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Abstract

When we have two expansions of physical quantity around two different points in parameter space, we 
can usually construct a family of functions, which interpolates the both expansions. In this paper we study 
analytic structures of such interpolating functions and discuss their physical implications. We propose that 
the analytic structures of the interpolating functions provide information on analytic property and Stokes 
phenomena of the physical quantity, which we approximate by the interpolating functions. We explicitly 
check our proposal for partition functions of zero-dimensional ϕ4 theory and Sine–Gordon model. In the 
zero dimensional Sine–Gordon model, we compare our result with a recent result from resurgence analysis. 
We also comment on construction of interpolating function in Borel plane.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In most non-exactly solvable problems, one tries to look for a small parameter or a large 
parameter so that we can set up a perturbative expansion. This perturbation series is typically an 
asymptotic series which is divergent and has zero radius of convergence. Often the perturbation 
series takes different forms depending on the argument of its expansion parameter. This behavior 
is known as the Stokes phenomenon [1]. For example, if we consider a physical quantity having 
an integral representation as in quantum field theory and string theory, then the integrand usually 
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has multiple saddle points and its perturbative expansion with the parameter g typically takes the 
form ∑

k

a0,kg
k + e−S1(g)

∑
k

a1,kg
k + e−S2(g)

∑
k

a2,kg
k + · · · , (1.1)

where Si(g) is the “action” evaluated at each saddle point and each sum denotes the small-g
expansion around that saddle point. In standard situations, the weight e−Si(g) is exponentially 
suppressed for real positive g and vanishes as approaching g → +0. In other words all the terms 
except the first one in (1.1) describe non-perturbative effects. However, if we change arg(g), then 
Si(g) might have negative real part. For this case, the weight e−Si(g) is not exponentially sup-
pressed but exponentially growing. This type of transition happens when we cross an anti-Stokes 
line given by Re(Si) = 0. On the other hand, the coefficients ai,k themselves might jump as we 
change arg(g). This happens when we cross a Stokes line defined by Im(Si) = Im(Sj ). Thus 
Stokes phenomena has deep connections to non-perturbative effects.

In most practical situations, we can access to only first few terms of a perturbation series 
around single saddle point for particular argument of expansion parameter. For this case, it is 
hard to find when Stokes phenomena occur and when contributions from other saddle points 
become important. In this paper we develop a tool to study Stokes phenomena in somewhat 
special situations.

Sometimes we can have two perturbative expansions of physical quantity around two different 
points in parameter space, for example, in theory with S-duality, field theory with gravity dual, 
lattice gauge theory with weak and strong coupling expansions, statistical system with high and 
low temperature expansions, and so on. One can then construct functions, which interpolate these 
two expansions. The most standard approach to this is (two-point) Padé approximant, which is 
a rational function having the two expansions up to some orders. Recently Sen has considered 
another type of interpolating function, which has the form of a Fractional Power of Polynomial 
(FPP) [2]. After a while, one of us has constructed a more general class of interpolating functions 
described by Fractional Powers of Rational function (FPR) [3], which includes the Padé approxi-
mant and FPP as special cases. It has turned out that these interpolating functions usually provide 
better approximations than each perturbative expansion in intermediate regime of the parameter, 
see [2–7] for various applications.1 Although these are quite nice as first attempts, properties of 
interpolating functions themselves have not been extensively studied yet.

In this paper we propose new properties of the interpolating functions. We focus on analytic 
structure of the interpolating functions2 by treating them as complex functions and discuss their 
physical implications. The FPR is some power of a rational function and the rational function has 
poles and zeros. When the power is not integer, then the poles and zeros of the rational function 
give rise to branch cuts of the FPR. Here we propose that the branch cuts of the FPR encode 
information about the analytic property and Stokes phenomena of the physical quantity, which 
we try to approximate. More concretely we propose that each branch cut of the FPR has the 
following possible interpretations.

1 There is also another type of interpolating functions [8], which is not special case of the FPR. This has been applied 
to O(N) non-linear sigma model.

2 Note that our interpolating function approach is different from resurgence approach, which has been recently stud-
ied in a series of works [9–23]. While we use single types of weak and strong coupling expansions as input data, the 
resurgence approach uses weak coupling expansions around multiple saddle points and does not use strong coupling 
expansion.
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1. The branch cut is particular to the FPR and the artifact of the approximation. Namely, this 
type of branch cut is not useful to extract physical information.

2. The physical quantity, which we approximate by the FPR, has a branch cut near from the 
branch cut of the FPR. Namely, the branch cut of the FPR well approximates the “true” 
branch cut of the physical quantity.

3. Near the branch cut, one of perturbation series of the physical quantity changes its dominant 
part. This case is further separated into the following two possibilities.
(a) We have an anti-Stokes line of the perturbative expansion near the branch cut. Namely, 

although the perturbative series itself does not change its own form, contributions from 
other saddle points become dominant across the line. This possibility likely occurs for 
first branch cut measured from a specific axis where we construct interpolating func-
tions.

(b) The perturbative series itself does change the form. Namely, we have a Stokes line near 
the branch cut, whose diagonal multiplier is different from 1. When we have a Stokes 
line across which sub-dominant parts of the perturbative series change, the FPR cannot 
detect this type of Stokes line.

We explicitly check our proposal in two examples: partition functions of the ϕ4 theory and the 
Sine–Gordon model in zero dimensions. Similar features seem to appear also in other examples 
such as BPS Wilson loop in 4d N = 4 Super Yang–Mills theory, energy spectrum in 1d anhar-
monic oscillator etc. [24]. We expect that our result is applicable in more practical problems, 
where we do not know exact solutions. One possible utility of such an analysis is that we can 
anticipate analytic property and Stokes phenomena of physical quantity by looking at analytic 
structures of interpolating functions.

This paper is organized as follows. In Section 2 we introduce our interpolating functions de-
scribed by the fractional power of rational functions (FPRs). In Section 3 we study interpolating 
problem in the 0d ϕ4 theory in great detail. We look at the analytic property of the interpolating 
function as a complex function and propose its physical interpretation. In Section 4 we analyze 
the 0d Sine–Gordon model and check that our proposal is true also for this model. Section 5 is 
devoted to conclusion and discussions. In Appendix A we compare our interpolating function 
with a recent result from resurgence analysis [20] in the 0d Sine–Gordon model. Our result im-
plies that the FPR and resurgence play complementary role with each other. In Appendix B we 
explain an attempt to construct interpolating function in Borel plane and test its utility in the 0d 
Sine–Gordon model. In Appendix C we write down explicit forms for interpolating functions 
used in the main text.

2. Interpolating function

We introduce the interpolating functions in this section, which is essentially a review of [3]. 
Suppose that we wish to determine a function F(g), which has3 the small-g expansion F (Ns)

s (g)

and large-g expansion F (Nl)
l (g) taking the forms

3 More generally we might have perturbative expansions around g = g1 and g = g2 with g2 > g1 and would like to 
construct their interpolating functions. However, if we change the variable as x = (g − g1)/(g2 − g), then this problem 
is reduced to interpolating problem of small-x and large-x expansions. Thus our setup does not lose generality in this 
sense.
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F (Ns)
s (g) = ga

Ns∑
k=0

skg
k, F

(Nl)
l (g) = gb

Nl∑
k=0

lkg
−k. (2.1)

We can then naively expect that these expansions approximate F(g) as

F(g) = F (Ns)
s (g) +O(ga+Ns−1) = F

(Nl)
l (g) +O(gb−Nl−1). (2.2)

Although this seems to be a somewhat limited case, this situation includes a large class of physi-
cal problems, e.g., theory with S-duality, field theory with gravity dual, lattice gauge theory with 
weak and strong coupling expansions, statistical system with high and low temperature expan-
sions, and etc.

