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In this paper we study systematically three basic classes of grammars in-
corporating parallel rewriting: Indian parallel grammars, Russian parallel
grammmars and L systems. In particular by extracting basic characteristics of
these systems and combining them we introduce new classes of rewriting
systems (ETOLy systems, ETOLIP systems and ETOLRP systems) Among
others, some results on the combinatorial structure of Indian parallel languages
and on the combinatorial structures of the new classes of languages are proved.
As far as ETOL systems are concerned we prove that every ET0/. language can
be gencrated with a fixed (equal to 8) bounded degree of parallelism.

INTRODUCTION

The study of parallel rewriting systems constitutes a central trend in formal
language theory. The parallel rewriting in its most “‘pure” form is present in L
systems (Rozenberg and Salomaa). Also quite a number of rewriting systems
were investigated in the literature which form a “‘bridge’ between pure scquential
rewriting systems (as, e.g. context free grammars) and L systems; among those
Indian parallel grammars and Russian parallel grammars form two very
interesting cases sce, e.g., Siromoney and Krithivasan (1974), Levitina (1972),
Skyum (1974), Dassow (1979) and Salomaa (1974).

This paper studies Indian parallel, Russian parallel and ETOL ways of
rewriting. We study those systems (and languages they gencrate) as well as by
combining them we introduce new classes of rewriting systems. In this way this
paper directly continues the work begun in Salomaa (1974). We believe that
such a comparative study sheds light on both the nature of parallel rewriting
and the nature of sequential rewriting. Understanding cach of those kinds of
rewriting separately, and understanding the differences and similarities between
them is, in our opinion, one of the important research areas of formal language
theory.

"The paper is organized as follows.

In Section 1 we introduce some basic notation for our paper.

In Section IT we investigate Indian parallel grammars. In particular we prove
a result on the combinatorial structure of Indian parallel languages that is
analogous to the pumping theorem for context free languages.
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In Section III we combinc Indian parallel and ETOL ways of rewriting.
‘This results in a new kind of rewriting systems called ETOLIP systems. We
investigate the language generating power of those systems. We also formalize
the notion of the deterministic part of an £7T°0L language and then characterize
it. We believe that in this way we contribute to the understanding of the notion
of determinism in grammars.

In Section I'V we introduce 1-restricted £T°0L systems which, within the frame
work of ETOL systems, form a ‘“‘nondeterministic” counterpart of Indian
parallel grammars. We prove a thcorem on the combinatorial structure of
languages generated by those systems.

In Section V we extend the notion of a l-restricted KTOQL system to a
k-restricted ETOL system; that is an ETOL system which uses only tables such
that cach of them has productions different from identity for no more than &
symbols. A very natural question is whether or not with the growth of % one gets
larger classes of languages. We prove a rather surprising fact that there exists
a kg such that the £y-restricted ETOL systems generate all £70 L languages.

In Scction VI we combine the Russian parallel mechanism of rewriting with
ETOL systems and introduce the so called ETOLRP systems. We investigate
the language generating power of those systems. Also we investigate the
relationship between EQLRP systems and ETO0L systems. We provide a normal
form for EQOLRP systems which indicates that computationally those systems
resemble a restricted class of controlled two-table ETOL systems. Also we show
how every ETOL language can be represented using an EQLRP language, a
regular language and a homomorphism.

In the last section we provide a diagram of relationships between the different
classes of languages considered in this paper.

I. PRELIMINARIES

We assume the reader to be familiar with the theory of parallel rewriting
systems, e.g. in the scope of Salomaa (1974), Rozenberg and Salomaa, chapters I1
and V.Perhaps the following notational matters require an additional explanation.

(1) Tor afinite set V, #V denotes its cardinality.

(2) For a word «, | x  denotes its length and alph(x) denotes the set of
letters occurring in x. For a letter b, #,x denotes the number of occurrences of b
in x. /1 denotes the empty word.

