviscid flow and, additionally, with the boundary layer, when viscosity is considered,

adopting the well-known λ pattern. In the latter case, the interaction causes separation of the boundary layer and a

low-speed recirculating bubble is observed near the shock foot. The flow perturbations that arise in this problem are

characterized by two distinct frequencies: a low frequency related with the slow motion of the shock, and a high

frequency that appears in the mixing layer where the effects of the shear stress are most relevant. An idealization

of the latter problem, which considered shock curvature has been studied by Duck et al. 3 using classic local linear

stability analysis.

The present effort focuses on the stability analysis of a freestream channel with a millimeter hemispherical bump

with maximum height of 10 % of the bump width, where the Reynolds number is small and the flow is laminar.

Advances in global linear instability analysis6 over the last decade permit commencing the analysis of SWLBLI flows.

In addition, the successful work of Crouch and co-workers8 regarding the origin of buffeting over a two-dimensional

airfoil at transonic flight conditions lends credibility to the followed approach.

2. Problem formulation

The geometry of the problem consists of a flat plate with a two-dimensional cylindrical bump element that is

homogeneous in the spanwise direction. A schematic representation of the geometry and the boundary conditions

employed for the computation of the basic state are shown in Figure 1. Zero-pressure-gradient flow of a Newtonian

Fig. 1. Computational domain and boundary conditions: Dirichlet inlet flow (yellow/left wall), freestream (green / top and right walls), adiabatic

and slip wall (red / bottom wall in D1) and adiabatic and non-slip wall (blue / bottom wall in D2).

fluid is considered, and is taken to be compressible with its direction from left to right in the sketch of Figure 1. The
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computational domain is x ∈ [−1, 4] × y ∈ [0, 1.5] in millimeters. The size of the circular-arc bump is defined by its

length, Lbump = 10−3m and height, hbump = 10−4m. Quantities are made dimensionless using the bump length (Lbump),

while temperature (T∞), velocity (U∞), density, (ρ∞) and dynamic viscosity, (μ∞) scales are defined at their respective

freestream values. The x-axis is taken to be along the streamwise direction, y is the wall-normal direction and the z-

axis is the spanwise direction. The dimensionless quantities obtained using the above scales imply that low-Reynolds

number laminar boundary layer flow ensues.

The domain is divided in two regions; D1 and D2 (see Figure 1). Base flow calculations are performed in D1 and D2

while stability analysis is only performed in D2. Inviscid velocity and adiabatic temperature boundary conditions are

considered at the D1 (red) wall, while viscous velocity and adiabatic temperature boundary conditions are considered

at the D2 (blue) wall. Freestream boundary conditions are considered at the top and outflow boundaries (green); an

analogous model proposed by Poinsot and Lele4 has been used in this respect.

2.1. Navier-Stokes equations

The non-dimensional compressible Navier-Stokes equations are given by,

∂ρ

∂t
+ ∇ · (ρu) = 0 , (1)

∂ (ρu)

∂t
+ ∇ · (ρuu) = − 1

γM2
∇p +

1

Re
∇ · σ , (2)

∂p
∂t
+ u · ∇p + γp∇ · u = γ

RePr
∇ · (κ∇T ) +

γ (γ − 1) M2

Re
Φ , (3)

where u = (u, v,w) are the three component velocities, p is the pressure, T the temperature, σ is the viscous stress

tensor of a Newtonian fluid and

Φ =
1

2

(
∇u + ∇uT

)
: σ , (4)

is the dissipation function. Here μ and κ are the dynamic viscosity and thermal conductivity, respectively. These

quantities could be obtained from the Sutherland’s formula,

μ = C1

T 3/2

T +C2

, (5)

and the relationship between μ and κ is

κ = μcp/Pr , (6)

where cp is the specific heat at constant pressure and Pr is the Prandtl number. The parameters used are C1 =

1.458 × 10−6 kg/(ms
√

K), C2 = 110.4K and Pr = 0.72; see Schlichting7 for more detail. The non-dimensional

parameters of the problem are the Reynolds number Re = ρ∞L∞U∞/μ∞ and the Mach number M∞ = U∞/
√
γRT∞.