In terms of the two expansions, one can construct the following function [3]

F (α)
m,n(g) = s0g

a

[
1 +∑p

k=1 ckg
k

1 +∑q

k=1 dkgk

]α

, (2.3)

where

p = 1

2

(
m + n + 1 − a − b

α

)
, q = 1

2

(
m + n + 1 + a − b

α

)
. (2.4)

The coefficients ck and dk are determined such that series expansions of F (α)
m,n(g) around g = 0

and g = ∞ reproduce the small-g and large-g expansions (2.1) of F(g) up to O(ga+m+1) and 
O(gb−n−1), respectively. Due to this property, the function F (α)

m,n(g) interpolates the small-g and 
large-g expansions up to these orders. Since the interpolating function is usually4 described by 
the Fractional Power of Rational function, we call this type of the interpolating function “FPR”. 
Note that the rational function inside the square bracket in (2.3) is a ratio of polynomials, i.e.,

p,q ∈ Z≥0, (2.5)

which leads the following condition

α =
{

a−b
2�+1 for m + n : even
a−b
2�

for m + n : odd,
with � ∈ Z. (2.6)

It is now easy to see that the FPR includes the Padé approximant and the Fractional Power of 
Polynomial (FPP) constructed in [2] as special cases. If we take 2� +1 = a −b for a −b ∈ Z and 
m + n to be even, then this becomes the Padé approximant while if we take 2� + 1 = m + n + 1
(2� = m +n + 1) for even (odd) m +n then we get the FPP. Therefore we below refer to also the 
Padé and FPP as FPR.

3. Partition function of zero-dimensional ϕ4 theory

In this section we study interpolation problem for the partition function of the 0d ϕ4 theory. 
Although this example has been already studied well in [2,3] for real non-negative coupling 
constant, here we consider general complex coupling. As mentioned above, we study analytic 
properties of interpolating functions and their physical implications. Let us consider the integral

4 When a − b is irrational number, the power α is irrational number.
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F(g) = 1√
g

∞∫
−∞

dx e
− x2

2g
−x4

, (3.1)

which can be exactly performed as

F(g) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

πe

1
32g2

4g

[
I− 1

4

(
1

32g2

)
− I 1

4

(
1

32g2

)]
for Re(g) > 0

πe

1
32g2

4
√−g2

[
I− 1

4

(
1

32g2

)
+ I 1

4

(
1

32g2

)]
for Re(g) ≤ 0,

(3.2)

where I (z) is the modified Bessel function of the first kind. The small-g expansion of F(g)

depends on the argument of g, and its dependence is given by

F(g) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2π − 3

√
2πg2 + 105

√
π
2 g4 +O(g6) for arg(g) ∈ (−π

2 , π
2 )√

π
2

(
105g4 − 6g2 + 2 +O(g6)

)− √
πie

1
16g2
(
105g4 + 6g2 + 2 +O(g6)

)
for arg(g) ∈ (π

2 ,π)√
π
2

(
105g4 − 6g2 + 2 +O(g6)

)+ √
πie

1
16g2
(
105g4 + 6g2 + 2 +O(g6)

)
for arg(g) ∈ (−π,−π

2 ).

(3.3)

This dependence on arg(g) clearly reflects the fact that we have Stokes lines oriented along 
arg(g) = ±π/2 and π , across which the form of the small-g expansion changes. Notice that 
across the ray |arg(g)| > 3π/4, the terms involving the exponential factor (in lines 2 and 4 in 
eq. (3.3)) are dominant compared to those without the exponential factor. This indicates that we 
have the anti-Stokes lines oriented along arg(g) = ±3π/4.

It is easy to understand this behavior from the standard saddle point analysis for |g| 	 1. 
Saddle points x∗ of the integration are given by

x∗ = 0, x±, with x± = ± i

2
√

g
. (3.4)

Then, the “action” S(x) = x2

2g
+ x4 at the saddle points x∗ takes the values

S(x∗ = 0) = 0, S(x∗ = x±) = − 1

16g2
. (3.5)

For |arg(g)| < π/2, we can pick up only the trivial saddle point x∗ = 0 by deforming the original 
integral contour (−∞, ∞) to a steepest descent contour, while we can pick up all the saddle 
points otherwise. We have relative minus sign in the contributions from the non-trivial saddle 
points x∗ = x± because directions of the steepest descent through x∗ = x± are opposite between 
the cases for π/2 < arg(g) < π and −π < arg(g) < −π/2. Note that the real parts of the action at 
the non-trivial saddle points change their signs across arg(g) = ±3π/4. This means that we have 
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Fig. 1. Summary of Stokes phenomena for the small-g expansion in the partition function of the 0d ϕ4 theory. The blue 
solid lines denote the Stokes lines while the green dashed lines denote the anti-Stokes lines. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

anti-Stokes lines of the small-g expansion at arg(g) = ±3π/4. This discussion is summarized in 
Fig. 1. The large-g expansion, on the other hand, is independent5 of arg(g):

F(g) = g−1/2
(

1

2
�(1/4) + 1

16
�(−1/4)g−1 + 1

64
�(1/4)g−2 +O(g−3)

)
. (3.6)

3.1. Interpolation along positive real axis

Let us first take the coupling g to be real and positive as usual. For this case, we have the 
following small-g and large-g expansions

F (Ns)
s (g) =

Ns∑
k=0

skg
k, s2k+1 = 0, s2k =

√
2�(2k + 1/2)

k! (−4)k, (3.7)

F
(Nl)
l (g) = g−1/2

Nl∑
l=0

lkg
−k, lk =

�
(

k
2 + 1

4

)
2k!

(
−1

2

)k

, (3.8)

which are compared with the exact result in Fig. 2 [left]. In terms of these expansions, we can 
construct FPR-type interpolating function F (α)

m,n(g) (see Appendix C.1 for explicit forms). In 
Fig. 2 [right], we test validity of the FPRs by plotting

F
(α)
m,n − F(g)

F (g)
,

against g for some (m, n, α). We easily see that these interpolating functions provide good ap-
proximations to the original function F(g). Especially F (1/2)

6,6 (g) approximates the exact result 

5 These behaviors of the expansions can be understood also from viewpoint of differential equation for the Bessel 
function although we can know this information after finding the exact result. The modified Bessel function has essential 
singularity at g = 0 and has only a branch cut singularity at g = ∞. The Stokes phenomenon of the small-g expansion is 
a manifestation of the essential singularity. There is no such behavior near the branch point, and the large g expansion is 
independent of arg(g).
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Fig. 2. [Left] The partition function of the 0d ϕ4 theory (black solid), its small-g expansions F(Ns )
s (g) (red dotted) and 

large-g expansions F(Nl )

l
(g) (blue dashed) for arg(g) = 0. [Right] Comparison of the FPRs with some (m, n, α) on the 

non-negative real axis of g. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

F(g) very well: the maximal value of the ratio |(F (1/2)

6,6 (g) − F(g))/F (g)| is O(10−8). Thus we 
find that our interpolating scheme in this example works quite well at least along the positive real 
axis of g. Of course this result is not new and has been already seen in the previous studies [2,3]. 
Here we ask another question. Suppose we perform naive analytic continuation of the interpo-
lating function F (α)

m,n(g) to the whole complex plane of g. Then, does the interpolating function 
F

(1/2)

6,6 (g), which is very precise along the positive real g, still gives a good approximation beyond 
the positive real axis?

In order to answer this question, we plot the quantity6 |F (1/2)

6,6 (g)/F (g) − 1| against |g| for 
some arg(g) in Fig. 3. First, we easily observe in Fig. 3 [left top] that the FPR gives very precise 
approximation for arg(g) = π/10, whose relative error is O(10−7) at worst. Fig. 3 [right top] 
shows that this is true also for arg(g) = 4π/10, albeit not as accurate as that for arg(g) = π/10. 
We therefore conclude that the FPR can give good approximation of the exact function even 
beyond the real positive axis. However, as we further increase arg(g) to π , the approximation 
starts becoming worse. As seen in Fig. 3 [left bottom], the FPR still gives good approximation 
for arg(g) = 6π/10 but the relative error becomes O(0.1%). Since we have the exponentially 
suppressed corrections in the weak coupling regime for π/2 < arg(g) < 3π/4, which comes 
from the nontrivial saddle points, we recognize that the exponentially suppressed corrections are 
responsible for this error. For 3π/4 < arg(g) < 5π/4, the contributions from the nontrivial saddle 
points become exponentially growing. Since the FPR lacks this information, the FPR should 
show very large error for 3π/4 < arg(g) < 5π/4 in small-|g| regime. Indeed we have O(100%)

error on the negative real axis as seen in Fig. 3 [right bottom]. In Fig. 4, we summarize validity 
of approximation by the FPR. The shaded part shows the region where the FPR has more than 
5% relative error. We also draw the zeros and poles of the rational function (F (α)

6,6 )2 associated7

with the FPR, which give branch cuts of the FPR. From this figure we observe some points:

• The shaded region looks like a fan, whose radial bounding lines are close to the anti-Stokes 
lines of the small-g expansion. This is natural since the dominant part of the small-g ex-

6 Note that (F (1/2)
6,6 (g) − F(g))/F (g) does not take real value for complex g in general.

7 If we consider general FPR F(α)
m,n , then its natural associated rational function is (F (α)

m,n)1/|α| .
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Fig. 3. The quantity |(F (1/2)
6,6 (g) − F(g))/F (g)| is plotted against |g| for some arg(g).