(3) Given an alphabet X' (we consider finite alphabets only!) we will often
use its barred version 2 == {d | a € Z}. Then for a word a€ 3", x = a; " a,, ,
a,,...,a, € we usc & to denote the word &, - @,. Also A == 4. A homo-
morphism % on Z* is called weak identity if for every b € 2 either h(b) = b or
h(b) = A.

643/44/2-3
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(4) All the rewriting systems that we will consider use context free
productions, that is productions of the form 4 — « where 4 is a letter and « is
a word; then 4 is referred to as the left-hand side of the production and « as its
right-hand side. Given a sct of productions P, LH(P) denotes the set of all
left-hand sides of productions in P. For a rewriting system G, maxr(G) denotes
the maximal length of the right-hand sides of all productions in G. As usual,
=¢, =& and % will be used for denoting the direct derivation relation, the
“real” derivation relation and the derivation relation in G, respectively; we will
also use =, = and ¥ whenever G is clear from the context. Also =7, =>§" and
—~2" will denote the relations “derives in n steps”, derives in no more than #
steps” and ‘‘derives in no less than z steps”, respectively.

(5) Given aclass X of rewriting systems, .Z(X) denotes the family of all
languages generated by systems in X. Also if a system is of type X (e.g. ETOL)
then the language it generates is also referred to as a type X language. We use
ZL(REG) and Z(CF) to denote the classes of regular and context free languages
respectively.

II. INDJAN PARALLEL GRAMMARS

In this section we will investigate Indian parallel grammars and in particular
we will prove a result on the structure of Indian parallel languages which
corresponds to the pumping lemma for context free languages. This result will
allow us to provide examples of languages that are not Indian parallcl.

We start by recalling the definition of an Indian parallel grammar and language.

DrriNiTION. (1) An Indian parallel grammar, abbreviated an IP grammar, is a
construct G = (2, P, S, 4), where 2 is a nonempty alphabet, 4 a nonempty
subset of X (the elements of 4 are referred to as terminals), S € Z\4 (the axiom)
and P is a finite nonempty set of productions each of which is of the form 4 — «,
where 4 € 214 and « € Z*. The clements of 24 are called nonterminals.

(2) LetxeZ*andy e Z*. We say that x directly derives y in G, denoted as
x =g ¥, if there cxists a production A —> « in G such that x = xgAx, 4 --- Ax;.,
Y == xguwye oy, k 22 1 and A ¢ alph(xgx, 0 xy).

(3) Asusual % is defined as the transitive and the reflexive closure of the
relation = . If % 9 then we say that x derives y in G.

(4) The language of G, denoted L(G), is defined by
L(G) = {xed*|S % x};

we say that L(G) is an Indian parallel language or IP language.
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T'he notions of a derivation and of a derivation tree in an [P grammar are
defined analogously to the case of a context free (CF) grammar. Given a deriva-
tion [) in an IP grammar G, leading from x to y, one can assign to it the unique
sequence 7 of productions applied (in this order) in D. 'T*his sequence 7 is called

scquence of productions and as a function); morecover the sequence of words
X = Xy, Xp,..., ¥, = ¥, corresponding to applications of productions from +
(in this order) is called the trace of 7 (on x). In the same way we can assign a
control sequence to a derivation tree 7° by first taking a derivation D corre-
sponding to 7' and then taking the control scquence of D. Given a control
sequence 7 and a nonterminal symbol 4 we use 7.4 to denote the sequence of
productions resulting from + by omitting in = all productions with /1 as the left-
hand side (the so called A-productions).

Analogously to the case of CF grammars we term an I[P grammar G —
(&, P, S, 4) reduced if every nonterminal 4 is reachable (that is S % x,4x,; for
some x, , ¥ € 2*) and productive (that is 4 ¥ w for a word w e 4%).

The following notion will be useful in the proof of the main thecorem of this
section.

DerinirioN.  Let G = (2, P, S, 4) be an [P grammar and let Je2h4.
Let D be a derivation leading from A4 to a terminal word x and let 7 be the
control sequencc of D. We say that D is composed if 7 == p < p where p(4) = « 4B
for o, Be X, off £ A, p(a) == & p(B) = fand af # A. We also say that A is a
composed letter and that the derivation tree corresponding to D is composed.

