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AssTRACr The practice of calculating the diffusion contribution to the total pres-
sure-driven flow of water through a tight membrane by using the self-diffusion co-
efficient for tritiated water is examined by a theoretical analysis. Equations of
motion for water and membrane in pressure-driven water flow and water, membrane,
and tritiated water in self-diffusion of tritiated water are adapted from Bearman and
Kirkwood (1958). These equations of motion are used to develop an equation for
the pressure-driven flow of water. Because of the lack of specific information about
the detailed structure of most membranes, as well as considerations of the need to
eliminate some of the mathematical difficulties, an "equivalent capillary" model is
used to find a solution to the equation of motion. The use of the equivalent capillary
model and possible ambiguities in distinctions between diffusion and hydrodynamic
flow are discussed

INTRODUCIION

"Viscousflow is a relative motion ofadjacent portions ofa liquid. Diffusion is a relative
motion of its different constituents.

Strictly speaking, the two are inseparable; for the 'hydrodynamic' velocity in a
diffusion mixture is merely an average determined by some arbitrary convention."
(Onsager, 1945)
The objective of this paper is to examine the relationship between the viscous and

diffusional contributions to flow of water through a membrane having spaces of di-
mensions not much larger than molecular dimensions, say, less than 10 A across at
any given point between those parts which can be considered the membrane matrix.
The reason for concentrating on "tight" membranes of this kind is that in more open
membranes the relative contribution of the friction between the fluid and the mem-

527



brane matrix can be accurately modeled by considering the fluid to be stationary at
the fluid-matrix interface. This is equivalent to considering the membrane-fluid fric-
tional interaction as being infinite at the interface and negligible elsewhere (Kobatake
and Fujita, 1964; Mikulecky and Caplan, 1966). Once the distance across fluid spaces
between adjacent regions of membrane matrix becomes small enough, the above
assumption breaks down and the membrane-fluid frictional interaction may be "felt"
over a significant portion of the fluid region. It is this latter case that is to be studied
here.

Since the work of Onsager (1945), the question of the relationship between the
two types of flow has been dealt with by other workers (Mauro, 1957; Robbins and
Mauro, 1960; Ticknor, 1958; Longuet-Higgins and Austin, 1966; Lakshminaraya-
naiah, 1967) from both the theoretical and experimental points of view. In the main
these authors were concerned with the possibility of determining the relative con-
tributions of the two types of flow by comparing the results of two experiments:
(a) measurement of the water flow per unit of pressure difference across the mem-
brane and (b) measurement of the flow of tritiated water per unit concentration
difference of tritiatea water in the absence of any hydrostatic pressure difference.
The idea is that, by determining the frictional coefficient from the diffusion coefficient
in the latter experiment, the contribution due to diffusion in the former can be calcu-
lated. Two questions arise here, the first being whether or not an unambiguous dis-
tinction between the two flows can be made, and, second, whether the methodology
outlined above can indeed be used to make the distinction. This paper will attempt to
deal with both these questions.

The Equation of Motion

We wish to calculate the relative contributions of the two types of flow for the
flow of water through a membrane for the case where the spaces in the membrane
material are small enough to make the frictional terms significant in the equation of
motion of water. After obtaining this relation, we wish to examine the validity of
evaluating the frictional contribution by measurement of the diffusion rate of tri-
tiated water in the absence of a pressure gradient. We begin with the equations of
motion for the water and for the membrane according to Bearman and Kirkwood
(1958):

?7WV2U - CWVAD - CwiWmCmUjw = 0, (1)

-CmVIm + Cmt"cwu7W + C.,Xm = 0 (2)

where q. is the viscosity of the water; twm, .mto are the frictional coefficients between
water and membrane, and tw. = mw ; Xm is the body force due to the membrane
clamps transmitted through the membrane matrix to each local volume element in
order to hold the membrane stationary; ui is the velocity of the local center of mass
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and is equal to

CmZSm + CtU7 cw -

Cm+
=-uw (3)

Cm + CTD P

since the membrane is stationary; ui is the velocity of component i relative to some
fixed frame of reference (i.e. the laboratory); Vjw, is the chemical potential gradient
of water and is equal to ,wVp [referred to below as equation (4)] since the concen-
tration of water does not vary across the membrane; V;4n is the chemical potential
gradient of membrane and is equal to P.Vp [referred to below as equation (5)] for
a random distribution of membrane; p is the hydrostatic pressure; c.1 is the con-
centration of water in grams per milliliter; cm is the concentration of membrane in
grams per milliliter; and p is the density of the water plus membrane sys-
tem (p = cw + cm).
We also note that

V,wcu + PmCm = 1 (6)

where the i, are the specific molar volumes.
Adding equations (1) and (2) and using equations (3)-(6) we obtain

lvaw - VP + cmXm =Ox (7)

which is the appropriate form of the Navier-Stokes equation for this system. The
next equation, which is the form of the equation of motion for the water flow we
wish to examine, can be obtained directly from equation (1) or from equations (2)
and (7), making use of the conditions (3)-(6).