Fig. 4. The region where the interpolating function F(1/2)
6,6 (g) gives bad approximation. In the shaded region, the ratio 

|F(1/2)
6,6 /F − 1| is larger than 0.05. We also plot “zeros” (the symbol “+”) and “poles” (the symbol “∗”) of the ra-

tional function (F (1/2)
6,6 (g))2 associated with the FPR. The blue solid lines denote the branch cuts of F(1/2)

6,6 (g). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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pansion changes across the anti-Stokes lines and the FPRs do not know this information 
in small-|g| regime. The radius of the fan should be finite since the FPR gives the correct 
large-g expansion by construction even across the anti-Stokes lines.

• The boundary of the (shaded) fan-like region is similar to the region surrounded by the origin, 
poles and zeros of the rational function (F (1/2)

6,6 (g))2. Especially the anti-Stokes lines are 
close to the lines between the origin and the first poles measured from the positive real axis.8

This would be natural because when the exact function F(g) does not have singularities 
around the poles of (F (1/2)

6,6 (g))2, then the FPR differs from the exact function by a large 
amount in the neighborhood of its poles. Hence for this case, the FPR clearly gives bad 
approximation around the poles.

• There is a branch cut from the pole at the negative real axis to g = −∞. Since the partition 
function F(g) has the branch cut on (0, −∞), we interpret that the branch cut of the FPR 
approximates the “true” branch cut of the exact result.

• Although the small-g expansion has the Stokes line at the imaginary axis, the FPR does not 
detect this Stokes line. This is because the dominant part of the small-g expansion does not 
change across this Stokes line and only the sub-dominant part changes.

These results lead us to the conjecture about the general feature of FPR that each branch cut of 
the FPR has the following possible interpretations.

1. The branch cut is an artifact of the approximation by the FPR.
2. The physical quantity F(g) has a branch cut near the branch cut of the FPR.
3. Near the branch cut, one of perturbation series of F(g) changes its dominant part. This case 

implies the following two possibilities on Stokes phenomena.
(a) We have an anti-Stokes line of the perturbative expansion near the branch cut. This 

possibility occurs most likely for the first branch cut measured from the specific axis 
where the interpolating function is constructed.

(b) We have a Stokes line near the branch cut, whose diagonal multiplier is different from 1.

One of immediate questions here is if these features are particular for this problem or true also 
for other problems. We will explicitly check this in Section 4 that this is true also for the partition 
functions of the 0d Sine–Gordon model. This seems to hold also in other examples such as BPS 
Wilson loop in 4d N = 4 Super Yang–Mills theory, energy spectrum in 1d anharmonic oscillator 
etc. [24]. Another important question is if we can construct another interpolating function, which 
gives good approximation in the region, where the interpolating function along the positive real 
axis becomes bad. One natural way to do this is to construct interpolating functions along a 
specific axis with |arg(g)| > 3π/4, where dominant part of the small-g expansion comes from 
the non-trivial saddle points, and then to extend these to the complex g. In next subsection, we 
will perform this by considering interpolating functions along the negative real axis.

Remarks. One might ask if the FPRs F (α)
m,n with the same (m, n) but different α gave similar 

results. In this example we find that the results strongly depend on α. For instance, let us look 
at Fig. 5, which is similar to the plot in Fig. 4 but for F (1/26)

6,6 (g). Note that the FPR for this 
case becomes the FPP [2]. On the real positive axis, this interpolating function gives maximum 

8 The first poles are located at arg(g) 
 ±2.358 while the anti-Stokes lines are oriented along arg(g) = 3π/4 
 2.356.
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Fig. 5. Similar plot as Fig. 4 for the FPP F
(1/26)
6,6 (g).

error of about 0.6%. It is easy to see from Fig. 5 that the analytic structure of F(1/26)

6,6 (g) is very 

different from the one of F (1/2)

6,6 (g). Especially, when we start from the real positive axis and 
go towards the anti-Stokes line at arg(g) = 3π/4, we encounter many branch cuts for this case. 
Another important difference is that the first branch cuts from the real positive axis are located at 
the pretty smaller angle arg(g) 
 ±1.21, which is quite far from the location of the anti-Stokes 
likes. This seems to be the reason why the FPP F(1/26)

6,6 (g) gives the worse approximation than 

F
(1/2)

6,6 (g).

3.2. Interpolation along negative real axis

In order to construct another interpolating function precise for |arg(g)| > 3π/4, let us consider 
interpolating function along the negative real axis of g and then consider its naive analytic con-
tinuation to the whole complex plane. The function F(g) has the following small-g and large-g
expansions on ε-neighborhood of the negative real axis:

F(−t + iε) = −√
πie

1
16t2
(

2 + 6t2 +O(t4)
)

+
√

π

2

(
2 − 6t2 +O(t4)

)
+O(ε)

= −it−1/2
(

1

2
�(1/4) − 1

16
�(−1/4)t−1 + 1

64
�(1/4)t−2 +O(t−3)

)
+O(ε),

F (−t − iε) = +√
πie

1
16t2
(

2 + 6t2 +O(t4)
)

+
√

π

2

(
2 − 6t2 +O(t4)

)
+O(ε),

= +it−1/2
(

1

2
�(1/4) − 1

16
�(−1/4)t−1 + 1

64
�(1/4)t−2 +O(t−3)

)
+O(ε), (3.9)
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Fig. 6. [Left] The function F̃ (g) = ie
− 1

16g2
F(g) (black solid), its small-g expansions F̃

(Ns )
s (g) (red dotted) 

and large-g expansions F̃ (Nl )

l
(g) (blue dashed) for arg(g) = π − ε. [Right] The quantity (F̃ (α)

m,n(t)/F̃ (t) − 1) =
(F

(α)
L+,m,n

(−t)/F (−t) − 1) is plotted to t = |g|. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

with t ∈ R+. Namely, the dominant parts of the small-g expansion and the large-g expansion 
change their signs across the negative real axis. This reflects that the exact function F(g) has the 
square root branch cut on the negative real axis. Instead of F(g), let us consider interpolating 
functions of the quantity:

F̃ (t) = lim
ε→+0

ie
− 1

16g2 F(g + iε)

∣∣∣∣
g→−t

, t ∈ R+. (3.10)

The function F̃ (t) has the small-t and large-t expansions,

F̃ (t) = 2
√

π + 6
√

πt2 + 105
√

πt4 + 3465
√

πt6 + 675675
√

πt8

4
+ O
(
t10
)

= t−1/2

⎛
⎝ π√

2�
(

3
4

) + πt−1

8
√

2�
(

5
4

) − πt−2

32
√

2�
(

3
4

) − πt−3

256
√

2�
(

5
4

) + O
(
t−4
)⎞⎠ ,

(3.11)

where we have dropped the exponentially suppressed correction O(e
− 1

16t2 ) coming from the 
trivial saddle point in the small-t expansion. Denoting interpolating function of F̃ (t) as F̃ (α)

m,n(t), 
we can approximate the original function by using the function

F
(α)
L±,m,n(g) = ∓ie

+ 1
16g2 F̃ (α)

m,n(−g). (3.12)

The interpolating function F (α)
L±,m,n(g) reproduces the small-g and large-g expansions of F(g)

for g ∈ R− ± iε up to certain orders. Indeed F (α)
L+,m,n(g) approximates F(g) quite well along 

the negative real (+iε) axis9 as seen in Fig. 6 [right]. Especially F (α)
L±,10,10(g) has about relative 

0.8% error at worst.