We will define now a new kind of rewriting systems. They will turn out to be
uscful in investigating the structure of JP languages.

DeriNitiox. (1) An embracing grammar G is a construct (23 x, ..., %,; @),
where m 2 1, Z'is a nonempty alphabet and x,, ,..., x,, , 2 € Z*. The sequence of
G, denoted E(G), is defined by E(G) = w,, w, ..., where @, = w and @;_,
XWXy 1 Xy Wiy, for & 2 0. Thhe language of G, denoted L(G), is defined by
L(G) == {wy, 2y ...}

(2) A A-augmented embracing grammar G is either an embracing grammar
or it is a construct (X} xg ,..., &y; w, 4), where U(G) = (Z; xg yeees Xppi ) 18 an
embracing grammar. (If G is an embracing grammar, then we set U(G) = G).
If G is an embracing grammar, then its sequence and language arc defined as
above. In the case that G is not an embracing grammar, then its sequence E(G)
is defined by E(G) = A4, w,, =, ,..., where E(U(G)) = w,, w, ..., and its
language is defined by L(G) = L(U(G)) U {4}. G is called nontricial if 1.(G) is
infinite.

The following obvious result characterizing A-augmented embracing
grammars is given without a proof.
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Lemya 111, Let G be a A-augmented embracing grammar with U(G) =
(&5 %y s-es X3 w). Then G is nontrivial if and only if either m = 1 and xygx, # A,
orm > 2andw # A,orm = 2 and x; # A for some i €{0,..., m}.

Our next result is the main theorem of this section and it concerns the com-
binatorial structure of IP languages. It is analogous to the celebrated pumping
theorem for context free languages. (The existence of such a result is hinted at
at the end of Siromoney and Krithivasan (1974)).

Tueorem 111, For every infinite IP language L there exist positive integers
n, [ and nontrivial A-augmented embracing grammars I, ,..., H,, such that
Jor every word x in L the following holds: if | x| > n, then there exist positive
integers r, t, | < v < | and words x,,..., x,, such that

x == O(E(H,)) 0(E(H,)) x, -+ O(E(H,) =,

and for every positive integer m x;m(E(H,)) xym(E(H,)) x, --- m(E(H,)) x, €L,
where m(E(H.)) denotes the mth element of E(H,).

Proof. LetL be an infinite /P language and let G .= (X, P, S, 4) be a reduced
IP system, generating L.

(1) There exists a positive integer n,, such that for each word z €L,
where 'z ' > n,, there exists a derivation tree for 2 containing a composed
subtree of height smaller than n, . This is seen as follows.

(i) If =z is a word of length greater than m = (maxr(G))*¥~, where
maxr(G) =- max{ o« | 4 — «a e P}, then, clearly every derivation tree of 2z in
G must have a composed subtree.

(ii) Clearly the number of different words in Z* that can be derived
from a word in 2* without introducing a composed subtree in the derivation
tree is smaller than some positive integer # dependent on G only.

(i) We will demonstrate now that n, =: max{#, 7} satisfies the state-
ment of our claim.

Assume that z € L, where | 2 | > n,, and let T be a derivation trec of z in G.
Since | x| > i, (i) implies that T has a composed subtree. If no composed
subtrec of T'is of height smaller than #,, then (ii) implies that among the last #
words of the trace of T therc are two identical words. Thus 7" can be shortened
to yield a derivation tree T of 2z in G which is of height smaller than the height
of 7". If no composed subtree of 7' is of height smaller than n, , then we iterate
the above procedure which yields then the sequence T, T'®, T, .. of derivation
trees of = in G such that each next tree in the sequence is of height smaller than
the previous one. Thus for some 7 > 1, 7 must be a derivation tree of zin G
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such that it contains a composed subtree of height smaller than #, . Hence our
claim holds.