t1,0V2a - Cm.mwpu = CwVju. (8)

The Equivalent Capillary Model

The problem now reduces to the appropriate choice of geometry and boundary
conditions, i.e. "model," to impose on equation (8) in solving it. For simplicity we
adopt the conventional procedure of solving the equation for a model which is a
system of right circular cylinders which represent "equivalent" pathways to the
actual pathways through the membrane. To preserve the contribution of frictional
forces to the net force, we replace the frictional coefficients with "equivalent" or
"effective" coefficients, which are a function of the radial distance, r, from the center
of the equivalent capillary. This, in a sense, "smears out" the effect of the presence
of membrane network throughout the equivalent capillary system. We assume that
the capillaries are uniformly of radius a. The implications of this model will be
examined further in the discussion.
We look for a solution of the form ui = u' + ad, which represents a diffusion
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flow superimposed on a hydrodynamic flow. Such a solution obtains if we require
that u' be a function of r alone, that cm, cw X Vp, p, and ad not be functions of r,
and that the quantity

c,tm*w(r)pu(r) (9)

also be independent of r, where {.w(r) is the effective frictional coefficient.
Equation (8) now has the form

r a(r l)r 17 (CWVIMW + cm.to(r)pa). (10)

The boundary conditions corresponding to the conditions mentioned above are

u= ud at r= a

and

u-= 0 at r = 0.
ar

The solution to equation (10) which corresponds to these conditions is

U= Ud+ (r - a2) [cwVIAW + Cm (r)pu] .

Rearranging this results in the explicit equation for a,

a 4i7wad + (r -a2)CUVs, (11)
4 -w(r a- )CmX*W(r)p

Next we wish to examine the frictional coefficient which is measured in the ex-
periment determining the diffusion of tritiated water through the membrane in the
presence of ordinary water. This frictional coefficient is the one which is ordinarily
associated with the self-diffusion of water. Once more following Bearman and Kirk-
wood (1958), the equations of motion for this case, in which we assume that there
are no pressure gradients or velocity gradients present, are

-CwV AU - CuewmCmiUw - CWtWTCT(UW - ar) = 0, (12)

-CTV,rU - CT$TmCmUT - CT$TwCw(UT - a;) = 0, (13)

-CmVISm - CmmwCw(-U?w) - Cm4mTCT(UiT) = 0, (14)

where the subscript T refers to the tritiated water. These equations sum to yield the
condition Vp = 0. Since there is no pressure gradient and the membrane is randomly
distributed, i.e. VA. = 0.
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CWVS + CTVjT = 0. (15)

We assume

tWm = {mw Trw =twT X mT = rm * (16)

If there is no isotope separation, i.e. if {mw = ,mTX equation (14) reduces to

CTUT = -CWUW (17)
and there is only one independent equation. Substituting equation (17) into equa-
tion (13), the diffusion flow is

CT
CTU7T = CT- VAT .( 18 )

[Cm&Tm + (CT + Cw) tTw]

Equation (18) shows that the diffusion coefficient measured in this experiment con-
tains a contribution from the interaction between tritium and water. Although the
same physical interaction between water molecules occurs in pure H20, it manifests
itself in another way because all the water molecules are indistinguishable. In that
case qw contains such interactions and it has been suggested (Spangler and Snell,
1966) that $.w and qw are related by

CW2XTWSW2 = n1w, (19)

where &w is a characteristic interaction distance for water. (It is assumed here that
ZW = ST = W, i.e. that the isotopes behave the same.) To use equation (18) to
evaluate the diffusion flow in the case of pure H20, we must then set $Tw = 0 since
it has no physical significance under these circumstances. This means that using
information from the tritiated water diffusion experiment in the pure H20 experi-
ment would imply that Cm$»>> (CT + cw)$rw in the former case. By such reasoning,
the term ad in equation (1 1) should be

Ud= -VAW (20)CmETm

where we have now used equation (18), which applies to the tritiated water experi-
ment to calculate the diffusion in the pure water experiment as was done by other
authors (Mauro, 1957). Equation (11) becomes

[4nw - (r2- a2)Cm,,rmC.] 1
[4n7 (r - a )cm*m(r)p] cmT . (21c)

The nondiffusional flow is

(r2 a2)cm[i'm(r)p - iTmCw 1I
-d= [47 - (r2 - a2)cmntm(r)p Cm&tm
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From the above equations the relative contributions of diffusional and nondiffusional
flow can be expressed in terms of the relation of t*m(r)p to S'mcw, . If they are equal,
the flow is entirely diffusional, while if b*m(r) and ad = 0, the flow is entirely non-
diffusional and follows Poiseuille's law.
The analysis has been carried only to the point of describing flows along a given

streamline through the membrane, where r is the position of that streamline relative
to the center of the equivalent pore. To bring the analysis to the macroscopic level,
the equations need to be integrated and averaged over the area of the capillary and
then integrated along x. All flows are thus treated as flows per unit area.
The average center of mass velocity for the entire capillary is obtained by in-

tegration over the cross-sectional area of the equivalent capillary (Kobatake and
Fujita, 1964; Mikulecky and Caplan, 1966).