9 Similar result holds also for F(α)
(g).
L−,m,n
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Fig. 7. [Left] The region where the ratio |F(1/2)
L+,10,10/F − 1| is larger than 0.05. We also plot zeros (+) and poles (∗) of 

the rational function (F̃ (1/2)
10,10)2. The blue solid lines denote the branch cuts of F(1/2)

L+,10,10. [Right] Similar plot as the left 
for F(1/2)

L−,10,10. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

Let us consider general complex g in the interpolating function F (α)
L±,m,n(g) as in the last 

subsection. Then, unless we cross the anti-Stokes line or branch cuts, F (α)
L±,m,n(g) gives the cor-

rect large-g expansion and dominant part of small-g expansion. If we cross the anti-Stokes line, 
then the small-g expansion is dominated by the contribution from the trivial saddle point and 
F

(α)
L±,m,n(g) should fail to approximate F(g) in small-|g| regime. Also, if we cross the branch cut 

particular to the FPR, then the FPR will pick up an extra phase and also break the approximation. 
This extra phase could be trivial depending on the number of times, where we cross branch cuts.

The validity of the approximation by F (−1/2)

L±,10,10,(g) is summarized with its analytic property in 
Fig. 7. One of important differences from the interpolation along the real positive axis is that the 
(semi-)circular branch cut of F (1/2)

L±,10,10(g) surrounds all the poles and zeros on the right plane. 

Therefore if we go across the circular branch cut on the right half plane, then F (1/2)

L±,10,10(g) under-
goes a sign flip and hence it fails to approximate F(g) across the circular branch cut. However, 
these FPRs also have a branch cut along the positive real axis and crossing this branch cut on 
the positive real axis leads to another flip in the sign. As a result F (1/2)

L±,10,10(g) recovers the cor-
rect sign and gives the good approximation to F(g) again. That is why we see the disconnected 
unshaded regions in Fig. 7.

Another important difference is that the first branch cuts as measured from the negative real 
axis slightly deviate from the anti-Stokes lines. While the anti-Stokes lines are oriented along 
arg(g) = ±3π/4 
 ±2.356, these first cuts are located at the angle10 arg(g) = ±2.504. However, 
we expect that as increasing the values of (m, n) in the FPR F (1/2)

m,n , the first poles of (F (1/2)
m,n )2

will approach to the first zeros from the negative real axis and the first cuts will finally vanish for 

10 Note that when we write values of arg(g), we always denote the values measured with respect to the positive real axis 
with counterclockwise.
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Fig. 8. [Left] First poles and zeros of (F (1/2)
m,n )2 from the negative real axis for various (m, n). The symbol “+” denotes 

zeros and “*” denotes poles. [Right] The region where the patch F ′(g) of the best FPRs gives more than relative 5%
error.

sufficiently large (m, n). Indeed we can easily observe in Fig. 8 [left] that the pair of first zeros 
and poles seem to converge to the same point as increasing (m, n). Thus we conclude that the 
first pair of the branch cuts are the artifact of the approximation by the FPR with insufficiently 
large (m, n). We call this type of singularities “fake singularities”. The above result would be 
natural because the FPR with larger (m, n) tends to give better approximation in this problem 
and may improve the validity of the approximation near the anti-Stokes lines.11 In next section 
we will see that FPRs in the 0d Sine–Gordon model have similar features.

Finally let us find good approximation of F(g) in region as wide as possible by patching the 
best interpolating functions along the positive and negative real axis. In Fig. 8 [right], we draw 
range of validity of approximation by

F ′(g) =

⎧⎪⎪⎨
⎪⎪⎩

F
(1/2)

6,6 (g) for |arg(g)| < 3π/4

F
(1/2)

L+,10,10(g) for 3π/4 < arg(g) < π

F
(1/2)

L−,10,10(g) for − π < arg(g) < −3π/4.

(3.13)

This indicates that the patching F ′(g) has 5% or better accuracy in the very wide region.

4. Partition function of zero-dimensional Sine–Gordon model

Let us consider the partition function of the zero-dimensional Sine–Gordon model:

F(g) = 1√
g

π/2∫
−π/2

dx e
− 1

2g
sin2 x

, (4.1)

11 When either of the small-g or large-g expansion is convergent as in this problem, we expect this tendency because 
the convergent expansion itself gives very precise approximation inside its radius of convergence and we can regard their 
FPRs with large (m, n) as analytic continuation of the convergent expansion to whole range of values of g. However, it is 
nontrivial in general whether the decreasing behavior of errors in the FPRs will be monotonic or not, although the error 
of the particular FPR F(1/2)

m,n in this problem seems to be monotonically decreasing. For example, in 2d Ising model with 
finite volume, both low and high temperature expansions of specific heat are convergent For this case, error of its FPR 
with fixed α tends to decrease but not monotonically decrease as increasing (m, n) [3].
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Fig. 9. Summary of Stokes phenomena for the small-g expansion in the partition function of the 0d Sine–Gordon model. 
The blue solid lines denote the Stokes lines while the green dashed lines denote the anti-Stokes lines. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

which was considered by Cherman–Koroteev–Unsal in the context of resurgence [20]. As in the 
last section, this integral can be evaluated exactly as

F(g) = π√
g

e
− 1

4g I0

(
1

4g

)
. (4.2)

The function F(g) has the following small-g and large-g expansions

F(g) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
π
32 (8 + 4g + 9g2 +O(g3)) for arg(g) = 0√
π
32 (8 + 4g + 9g2 +O(g3)) − i

√
π
32e

− 1
2g (8 − 4g + 9g2 +O(g3))

for arg(g) ∈ (0,π)√
π
32 (8 + 4g + 9g2 +O(g3)) + i

√
π
32e

− 1
2g (8 − 4g + 9g2 +O(g3))

for arg(g) ∈ (−π,0),

(4.3)

while large-g expansion is given by

F(g) = πg−1/2
(

1 − 1

4
g−1 + 3

64
g−2 − 5

768
g−3 +O(g−4)

)
. (4.4)

Notice that the small-g expansion has a Stokes line at arg(g) = 0, π and anti-Stokes lines at 
arg(g) = ±π/2 as summarized in Fig. 9. We can again understand this from the viewpoint of 
saddle points analysis. Saddle points of the integration are given by x∗ = 0, ±π/2. At the saddle 
points, the action S(x) = 1

2g
sin2 x takes the values

S(x∗ = 0) = 0, S(x∗ = ±π/2) = 1
. (4.5)
2g
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Fig. 10. [Left] The partition function of the 0d Sine–Gordon model (black solid), its small-g expansions F (Ns )
s (g) (red 

dotted) and large-g expansions F(Nl)

l
(g) (blue dashed) for arg(g) = 0. [Right] The function (F (α)

m,n/F − 1) is plotted to 
g for some (m, n, α). (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

We can pick up all the saddle points through steepest descent except12 for arg(g) = 0. We again 
have relative minus sign in the contributions from the non-trivial saddle points x∗ = ±π/2 be-
cause directions of the steepest descent through x∗ = ±π/2 are opposite between the cases for 
0 < arg(g) < π and −π < arg(g) < 0. As in the 0d ϕ4 theory, below we consider interpolating 
functions along the positive and negative real axis, and study their analytic properties as complex 
functions.