(2) For every nonterminal A let Term(4) denote the sct of all words
w € 4% such that 4 can derive w in G in no more than #, steps. Since G is reduced
Term(A) is nonempty and (1) implies that if 4 is composed then Term(A)
contains a nonempty word.

(3) Now with cvery composed letter 4 and every element 8 of Term(4)
we associate a fixed nontrivial embracing grammar G, ; as follows. I.et 4 be a
composed letter and let T, be a fixed composed tree for 4. Let 74 be a fixed
control sequence of T, and let 4, =, ,..., 5, be the trace of 74 on A. Let p be the
largest integer such that 4 € alph(z,) and then let u, , v4 be the decomposition
of 7, such that v, leads from z, to 2, (hence 74 = v cpu,). Thus we have
ua(A) == adB, v (A) = y, va(aB) = &B for some «, 8 € 2* and &, ﬁ_, y € 4% with
af # A and &f # A. Hence (v\A)NxAB) = wydw,A -+ Aw,, where
Wy, Wy ,--ry Wy € A% and either k£ = 1 and wywe; 7: A or & 22 2. Let us consider
now an arbitrary element 8 from Term(A4). We have two cases to consider.

() 844

Then, by Lemma II.I, G, 5 = (V; w,,..., 2;; 6) is a nontrivial embracing
grammar, where V' = alph(w, - w%,8).

(i) & — 4.

(11)(1) If for some 1 €{0,..., k}, w; -+ A4, then by Lemma 1.1, G, —
(V; wg 5..., wy; A) is a nontrivial embracing grammar, where I/ = alph(w, - w,).

(i1)(2) Ifw; — A for every i € {0,..., &}, then it must be that £ > 2 and,
by Lemma IL1, G4, = (V; g ..., wy; &yB, A) is a nontrivial /-augmented
embracing grammar, where V' == alph(w, - 2, 3yB).

(4) Now we complete the proof of the thcorem as follows. Let x e L and
lat > ny. By (1) there is a derivation tree 7T of x in G such that 7" contains a
composed subtree of height smaller than 7, . Let 4 be the label of the root of
such a subtree, let = be a fixed control sequence of T and let S, u; ..., u, = x be
the trace of 7 on .S. Let f be the largest integer such that 4 € alph(x) and let
p, 7 be the decomposition of 7 such that p leads from S to ¥, and = leads from u,
to u, (hence 7 := wop). Let p(S) = wvyAy.A4 - Ay, where ¢ =1 and
A¢alph(y, -~ 3,). Let (mA)yedAyA - Ay) = xAx, A -+ Ax,, where
Xy, 2 € 4% and let 7w(A4) = 8; obviously § e Term(A4). Thus x -= 7(S) -=
xy 8%, 8 - x, and moreover, for every m = |1, x0,,(4) x,0,,(A) - 0,(d)x, €L,
where 8, == mo (v \NA)opu )" if 8 # A, 0, =viepqao((vyA)epy) Lif = A,
and p, and v, are the fixed control sequences from (3). In other words x ==

20(E(G 4.5)) x,0(E(G 4.5)) - O(E(G 4.5))%, and for every m 2= |
xom(E(G 4 5)) xym(E(G 4 5)) - m(E(G 4 s))x, e L.
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Thus if we set n = ny and {H,,..., H;} to be the sct of all A-augmented
embracing grammars G, ; as defined in (3) (4 is a composed letter and
6 € Term(A)) then the theorem holds. |

Before we state our next result we need the following notion. Letx :=a, -+ a,, ,
# 22 2, be a word over Z, where a, ,..., a,, are occurrences of letters from 2 in x,
and let {X) , Z,} be a nonempty partition of 2. Then we say that an occurrence
a;, 1 <i<n—1,is a {2y, Zy}-switch if a; is.an occurrence of a letter of 2|
and a,,, 1s an occurrence of a letter from 2, .