3. Base flow

The two-dimensional compressible Navier-Stokes equations were solved using the module rhoCentralFoam

within the open-source CFD software OpenFOAM�. This module is a density-based compressible flow solver, which

uses the central-upwind schemes of Kurganov and Tadmor5 and an unstructured collocated mesh with a finite volume

method. In order to resolve the boundary layer, the grid points were clustered towards the wall in the normal direction.

Finer mesh was also used on the bump surface in the streamwise direction clustering points near to the leading and

trailing edges of the bump. Away from the bump, the mesh expands in the streamwise direction towards the inflow

and outflow boundaries with an aspect ratio close to one. The base flow computational mesh comprises a total number

of approximately 2 × 105 cells, while computations were performed in parallel on 8 cores.

A steady base flow at Re = 1380 and M = 0.675 at the inlet boundary was calculated, using ρ∞ = 1.2 kg/m3,U∞ =
229.5m/s and μ∞ = 2×10−4 kg/(ms). Convergence of the base flow was attained using around 550 control volumes in

the x-direction and 300 control volumes in the normal direction, obtaining results such as those shown in Figure 3. No
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wave reflections were observed at the top and outflow boundaries during the numerical simulations. Figure 2 shows

in semi-logarithmic scale the evolution of the relative error (defined using the transient and the converged values) of

the streamwise base flow velocity component at a given point in the flow field, close to the laminar separation bubble.

The relative error drops to ∼ −14 at 5× 10−4s, which corresponds to 23 times the characteristic residential time of the

flow.
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Fig. 2. Logarithm of relative error of U(x = 1.5, y = 0.5) versus time.

Iso-contours of streamwise and transverse base flow velocity components, U and V , and Mach number are shown

in Figure 3 were a peak of M = 1.4 is observed. The bump is placed inside the flat-plate boundary layer, but is actually

quite large compared with the characteristic dimension of the boundary layer: the displacement thickness at the inflow

and outflow boundaries are, respectively, δ∗
inflow

= 0.5 hbump and δ∗
outflow

= 1.0 hbump. A small recirculation bubble is

observed in this configuration, as shown in Figure 4. Figure 5 (left) shows the variation of the skin friction coefficient

along the bump surface. The friction coefficient decreases at the leading edge of the bump and then increases up to the

shock position. This coefficient drops suddenly across the shock and becomes negative. Flow separation exists in this

region. Reattachment occurs in a two-dimensional sense when the skin friction is again positive. Progressively the

skin-friction coefficient gradually increases downstream. The streamwise velocity component profile at the leeside

foot of the bump is shown in Figure 5 (right), where weak recirculation is observed.

Fig. 3. Steady two-dimensional laminar base flow: U velocity and streamlines (left), V velocity in dimensions variables (middle) and Mach number

contours (right).
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Fig. 4. Detail of the recirculation bubble, with Ureverse ≈ −2%U∞. Base flow streamlines are shown at the leeside foot of the bump.
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Fig. 5. (Left:) Skin friction coefficient and (Right:) Streamwise velocity component U(y) at this location.

4. Global Linear Stability Analysis

Global linear stability theory studies the temporal evolution of small amplitude disturbances superimposed upon

a base flow6. Flow is decomposed into a steady base flow Q = (ρ, ρu, ρv, E), where E is the total energy, and a

three-dimensional unsteady small perturbation q′,

∂q′

∂t
=
∂f(Q)

∂q
q
′ ≡ Aq′ , (7)

where A is the Jacobian matrix of the right-hand-side of the Navier-Stokes equations (1-3). According to the BiGlobal