(U~) = jU-27rr dr / 2rr dr. (23)

The resulting expression,

- f~~G [4flw - (r' - 2)c.tTmcwI 2
(u) = ~~~~~ ~ ~~~rdr>VA (24)( Jo)I[4'iw - (r2 - a2)cm.m(r)p] } CmiTna2

is rather complicated, but could be evaluated for certain functional dependences of
t*m(r) on r, which must be obtained for specific molecular models from statistical
mechanical considerations. Alternatively, one could estimate the r dependence of
t*m(r) and calculate the macroscopic coefficient. The explicit form of this integral
coefficient is not essential for this discussion and will be left for future work. It
is important to note, however, that the functional form of t*m(r) will determine
the frictional contribution to the macroscopic flow.
One alternative model arises if the averaging is performed in a particular manner.

First, by setting *,m(r) = 0 in equation (21),

u = - 1 V + cw(r -a2) (25)
C/{.6m4Vsw

This equation, which is the sum of a diffusion term and a hydrodynamic term, makes
sense only if the averaging is performed as follows:

( ) 2 f, Cw,(r2 -a2) Vuw rdr- 2 I1cm
r dr (26)

a2 4tlw W(a2a2)aC,M trmV/Jr

which is the following expression when all the variables are independent of r:

(ui) = [cw(a2/2 - )a 1 1 V/LW (27)
L 471w Cm tTmJ
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This model assumes that an annular fraction of the capillary cross section of thick-
ness (a - a) corresponds to the diffusion flow and the remaining, central portion
of the capillary has only hydrodynamic flow occurring in it.
The final step would be an integration of equation (24) or (27) over the x co-

ordinate. This integration should be carried out over limits which correspond to
some average path length through the membrane. In that case V1,. would be re-
placed by A./Ax, where Ax is the effective membrane thickness and is related to
the actual thickness by some tortuosity factor (Kedem and Katchalsky, 1961).
This, of course, assumes a uniform membrane structure as before, so that jL is the
only variable dependent on x.

DISCUSSION

Without an exact description of the geometrical pattern of the membrane matrix
and a molecular theory for obtaining the function dependence of toWm on position
within the matrix, an equivalent capillary model seems to be a suitable way to ap-
proach this problem. Even if it were possible to have the information that is lacking,
for most membranes the situation would be so complex as to prohibit an analytical
solution to any of the pertinent equations. For these reasons there is a large measure
of arbitrariness in the choice of model used to obtain a solution to equation (8).
This very arbitrariness suggests that there is, at present, no unambiguous way to
split the flow measured in the pressure-driven water flow experiment into components
which are uniquely attributable to different physical mechanisms. The attempts to do
do this by bringing in data from the self-diffusion experiment might be questioned
because the latter data include information about the interaction between the
tritiated and ordinary water. In a tight membrane, however, the contribution of
the tritiated water-water interaction can be expected to become negligible (Kedem
and Katchalsky, 1961), so that this method should be applicable as long as the
nature of the frictional interaction in the self-diffusion experiment is indicative of
that in the case where viscous flow is occurring. It is this latter condition which is
open to question and relates to the ambiguity in the choice of models for the theore-
tical description. It would seem that some independent confirmation of the assump-
tion that the same interaction occurs in both experiments is necessary before this
method can be considered as a reliable way of estimating the contributions of the
two physical mechanisms to the total flow. Also, a theoretical determination of the
manner in which the friction coefficient depends on position in the two different
experiments would be useful.

Consideration must be given to the relation between the parameters describing
the actual membrane and the equivalent capillary model used to approximate the
real situation. The construction of an equivalent capillary model for any given
membrane should be done in such a way as to preserve the maximum number of
parameters characterizing the actual membrane. Thus it would be required that the
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number and size of the capillaries leave such quantities as c10, Cm, and p unchanged.
The equivalent capillary radius might be estimated from the results of the two
experiments we have been discussing by a well-known technique (Solomon, 1961).
The assumption that the membrane matrix is random is compatible with the equiva-
lent capillary model, since we ultimately are only interested in the variation of
quantities along the direction of flow through the membrane. Thus in either case
statements such as Vcm = 0 apply. The use of an effective frictional coefficient is an
attempt to map an irregular pattern of membrane matrix and interstitial spaces into
a regular pattern. Whether such a mapping is indeed possible and, if not, how great
an error is introduced are empty questions unless we have some means of experi-
mentally evaluating the model. This might be done by attempting to fit it to a num-
ber of different experimental situations, but a criterion for using a given functional
form of t*m(r) must be decided upon, and this criterion also would need experi-
mental verification. It may turn out that there is no equivalent capillary model which
will be compatible with a given membrane under all circumstances. However, even
if the model should prove to fail under certain other conditions, it does illustrate
clearly the problem encountered in attempting to theoretically justify the method
being used for experimental determination of the different physical mechanisms
involved in the pressure-driven flow of water through a membrane.

Received for publication 4 March 1967.
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