It is well known that the length sct of an infinite CF language contains an
infinite arithmetic progression. "I'hus if the length set of an infinite I language
docs not contain an infinite arithmetic progression the language is not CF; for
example {a®" | n > 1}isin L(IP).#(CF). (At the same time it should be observed
that an infinite I” language the length set of which contains an infinite arithmetic
progression does not have to be CF; {ww | we {0, 1}*} is an example.) The
following theorem allows us to provide examples of infinite languages such that
their length sets do not contain an infinite arithmetic progression and the
languages are not in Z(IP).

TrroreM 11.2. Let L be an infinite 1P language over an alphabet 2 and let
21, 2y be a nonempty partition of Z, then either (1) the length set of L contains an
infinite arithmetic progression, or (2) there exists a positive integer k, such that
infinitely many words of L have no more than ky occurrences of symbols of 2, , or (3)
there exists a positive integer k, such that infinitely many words of I. have no more
than ky occurrences of symbols of X, , or (4) for every nonnegative integer n, there
exists a word z in L, such that = has at least n {¥, , Z,}-switches.

Proof. Let n be as in the statement of Theorem I1.1, and let x in L be such
that " x| > n. Let H, be as in the statement of ‘Theorem II.1 and let U(H,) =:
(Z; Wy s..o, wy; ). If k == 1, then (1) holds, if zg ,..., ;. , 2 € Z¥, then (2) holds,
if wy,...,%w,, €2y, then (3) holds and if the word w, - w,z contains
occurrences of letters both from 2| and Z, then (4) holds. ||

As an example of the application of the above theorem we get the following
result.

CoroLLARY 111, {a®h®" n = 0} ¢ L(IP).

"['his can be generalized to the following result.

COoROLLARY 11.2. Let X be a finite nonempty alphabet, let =, , X, be a nonempty
partition of Z and let K, and K, be infinite languages over X, and Z, respectively.

If f: K, ~ K, Is an injective function and the length set of K = {xf(x) ' x € K;}
does not contain an infinite arithmetic progression, then K ¢ £(IP).
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Proof. Since the length sct of K does not contain an infinite arithmetic
progression the case (1) from the statement of the previous theorem does not
hold. Cases (2) and (3) from the statement of Theorem I1.2 cannot hold, because
£ is injective. Case (4) from the statement of ‘I'hcorem II.2 cannot hold, because
each word of K has at most one {Z| , Z,}-switch. ||

I1I. ETOLIP SYSTEMS

In this section we will combine the IP mechanism and the ET0L mechanism
of rewriting; the resulting construct is an ETOLIP system. In Siromoney and
Siromoney (1975-1976) the IP mechanism was combined with OL systems.
However the results stated there are not very helpful in establishing the propertics
of ETOLIP systems; the use of nonterminals changes the situation completely.

DrrixiTiION.  An ETOLIP system is a construct G : . (2,2, S, 4) where
2.4, 8, 4 are as in ETOL systems. Given x e 2t and y e 2™ we say that x
divectly derives y in GG, denoted & = y, if x - = x; -~ x, withn = 1, % ,..., x, € %,
Y-y v, with ¥y, € 27 and there exists a P ¢ % such that x;, — y; is
production of P for each 7e{l,..,n} where y, = y;, whenever x; — x;,
I sl &, j =< n. T'he relation % is defined as the transitive and the reflexive
closure of —¢; if ¥%(; y then we say that x derives y in G. The language of G is
defined by L(G) . = {xe 4* S % x}.

The notation and the terminology concerning ET0L systems and languages
are carried over to ETOLIP systems. In particular an EQLIP system is an ETOLIP
system (2, 2, S, 4) where #7 = 1.

First of all we compare the language gencrating power of EOLIP systems and
1P grammars.

‘T'ukorem 1IL1.  £(IP) G L(EOLIP).