4.1. Interpolation along positive real axis

We start with interpolating functions along the non-negative real axis of g and then analyt-
ically continue to complex coupling. For this case, we have the following small-g and large-g
expansions

F (Ns)
s (g) =

Ns∑
k=0

skg
k, sk = √

2π
2k�2(k + 1/2)

�(k + 1)�2(1/2)
,

F
(Nl)
l (g) = g−1/2

Nl∑
l=0

lkg
−k, lk = √

π
�(k + 1/2)

�(k + 1)
, (4.6)

which are compared with the exact result in Fig. 10 [left]. In terms of these expansions, we can 
construct interpolating function F (α)

m,n(g) (see Appendix C.2 for explicit forms).
In Fig. 10 [right], we compare some FPRs with the exact result for arg(g) = 0. As in the 0d ϕ4

theory, we find that these interpolating functions well approximate the exact result for positive 
real g. For example, the best approximation F (−1/2)

8,8 (g) among the FPRs has O(0.1%) error at 

worst. Next let us consider complex g in the best FPR F (−1/2)

8,8 (g). We summarize the validity 

of the approximation with analytic structures of F (−1/2)

8,8 (g) in Fig. 11 [left]. The shaded region 

12 Note that for arg(g) = 0± , direction of the steepest descent around x∗ = ±π/2 is arg(x) = ∓(π/2 − 0±) while the 
one for x∗ = 0 is arg(g) = 0± .
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Fig. 11. [Left] In the shaded region, the ratio |F(−1/2)
8,8 /F − 1| is larger than 0.05. We also plot zeros (+) and poles (∗) 

of F(−1/2)
8,8 (g). The blue solid line denotes the branch cuts. [Right] First poles and zeros of (F (−1/2)

m,n )2 from the positive 
real axis for various (m, n). (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

again starts with the first branch cuts seen from the positive real axis, which are given by the first 
poles and zeros of the rational function (F (−1/2)

8,8 (g))2. The first poles are located at arg(g) 

±0.9348, which is not near from the anti-Stokes lines at arg(g) = π/2 
 ±1.571. We again 
expect that the first branch cuts will vanish as increasing (m, n) in F (−1/2)

m,n (g). Indeed Fig. 11
[right] implies that the first poles will collapse to the first zeros for large (m, n) as in Section 3.2. 
Hence we conclude that the branch cuts are the fake singularities and the FPR F (−1/2)

m,n (g) with 
sufficiently large (m, n) would give good approximation in the right-half plane of g. In next 
subsection, we aim to construct interpolating functions approximating the exact result on the 
left-half plane by considering interpolating problem along the negative real axis.

4.2. Interpolation along negative real axis

Let us consider interpolating problem along the negative real axis. The function F(g) has the 
following expansions

F(−t + iε) =
√

π

32
(8 − 4t + 9t2 +O(t3)) − i

√
π

32
e

1
2t (8 + 4t − 9t2 +O(t3)) +O(ε)

= −it−1/2
(

π + 1

4
πt−1 + 3

64
πt−2 + 5

768
πt−3 +O(t−4)

)
+O(ε),

F (−t − iε) =
√

π

32
(8 − 4t + 9t2 +O(t3)) + i

√
π

32
e

1
2t (8 + 4t − 9t2 +O(t3)) +O(ε),

= +it−1/2
(

π + 1

4
πt−1 + 3

64
πt−2 + 5

768
πt−3 +O(t−4)

)
+O(ε), (4.7)

with t ∈R+. The dominant parts of the expansions change the signs across the negative real axis 
as in the ϕ4 theory since F(g) has the branch cut on the real negative axis. Hence it is more 
appropriate to consider the function

F̃ (t) = lim ie
1

2g F (g + iε)

∣∣∣ , t ∈R+. (4.8)

ε→+0 g→−t
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Fig. 12. [Left] The function F̃ (g) = ie
1

2g F (g) (black solid), its small-g expansions F̃ (Ns )
s (g) (red dotted) and large-g

expansions F̃ (Nl )

l
(g) (blue dashed) for arg(g) = π − ε. [Right] The relative error (F̃ (α)

m,n/F̃ − 1) is plotted to |g| for real 
negative g. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

The function F̃ (t) has the expansions,

F̃ (t) = √
2π +

√
π

2
t + 9

4

√
π

2
t2 + 75

8

√
π

2
t3 +O(t4)

= t−1/2
(

π − 1

4
πt−1 + 3

64
πt−2 − 5

768
πt−3 +O(t−4)

)
, (4.9)

where we have dropped the exponentially suppressed correction O(e− 1
2t ) in the small-g expan-

sion (see Fig. 12 [left] for comparison of these expansions with the exact result of F̃ (t)). Then 
we can construct the FPR F̃ (α)

m,n(t) to interpolate these expansions and approximate the original 
function F(g) by

F
(α)
L±,m,n(g) = ∓ie

− 1
2g F̃ (α)

m,n(−g). (4.10)

The function F (α)
L±,m,n(g) reproduces the small-g and large-g expansions of F(g) for g ∈ R− ± iε

up to certain orders.
In Fig. 12 [right] we check that the interpolating functions F̃ (α)

m,n(g) well approximate F̃ (g) on 
the negative real axis. We again summarize the validity of approximation by F (−1/2)

L±,9,9(g) and its 
analytic property in Fig. 13. Starting with the negative real axis counterclockwise (clockwise), 
the approximation F(−1/2)

L+,9,9(g)(F
(−1/2)

L−,9,9(g)) gets worse across the first branch cut as in last sub-
section, which is located around the line arg(g) 
 (−)2.2578 and deviates from the anti-Stokes 
lines. However, according to Fig. 14 [left], the first branch cuts seems to shrink as increasing 
(m, n) in (F (−1/2)

L±m,n(g))2. Thus we expect that the branch cut is the fake singularity and the FPR 

F
(−1/2)
L+,m,n(g) (F (−1/2)

L−,m,n(g)) with sufficiently large (m, n) well approximates F(g) in the left-top-
quarter (left-bottom-quarter) plane.

Let us patch the best interpolating functions along the positive and negative real axis as in the 
ϕ4 theory. In Fig. 14 [right], we draw range of validity of approximation by

F ′(g) =

⎧⎪⎪⎨
⎪⎪⎩

F
(−1/2)

8,8 (g) for |arg(g)| < π/2

F
(−1/2)

L+,9,9(g) for π/2 < arg(g) < π

F
(−1/2)

L−,9,9(g) for − π < arg(g) < −π/2.

(4.11)

This indicates that the patching F ′(g) has 5% or better accuracy in the fairly wide region.
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Fig. 13. [Left] The region where the ratio |F(−1/2)
L+,9,9/F − 1| is larger than 0.05. We also plot zeros (+) and poles (∗) of 

the rational function (F̃ (1/2)
10,10)2. The blue solid lines denote the branch cuts of F(−1/2)

L+,9,9. [Right] Similar plot as the left 
for F(−1/2)

L−,9,9. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

Fig. 14. [Left] First poles and zeros of (F (−1/2)
L+,m,n

)2 from the positive real axis for various (m, n). [Right] The region 
where the patch F ′(g) of the best FPRs gives more than 5% error.

5. Conclusion and discussions

We have studied analytic structures of some interpolating functions and discussed their phys-
ical implications. We have proposed that the analytic structures of the interpolating functions 
provide information on analytic property and Stokes phenomena of the physical quantity, which 
we approximate by the interpolating functions. More concretely, we have mainly considered the 
roles of the first branch cuts measured from a specific axis where we construct the interpolat-
ing functions. If the first branch cuts are not “fake singularities”, then we expect that the cuts 
approximate those of the exact result or indicate locations of Stokes or anti-Stokes lines. When 
the cuts are fake singularities, we should consider next cuts in order to get physical implications. 
We have explicitly checked our proposal in the partition functions of the 0d ϕ4 theory and the 
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Sine–Gordon model. This seems to hold also in other examples such as BPS Wilson loop in 4d 
N = 4 Super Yang–Mills theory, energy spectrum in 1d anharmonic oscillator etc. [24].

We expect that our result is applicable in more practical problems, where we do not know 
exact solutions. One possible application of our results is to use them to find Stokes behavior of 
the physical quantity by studying analytic structures of interpolating functions.

We have compared the result of the FPR with the recent result [20] of the resurgence in 
the 0d Sine–Gordon model. We have seen that the finite order approximation of the resurgence 
give better approximations than the FPR in the region where the FPR gives relatively imprecise 
approximation while the FPR is more precise in sufficiently strong coupling region. This implies 
that the FPR and resurgence play complementary roles. It will be interesting to compare them in 
more detail.