Ansatz, solution of the equation (7) are sought as eigenmodes:

q′(x, y, z, t) = εq̂(x, y)ei(βz−ωt) + c.c. (8)

where ε � 1, β = 2π/Lz is the wavenumber in the spanwise spatial direction, z, q̂ are the eigenvectors andω = ωr+i·ωi

where ωr representing the circular frequency and ωi being the amplification/damping rate of the disturbances. A large-

scale non-Hermitian generalized eigenvalue problem is obtained, by inserting equation (8) into equation (7),

Aq̂(x, y) = ωBq̂(x, y). (9)

A shift-and-invert implementation of the Arnoldi algorithm was employed in order to recover a window of the

eigenspectrum centered around the shift parameter σ,

ÂX = μX , where Â = (A − σB)−1 B , μ =
1

Ω − σ , (10)
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where A and B are a matrix representation for a given discretization of the operators defined in (9) for a given

appropriate boundary conditions. The linear algebra work was performed using the sparse MUltifrontal Massively

Parallel Sparse direct Solver (MUMPS) package9. This was first successfully employed to global linear instability

problems by Crouch et al. 8.

5. Results

The eigenvalue problem (10) derived from the BiGlobal stability analysis was solved numerically using finite-

difference discretization of 6th order with Nx = 501 and Ny = 301 discretization points. Transformation functions

were used in order to follow the geometry variations and cluster points in the vicinity of the wall and the bump ends.

This involved using general transformation coordinate as well as metrics in the linearized Navier-Stokes equations,

see reference12 for more details.

The computational domain considered in the stability analysis corresponds to the region D2 in Figure 1. The

boundary conditions used for the perturbations variables were homogeneous Dirichlet at the inflow and wall, and

homogeneous Neumann at the outflow and top boundaries, with the exception of the density component which satisfies

the linearized continuity equations at the walls.
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Fig. 6. BiGlobal eigenspectrum at Re = 1380, M = 0.675, β = 1.

Figure 6 shows the eigenspectrum corresponding to Re = 1380, M = 0.675 and β = 1 where the least damped

eigenvalue is a traveling perturbation (and its complex-conjugate), marked with a red circle (marked left eigenvalue).

The next stronger damped eigenmode is a stationary perturbation, marked with a blue circle (marked right eigen-

value). Analogous eigenspectrum structure appears for any of the examined values of β ∈ [0, 4π]. Convergence of the

leading eigenvalue was attained using different domain lengths in the x-direction, as well as a larger number of dis-

cretization points. Iso-contours of the module of the spanwise perturbation velocity amplitude function and amplitude

function of the temperature perturbation of the leading traveling and stationary eigenmodes are shown in Figures 7

and 8, respectively. These perturbations are concentrated around the shock and the boundary layer downstream of the

bump. Finally, a three-dimensional reconstruction of the total spanwise velocity and temperature fields, as obtained

from the base flow and a linearly-small amount of the respective eigenmodes is shown in Figure 9. The potential

three-dimensionalization of the reattachment region and the subsequent growth in x of linear, spanwise periodic per-

turbations is evident in these results. Of particular interest is the adequate resolution of the perturbation around the

shock region, evident in the temperature field reconstruction.
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Fig. 7. Values of ||Ŵ || and ||T̂ || of the leading stationary mode at Re = 1380, M = 0.675 and β = 1.

Fig. 8. Values of ||Ŵ || and ||T̂ || of one of the leading traveling modes at Re = 1380, M = 0.675 and β = 1.

Fig. 9. Total flow field reconstruction of the spanwise velocity (left) and temperature (right) of the leading stationary mode at Re = 1380, M = 0.675

and β = 1.
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6. Conclusions

Linear three-dimensional instability analysis of laminar transonic over a circular-arc bump inside a boundary layer

has been investigated. Modal global perturbations have been unraveled, peaking in the separated flow region down-

stream of the bump. Parametric sweeps in β has shown that the two-dimensional laminar basic flow at these conditions

is stable to both two- and three-dimensional modal perturbations. Consequently, transient growth analysis of the same

geometry is presently being pursued.
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