Proof. Let G = (2, P, S,4) be an IP grammar. If 24 —{S — 41,
Ay, Ay}, with 7 =1, then let, for j = 1,.,n, 2@ denote the set
{49 4 e 2\4}, such that X, 20 20, for i 7.7, 1 <4, j < n, arc pairwise
disjoint, and let for j = 1,..., n f; be a homomorphism defined by f;(A4,) — AY+Y
for 1 <Xj<n 1 <i<n, f(A)=AP for 1 <7/ < n and f(a) = a for
l <{j<<nandacd. LetG =(Z, P, §, 4y e EOLIP, where X - - {J}, 29 U 4,

S :: AP and P the following set of productions.

P={AY sfw)i A, —>wePi=1,..n

VLAY > fd) || <4,j <myUfa-»alacd)
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From this construction it is clear that S % x if and only if there exists an
integer je{l,...,n}, such that S % fi(x). So L(G) = L(G). Thus for every
IP grammar G there exists an EOLIP system G, such that L(G) == L(G) and so
ZL(IPYC L(EOLIP). Since {a"b*" ;n > 0}e L(EOLIP)\#(IP), see Corollary
I1.1, it follows that this inclusion is strict. ||

Remark. The inclusion Z(IP)C #(FOLIP) is stated in Siromoney and
Siromoney (1975-1976), Theorem 3.2 (in a different formulation). Since its
proof there seems to be incorrect, we provided the full proof of Theorem III.1.

Here is another way of arriving at ETOLIP languages.

For a set P of context frec productions on 2, that is productions of the form
A-—->a, AeZ, « e Z*% where P contains a production for each element of 2,
we use det(P) to denote the family of all sets of productions R such that RC P
and R contains exactly one production for each element of 2.

DeriniTioN. Let G be an ETOL system, G == (2, %, S, 4). The com-
binatorially complete (cc) version of G, denoted G, is the EDTOL system
G, = (2, %, S, 4), where # = Jpeg det(P). G,, is referred to as an ETOL,,
system (or EOL,, system if G is an EOL system).

We use ET0L,, and EOL, to denote the classes of ETOL,, and EOL systems
respectively.
Directly from the above definitions we get the following results.

Levima 111, If Gis an ETOL system then L(G,.) C L(G).

Lemma [I12. (1) L(ETOLIP) = #(ETOL,) = Z(EDTOL),
(2) L(EOLIP) = £(EOL,,).

We compare now the classes of EQOL and EQL,, languages.

Turorem 111.2.  L(EQL) and F(EOL,,) are incomparable but not disjoint.

Proof. Since in Ehrenfeucht and Rozenberg (1977) it is proved that #(CF) ¢
L(EDTOL) and by definition #(EOL,.) C L(EDTOL), it is clear that Z(CF){
L(EOL,,). But it is well known that Z(CF) C £(EOL) (sce, e.g., Rozenberg and
Salomaa) and so Z(EOL) ¢ #(EOL,,). On the other hand L = {gw¢wew  we
{0, 1}*} ¢ L(EOL) sce, e.g., Rozenberg and Salomaa, while L is generated by the
EOL,, system G == ({S, ¢,0,1}, {Ty, Ty}, S,{¢,0, 1}), where

Tl =" {S—>C¢¢,¢—>¢0,0'—’0,1—’ 1}
and

T, ={S—>¢e¢,¢ >¢1,0->0,1->1.
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Thus Z(EOL,,) ¢ #(EOL). 1t is clear that Z(REG)C #(EOL,) N F(FOL)
and so the theorem holds. ||

The following result is useful in establishing the relationship between the
language generated by an ETO0L system and the language generated by the cc
version of the same system.

TheoreMm [11.3. Let G be an ETOL system. For every word w e L(GWL(G,,)
there exist words wy , W, , Wy , oy and oy , where oy 7 a, , such that w == wyoWya,os
and 1y | = Wy W0 Wy |, Wy o = WiAWe0laWy , Wy y == WKWy Wy € L(G).

Proof. Let G = (2, 7, S, 4) be an ETOL system. Let w € L(G)\L(G,,).

(1) First of all we may assume that there exists a derivation tre¢ T of w
with the following property. If @, and 2, are two different nodes on the same level
of T such that both have the same label and the same contribution to @, then the
subtrees rooted at v, and v, are identical.