One of subtle points in our approach is concerned with the fake singularities. It is unclear 
how we should extend the definition of the fake singularities to more general problem. We have 
defined the fake singularity in our two examples as the branch cut shrinking for large (m, n)

with fixed α. Since the relative errors seem to monotonically decrease as increasing (m, n) in 
our examples, it would be reasonable to expect that the FPRs with sufficiently large (m, n) have 
larger range of validity in the complex g-plane. However, in general problem, FPRs with larger 
(m, n) do not necessarily give better approximations as seen in [3]. Natural extension of the 
definition would be to consider a family of FPRs {F (αs)

ms,ns
} satisfying

∣∣∣∣∣F
(αs)
ms,ns

F (g)
− 1

∣∣∣∣∣<
∣∣∣∣∣F

(αs+1)
ms+1,ns+1

F(g)
− 1

∣∣∣∣∣ , (5.1)

and define fake singularity as a cut, which shrinks as we increase s. It would be interesting to 
pursue this direction further.

In this paper we have focused on analytic properties of the best interpolating functions, which 
provide the best approximation among the given interpolating functions along a specific axis. 
However, when we do not know the exact results, it is nontrivial which interpolating functions 
give relatively better approximation as discussed in [3]. Although the work [3] has proposed a 
criterion to choose the best interpolating function in terms of two perturbative expansions, we 
need information on large order behavior of the expansions to use the criterion. It is nice if we use 
analytic properties of the interpolating functions to determine the relatively better interpolating 
functions without knowing exact results. In our examples, the exact results have the square-root 
type branch cuts. Interestingly the best interpolating functions are at α = ±1/2 and hence also 
have the square-root type branch cuts. Thus the analytic properties of the interpolating functions 
would be helpful to improve such criterion.

We have seen that each FPR considered here has its own angular wedge of validity. By patch-
ing the best FPRs along the positive and negative real axis, we have obtained the approximation 
with larger range of validity than each FPR. It would be interesting if one can construct single 
interpolating function, which gives small-g and large-g expansions for all arg(g). One might 
think that this was conceptually similar to finding connection formula between different Stokes 
domains in exact JWKB method. However there are some important differences. One of such 
differences is that FPR often still gives good approximation even across Stokes line while ap-
proximation by FPR necessarily breaks down across the anti-Stokes line. For example, in the 0d 
ϕ4 theory, the best FPR along the positive real axis gives precise approximation even across the 
Stokes line at arg(g) = π/2 unless we approach to the anti-Stokes line at arg(g) = 3π/4. Thus 
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the connection formula in JWKB does not seem to give useful hints. Let us see one of main 
difficulties to construct the single interpolating function valid for all arg(g) in the toy example:

F(g) = F0(g) + e
− 1

g F1(g), with F0(g) =
∞∑

k=0

a0,kg
k, F1(g) =

∞∑
k=0

a1,kg
k,

where the summations F0(g) and F1(g) are convergent, and the exact result of F(g) is given by 
their analytic continuations. Let us consider FPR to interpolate small-g and large-g expansions 
of F(g). If we construct FPR along the positive real axis, then the FPR interpolates F0(g) and the 
large-g expansion of F(g). Some part of the information about the large-g expansion is encoded 
in F1(g), but the FPR does not have this information in small-g regime. This missing information 
gives exponentially suppressed error on the right plane of g and exponentially growing error on 
the left plane for small |g|. Similarly if we construct FPR along the negative real axis, then that 
FPR does not have the information that a part of the large-g expansion comes from F0(g). Of 
course we can find much better approximation in this example by separately constructing FPRs 
to interpolate F0,1(g) and large-g expansion of analytic continuation of F0,1(g). However this 
information is almost equivalent to have the exact result and there is no motivation to perform 
this procedure.
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Appendix A. Comparison with resurgence result

As mentioned in the main text, the authors in [20] have performed resurgence analysis in the 
0d Sine–Gordon model. It is interesting to compare their result with our interpolating functions. 
Their result is

F(g) =
{
Sarg(g)�0(g) − ie

− 1
2g Sarg(g)�1(g) for arg(g) ∈ (0,π)

Sarg(g)�0(g) + ie
− 1

2g Sarg(g)�1(g) for arg(g) ∈ (−π,0),
(A.1)

where

Sθ�0,1(g) = 1

g

+∞eiθ∫
0

dt e
− t

g B̃�0,1(t). (A.2)

The function B̃�0(t) (B̃�1(t)) denotes analytic continuation of Borel transformation of the 
small-g expansion coming from the saddle point x∗ = 0 (x∗ = ±π/2), which is explicitly given 
by

B̃�0(t) = √
2π 2F1

(
1

2
,

1

2
;1;2t

)
, B̃�1(t) = √

2π2F1

(
1

2
,

1

2
;1;−2t

)
. (A.3)

Although we know all the coefficients of the small-t expansions, let us consider finite order ap-
proximation of the resurgence result as in [20] and compare this with the FPRs. Namely, instead 
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Fig. 15. [Left] |F(−1/2)
8,8 /F − 1| for arg(g) = π

100 [right] The same plot as the left in a different scale.

of using B̃�0,1(t), we terminate its small-t expansion up to O(t2N+1) and use its one-point Padé 
approximant13:

P (2N+1)(t) =
∑N

k=0 ckt
k

1 +∑N
k=1 dktk

, (A.4)

in the integration (A.2), which reproduces the small-t expansion up to O(t2N+1). This procedure 
is often called (one-point) Borel–Padé approximation.

In Fig. 15, we compare the result of the resurgence with the FPR F(−1/2)

8,8 for14 arg(g) = π
100 . 

By “O(gM) resurgence”, we mean the result obtained by the replacement B̃�0,1(t) → P (M)(t)

in (A.2) and (A.1). We first find that the resurgence result gives very precise approximation in 
weak coupling regime. Furthermore all the results of the resurgence give better approximations 
in the region where the FPR gives relatively imprecise approximation. As we go to the large-|g|
regime, the approximation by the resurgence becomes monotonically worse but the O(g51) resur-
gence still gives reasonable approximation at |g| = 2. However, if we further go to very large-|g|
regime, the approximation will breakdown.15 For example, the O(g51) resurgence has about 15%
error at |g| = 100 and 140% error at |g| = 1000. Hence in sufficiently strong coupling regime, 
the FPR always gives the better approximation than the finite order approximation of the resur-
gence. This result implies that the FPR and resurgence play complementary roles in describing 
the exact function at least in this example. It will be interesting to compare them in more detail 
and other examples.

Appendix B. Comments on interpolation in Borel plane

When small-g (large-g) expansion of the function F(g) is convergent, we expect that F(g)

is very precisely approximated by the FPRs F (α)
m,n with large m(n). How about the case where 

small-g expansion is asymptotic but Borel summable? For this case, Borel transformation of the 
small-g expansion is convergent. If we construct FPR-type interpolating function in the Borel 

13 Strictly speaking, this is so-called diagonal Padé approximant.
14 This choice of arg(g) is due to a technical problem in the integration (A.2). As decreasing arg(g), it becomes harder 
to obtain precise values of the integration. Here we expect that this result for arg(g) = π

100 is almost the same as for 
arg(g) → 0.
15 Of course, if we include arbitrarily higher order terms, then the resurgence can provide arbitrarily precise approxi-
mation. This is also the main difference between resurgence method and our interpolating function approach.
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plane, then one might expect that the “Borel-FPR” approximates the exact result of F(g) very 
well. However, in this appendix, we discuss that the Borel-FPR gives slightly worse approxima-
tion than the usual FPR at least for the partition function of the 0d Sine–Gordon model. We have 
not understood any clear reasons behind this observation.