This is seen as follows. T'ake an arbitrary derivation tree T of @ and proceed
to “clean up” T top-down as follows: on cach level of T replace all subtrees
rooted at nodes with the same label and contributing the same result to @ by one
of those subtrees. Once this procedure ends the resulting tree 7T satisfies
the above conditions.

(2) Let T be a derivation tree of w satisfying (1). Since w e L(G\L(G,,)
there must be a level in T on which two different occurrences of the same symbol
(say, A) have different contributions to w (say, «; and a,). Then w = w,a,w,x,w,
for some w, , w, , wy; € A* and obviously also w,x w2y , wiaeWea,w, ,
20 002y, %, € L(G). Thus the result holds. |

Remark. Observe that words w, @, ; and w, , as stated in the above theorem
are all different words, but that it is possible for % and =, ; to be the same word.
Also if w, ; can only be obtained as in the proof above, then w, ; € L(G\L(G,,).

As an example of an application of the above result we present the following
corollary.

Cororrary IIIL1. If KC{a""in >0} and Ke L(ETO0L) then Kc
L(EDTOL).

Proof. If K = {A} then KeL(EDTOL). Thus assume that K = {A}. Let
G € ETOL generate K. Let us assume that there exists a word w in L(G\L(G,,)-
By Theorem IIL.3 there exist w,, w,, w,, a; and «,, where &; + a,, such
that w = wjowemw, and ;) = Wi Wemwy, Wy, = W XWyoyWy, Wy ==
wyxwaa wy € K. Let us consider all possible “distributions” of a; and ay in 2.



144 KLEIJN AND ROZENBERG

(1) If either oy, x, € {a}* or oy, ay € {6*}, then w, | ¢ K; a contradiction.

(2) If one of o), ay is in {a*} and the other one is in {8}*, then w, , ¢ K;
a contradiction.

(3) If one of &, a, contains occurrences of both ¢ and 4, then either
w, , ¢ K or w, , ¢ K; a contradiction.

Thus we get a contradiction in each case and consequently L(G)\L(G,.) = .
Hence K - - L(G,,) and the corollary holds. ||

Theorem I11.3 leads naturally to the following notions.

Drrinition. Let K e #(ETOL). The deterministic core of K, denoted
deor(K), is defined by deor(K) == g {x | L(G) = K A x € L(G,.)}.

DerinrrioN. (1) If K e Z(ETOL), then a word z in K is called a social word of
K if there exist w, , w, , @y, oy and «, , With o =~ a, , such that @ = w o w,x,w,
and w); = WMWeyTy , Wy a = WyAWNWs , Wy == W XUyt Wy are elements
of K.

(2) If aword w of K is not a social word of K| then it is called an zsolated
word of K. The set of isolated words of K is denoted isol(K).

We are able now to characterize the deterministic core of an ET0L language by
isolated words.

‘TuporeM 1114, Let K ¢ #(ETOL). Then dcor(K) = isol(K).

Proof. (1) Let w € isol(K). From Theorem II1.3 it follows that there exists
no ETOL system G, such that K == L(G) and w e L(G)\.(G ). Hence w € dcor(K).

(2) Let w be a social word of K. Then there exist w, , @, , &g, @ and o,
as in the statement of Theorem II1.3 such that @, —= waw.0wy, w,, ==
W, xgWoatyTWy and 2y 1 = - WX Weay Wy are words in K. Let M = {ow, wy 1, Wy o, Wy 1}
Obviously there exists an £T0L system H such that L(H) - = K’\M. (This is seen
as follows: let G be an ET'0L system over a terminal alphabet 4, generating K
and let R denote the regular language 4*\M; since F(ETOL) is closed under
intersection with regular languages, sce, e.g., Rozenberg and Salomaa, there
exists an ET0OL system generating K N R = K\M). Let H == (2, 2, S, 4) and
let 1= (2, &, A,4) be the ETOL system constructed as follows: 2 =
2 {4, B,F}, where 4, B,F¢ZX, and

P = U {Pu{d—-F,B->F,F~>F}uP,,
P
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where

Pipe:{d— 8 A-—»wBw,Buw,, B-—>2a,B—>a U{x->x, xeXU{F}].
Hence /7€ ETOL and it is casy to see that L(H{) — L({I) U 3 .= K and that w
and w, ; ¢ I(H,.). So w ¢ dcor(K).