B.1. Method

Let us construct interpolating function for F(g) in Borel plane. For this purpose, it is conve-
nient to introduce following quantities:

F̃ (Ns)
s (g) = gMF (Ns)

s (g) = gã

Ns∑
k=0

skg
k, F̃

(Nl)
l (g) = gMF

(Nl)
l (g) = gb̃

Nl∑
k=0

lkg
−k, (B.1)

where

ã = M + a, b̃ = M + b. (B.2)

The parameter M is a real number satisfying

ã ≥ 1, b̃ ≥ Ns + 1. (B.3)

The Borel transformation of the small-g expansion is

BF̃ (Ns)
s (t) =

Ns∑
k=0

sk

�(ã + k)
t ã+k−1. (B.4)

We also define action of B to the large-g expansion as

BF̃
(Nl)
l (t) =

Nl∑
k=0

lk

�(b̃ − k)
t b̃−k−1. (B.5)

Then we can construct the FPR-type interpolating function BF
(α)
m,n(t) in Borel plane, which in-

terpolate BF̃
(Ns)
s (t) and BF̃

(Nl)
l (t) up to O(t ã+Ns ) and O(t b̃−Nl−2), respectively:

BF (α)
m,n(t) −BF̃ (Ns)

s (t) =O(t ã+Ns ), BF (α)
m,n(t) −BF̃

(Nl)
l (t) =O(t b̃−Nl−2). (B.6)

This implies that the original function F(g) is approximated by

FB(α)
m,n = g−M

∞∫
0

dt e
− t

g BF (α)
m,n(t), (B.7)

which we call “Borel FPR”. Indeed one can show that the function FB(α)
m,n gives F (Ns)

s (g) in 
small-g regime and F (Nl)

l (g) in large-g regime up to some orders.16 One of subtle points in 

this approach is that different values of M give different FB(α)
m,n even if we consider the same 

(m, n, α). In this paper, we will not study M-dependence and fix as M = 10.
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Fig. 16. Comparison of the Borel FPR FB(α)
m,n and usual FPR F(α)

m,n for (m, n) = (1, 1), (2, 2), (3, 3), (4, 4) with (α, M) =
(−1/2, 10).

B.2. Comparison with usual interpolating function in 0d Sine–Gordon model

Let us compare the Borel FPR with the usual FPR in the 0d Sine–Gordon model for 
arg(g) = 0. In Fig. 16 we plot

F
(20)
s − F

F
,

F
(20)
l − F

F
,

F
(−1/2)
m,n − F

F
,

F
B(−1/2)
m,n − F

F
,

against g for some values of (m, n). We find that the Borel FPRs give slightly worse approxima-
tions than the usual FPRs with the same (m, n, α) at least for these four cases. This differs from 
our naive expectation and we have not found any clear reasons for that. We will not address this 
issue further, but it would be interesting to find some good interpretation or modification of our 
construction to get better approximation than the usual FPR.

Appendix C. Explicit forms of interpolating functions

In this appendix, we write down explicit forms for interpolating functions used in the main 
text.

16 If M did not satisfy the condition (B.3), then we could not guarantee this property.
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C.1. Partition function of 0d ϕ4 theory

C.1.1. Interpolation along positive real axis of g

F
(1/2)
0,0 (g) = √

2π

(
8πg

� (1/4)2
+ 1

)−1/2
,

F
(1/2)
1,1 (g) =√2π� (1/4)

(
8πg� (1/4) + � (1/4)3 + 2π� (−1/4)

64π2g2 + 8πg� (1/4)2 + � (1/4)4 + 2π� (−1/4)� (1/4)

)1/2
,

F
(1/6)
1,1 (g) = 2.50663

(
1

6.98929g3 + 7.08691g2 + 1

)1/6
,

F
(1/2)
2,2 (g) = 2.50663

√
37.9117g2 + 10.1532g + 1

72.4854g3 + 43.9117g2 + 10.1532g + 1
,

F
(1/10)
2,2 (g) = 2.50663

(
25.5499g5 + 43.1779g4 + 32.1482g3 + 30g2 + 1

)−1/10
,

F
(1/2)
3,3 (g) = 2.50663

√
324.019g3 + 110.261g2 + 16.0304g + 1

619.509g4 + 420.201g3 + 116.261g2 + 16.0304g + 1
,

F
(1/6)
3,3 (g) = 2.50663

(
28.2525g2 + 8.0997g + 1

197.465g5 + 256.834g4 + 145.795g3 + 46.2525g2 + 8.0997g + 1

)1/6
, (C.1)

F
(1/14)
3,3 (g) = 2.50663

(
93.3994g7 + 220.976g6 + 239.216g5 + 155.758g4 + 42g2 + 1

)−1/14
,

F
(1/2)
4,4 (g) = 2.50663

√
3224.56g4 + 1303.49g3 + 238.239g2 + 22.8745g + 1

6165.22g5 + 4576.g4 + 1440.74g3 + 244.239g2 + 22.8745g + 1
,

F
(1/10)
4,4 (g) = 2.50663

[
14.4369g2 + 5.07251g + 1

368.86g7 + 752.954g6 + 708.689g5 + 403.106g4 + 152.175g3 + 44.4369g2 + 5.07251g + 1

]1/10
,

F
(1/18)
4,4 (g) = 2.50663

(
341.428g9 + 1038.59g8 + 1475.35g7 + 1294.34g6 + 780.788g5 + 594g4 + 54g2 + 1

)−1/18
,

F
(1/2)
5,5 (g) = 1.8128

√
(g + 0.124648)(g2 + 0.133925g + 0.01439)(g2 + 0.203814g + 0.0156882)

(g2 + 0.144222g + 0.0144064)(g2 + 0.280251g + 0.0278064)(g2 + 0.375905g + 0.0367401)
,

F
(1/2)
6,6 (g) = 1.8128

√
(g2 + 0.118257g + 0.0116795)(g2 + 0.172869g + 0.0148819)(g2 + 0.225907g + 0.0137177)

(g + 0.179694)(g2 + 0.118058g + 0.011219)(g2 + 0.234356g + 0.0211961)(g2 + 0.322914g + 0.0291839)
,

F
(1/26)
6,6 (g) = 2.50663(4562.58g13 + 20047.3g12 + 42029.4g11 + 55850.9g10 + 52692.4g9 + 37452.1g8 + 20758.6g7 + 9156.7g6 + 3248.63g5

+ 929.314g4 + 213.078g3 + 38.4914g2 + 5.28292g + 1)
− 1

26 . (C.2)

C.1.2. Interpolation along negative real axis of g

F̃
(1/2)
0,0 (t) = 2π

√√√√ 1

8t�
(

3
4

)2 + π

,

F̃
(1/2)
1,1 (t) = 2π

⎛
⎜⎜⎝

�
(

5
4

)(
8t�
(

3
4

)2 + π

)
+ 2�

(
3
4

)3
�
(

5
4

)(
64t2�

(
3
4

)4 + 8πt�
(

3
4

)2 + π2
)

+ 2π�
(

3
4

)3
⎞
⎟⎟⎠

1/2

,

F̃
(1/2)
2,2 (t) = 6.28319

√
0.0832t2 + 0.0357t + 0.00906

t3 + 0.0907t2 + 0.1121t + 0.0285
,

F̃
(1/2)
3,3 (t) = 1.81

√√√√√ (t + 0.398)
(
t2 + 0.0631t + 0.0634

)
(
t2 − 0.240t + 0.105

)(
t2 + 0.363t + 0.0626

) ,

F̃
(1/2)
4,4 (t) = 1.81

√
t4 + 0.40t3 + 0.069t2 + 0.015t + 0.0044

t5 + 0.06t4 + 0.081t3 + 0.011t2 + 0.0040t + 0.00116
,

F̃
(1/2)
5,5 (t) = 1.81

√√√√√ (t + 0.30)
(
t2 − 0.19t + 0.044

)(
t2 + 0.31t + 0.050

)
(
t2 − 0.30t + 0.063

)(
t2 + 0.050t + 0.076

)(
t2 + 0.34t + 0.037

) ,

F̃
(1/2)
6,6 (t) = 1.8

√
(t2 − 0.23t + 0.037)(t2 + 0.10t + 0.036)(t2 + 0.51t + 0.07)

,

(t + 0.18)(t2 − 0.30t + 0.050)(t2 − 0.042t + 0.07)(t2 + 0.20t + 0.042)
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F̃
(1/2)
7,7 (t) = 2.

√√√√√ (t + 0.3)
(
t2 + 0.003t + 0.04

)(
t2 + 0.4t + 0.05

)
(
t2 − 0.1t + 0.06

)(
t2 + 0.1t + 0.05

)(
t2 + 0.4t + 0.03

) ,

F̃
(1/2)
8,8 (t) = 1.8

√√√√√
(
t2 − 0.3t + 0.03

)(
t2 − 0.04t + 0.03

)(
t2 + 0.2t + 0.02

)(
t2 + 0.5t + 0.06

)
(t + 0.16)

(
t2 − 0.3t + 0.04

)(
t2 − 0.14t + 0.05

)(
t2 + 0.09t + 0.05

)(
t2 + 0.2t + 0.02

) ,

F̃
(1/2)
9,9 (t) = 1.8

√√√√√ (t + 0.25)
(
t2 − 0.25t + 0.026

)(
t2 − 0.1t + 0.028

)(
t2 + 0.09t + 0.026

)(
t2 + 0.4t + 0.05

)
(
t2 − 0.27t + 0.031

)(
t2 − 0.16t + 0.04

)(
t2 + 0.019t + 0.05

)(
t2 + 0.13t + 0.034

)(
t2 + 0.35t + 0.033

) . (C.3)

C.2. Partition function of 0d Sine–Gordon model

C.2.1. Interpolation along positive real axis of g

F
(−1/2)
1,1 (g) = √

2π

(
2(2 + π)g2 + 3πg + (π − 1)π

(2 + π)g + π − 1

)−1/2
,

F
(−1/2)
2,2 (g) = √

2π

⎛
⎝ 32(8 + 5π + 5π2)g3 + 18π(9 + 8π)g2 + 3π(37π − 28)g + 2π(10 − 35π + 16π2)

16
(

8 + 5π + 5π2
)

g2 +
(
−64 + 41π + 32π2

)
g + 32π2 − 70π + 20

⎞
⎠−1/2

,

F
(−1/2)
3,3 (g) = 3.14159

(
(g2 − 0.0395594g + 0.111122)(g2 + 0.828493g + 0.228908)

(g + 0.26163)(g2 + 0.0273041g + 0.0618949)

)−1/2
,

F
(−1/2)
4,4 (g) = 3.14159

⎛
⎝ (g + 0.403343)(g2 − 0.10802g + 0.0594072)(g2 + 0.474071g + 0.13076)(

g2 − 0.0879523g + 0.0413742
)(

g2 + 0.357346g + 0.0482101
)

⎞
⎠−1/2

,

F
(−1/2)
5,5 (g) = 3.14159

⎛
⎝ (g2 − 0.128645g + 0.0352297)(g2 + 0.262647g + 0.079582)(g2 + 0.623363g + 0.110622)

(g + 0.189845)
(
g2 − 0.127772g + 0.0289318

)(
g2 + 0.195292g + 0.0359479

)
⎞
⎠−1/2

,

F
(−1/2)
6,6 (g) = 3.14159

⎛
⎝ (g + 0.292344)(g2 − 0.132606g + 0.0227078)(g2 + 0.139599g + 0.0510561)(g2 + 0.449886g + 0.0759508)(

g2 − 0.137182g + 0.0208248
)(

g2 + 0.0850484g + 0.0282403
)(

g2 + 0.301356g + 0.0278662
)

⎞
⎠−1/2

,

F
(−1/2)
7,7 (g)

= 3.14159

⎛
⎝ (g2 − 0.130139g + 0.0157197)(g2 + 0.0668157g + 0.0339803)(g2 + 0.317179g + 0.0532544)(g2 + 0.489499g + 0.0644541)

(g + 0.148792)
(
g2 − 0.134487g + 0.0153154

)(
g2 + 0.0170188g + 0.0230983

)(
g2 + 0.212031g + 0.0221752

)
⎞
⎠−1/2

,

F
(−1/2)
8,8 (g) = 3.14159

⎛
⎝ (g + 0.228889)(g2 − 0.124723g + 0.0115314)(g2 + 0.0217909g + 0.0231509)(g2 + 0.221648g + 0.0382247)(g2 + 0.391352g + 0.0486489)(

g2 − 0.127496g + 0.0115172
)(

g2 − 0.0219033g + 0.0192889
)(

g2 + 0.136123g + 0.0181046
)(

g2 + 0.252233g + 0.0179858
)

⎞
⎠−1/2

.

(C.4)

C.2.2. Interpolation along negative real axis of g

F̃
(−1/2)
1,1 (t) = √

2π

(
2(2 + π)t2 + 3πt + (π − 1)π

(2 + π)t + π − 1

)−1/2
,

F̃
(−1/2)
2,2 (t) = √

2π

⎛
⎝ 32(8 + 5π + 5π2)t3 + 18π(9 + 8π)t2 + 3π(37π − 28)t + 2π(10 − 35π + 16π2)

16
(

8 + 5π + 5π2
)

t2 +
(
−64 + 41π + 32π2

)
t + 32π2 − 70π + 20

⎞
⎠−1/2

,

F̃
(−1/2)
3,3 (t) = 3.14159

⎛
⎝ (t2 − 0.0395594t + 0.111122)(t2 + 0.828493t + 0.228908)

(t + 0.26163)
(
t2 + 0.0273041t + 0.0618949

)
⎞
⎠−1/2

,

F̃
(−1/2)
4,4 (t) = 3.14159

⎛
⎝ (t + 0.403343)(t2 − 0.10802t + 0.0594072)(t2 + 0.474071t + 0.13076)(

t2 − 0.0879523t + 0.0413742
)(

t2 + 0.357346t + 0.0482101
)

⎞
⎠−1/2

, (C.5)
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F̃
(−1/2)
5,5 (t) = 3.14159

⎛
⎝ (t2 − 0.128645t + 0.0352297)(t2 + 0.262647t + 0.079582)(t2 + 0.623363t + 0.110622)

(t + 0.189845)
(
t2 − 0.127772t + 0.0289318

)(
t2 + 0.195292t + 0.0359479

)
⎞
⎠−1/2

,

F̃
(−1/2)
6,6 (t) = 3.14159

⎛
⎝ (t + 0.292344)(t2 − 0.132606t + 0.0227078)(t2 + 0.139599t + 0.0510561)(t2 + 0.449886t + 0.0759508)(

t2 − 0.137182t + 0.0208248
)(

t2 + 0.0850484t + 0.0282403
)(

t2 + 0.301356t + 0.0278662
)

⎞
⎠−1/2

,

F̃
(−1/2)
7,7 (t)

= 3.14159

⎛
⎝ (t2 − 0.130139t + 0.0157197)(t2 + 0.0668157t + 0.0339803)(t2 + 0.317179t + 0.0532544)(t2 + 0.489499t + 0.0644541)

(t + 0.148792)
(
t2 − 0.134487t + 0.0153154

)(
t2 + 0.0170188t + 0.0230983

)(
t2 + 0.212031t + 0.0221752

)
⎞
⎠−1/2

,

F̃
(−1/2)
8,8 (t) = 3.14159

⎛
⎝ (t + 0.228889)(t2 − 0.124723t + 0.0115314)(t2 + 0.0217909t + 0.0231509)(t2 + 0.221648t + 0.0382247)(t2 + 0.391352t + 0.0486489)(

t2 − 0.127496t + 0.0115172
)(

t2 − 0.0219033t + 0.0192889
)(

t2 + 0.136123t + 0.0181046
)(

t2 + 0.252233t + 0.0179858
)

⎞
⎠−1/2

.

(C.6)

C.2.3. Borel-FPR

BF̃
(−1/2)
1,1 (t) = 256

√
π

2835

(
89260141168201575t2 + 753534959720857600t + 5438758396457123840

t18(2416615932t + 10130476945)

)−1/2
,

BF̃
(−1/2)
2,2 (t) =

32
√

2π
11

14175(
2851044659369509411363841t3 + 21670208776151763289899008t2 + 93435202549341387371839488t + 454231296657756731387936768

t18(679261120778364683648t2 + 2276065430590939023520t + 7445431147866433926325)

)− 1
2

,

BF̃
(−1/2)
3,3 (t) = 0.0000263352

(
(t2 − 1.0468t + 13.0556)(t2 + 8.30711t + 23.8912)

t18(t + 2.86868)(t2 + 0.141631t + 7.48056)

)−1/2
,

BF̃
(−1/2)
4,4 (t) = 0.0000263352

(
(t + 4.2183)(t2 − 1.833t + 7.96513)(t2 + 4.69262t + 14.8922)

t18(t2 − 1.23764t + 5.48437)(t2 + 4.06556t + 6.27685)

)−1/2
. (C.7)
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