From (1) and (2) the theorem follows. |

Remark.  Notice that the above theorem implies that if Ke Z(£TOL) and
A e K, then A e dcor(K).

We conclude this section with the following two applications of Theorem ITI.3.

Corotrary 1112, [f Ke P(ETOL), K C{a}* and the length set of K does not
contain an arithmetic progression involving three or more elements then

K $(EDTOL).

Proof. Let G be an ETOL system such that I(G) — K. If L(G)\L(G..) -~ =,
then Theorem I11.3 implies that the length sef of K contains an arithmetic
progression involving three elements. Hence L(G)L(G.) == 2z and K =

L(G.). 1}

CoroLLary 113, If K& L(ETOL) and the length set of K is thin (meaning
that for each n in the length set of K there exist at most two elements x, v of K such
that | x = = |y = n) and it does not contain an arithmetic progression involving
three or more elements then K € L(EDTOL).

Proof. Similar to the proof of Corollary I11.2. |

IV. 1-RestrICTED ET0L SYSTEMS

Except for the fact that terminal symbols cannot be rewritten, an TP system is
an L£DTOL system such that in cach table of it at most one symbol is rewritten
into something else than the symbol itself. A very natural step at this stage is to
consider the ‘‘nondeterministic version” of those systems: that is to consider
the class of ET0L systems such that in each table of a system from this class at
most one symbol can be rewritten into something else than the symbol itsclf.
The difference is that, while as before, in a single derivationstep one chooses one
symbol to rewrite, different occurrences of this symbol in a string can be
rewritten, in different ways.
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"Those systems are termed 1-restricted ETOL systems and they will be considered
now.

DerFINiTION. A 1-restricted ETOL system, abbreviated ETOLg system, is an
ETOL system G = (Z, 2, S, 4) such that for every P € & there exists a letter b
in 2'such that if c € 2'{b} and ¢ —p o thena == c.

Hence in an ETO0L{;; system each table can rewrite at most one symbol into
something else than the symbol itself.

All notation and terminology concerning ETOL systems are carried over to
ETOL(y; systems. Also we term an ET0Lyy; system G = (X2, 2, S, 4) reduced if
every nonterminal A from Z is reachable (that is S % x,4x, for some
%y , %, € 2*) and productive (thatis 4 % w for a word w € 4+). We will consider
reduced ETOLy) systems only.

Before we prove our first technical result we need the following notion.

DeFiNiTiON. Let G = (2, 2, S, 4) be an ET0L(, system.

(1) For every element o€ 2, the set of all productions ¢ — o *** «,, such
that o ¢ alph(e, -+ @), is denoted IT,°.

(2) For every clement o € X, the order of o, denoted p(c), is defined by
p(o) = 0if o € 4, and p(0) = min,, {max{p(a) | @ occurs at the right-hand side
of m}} + 1 if o ¢ 4.

(3) For every word we X+, where w —=o¢, *~0g,, with n>1 and
07 yeey O € 2, the order of w, denoted p(w), is defined by

p(w) = max{p(o;) | i == 1,...,n}.

Since we consider reduced ETOL(,; systems only, p is 2 well defined function
on 2,

The following technical result will be quite useful in proving the main
theorem of this section.

Lemma 1V.1. Let G = (2,2, S,4) be an ETOLyy) system. There exists a
nonnegative integer I such that every word we Z+ derives a nonempty word in 4*
in no more than | steps.

Proof. As a matter of fact we will prove that: every word we 2+ derives a
nonempty word in 4* in no more than (#Z). p(w) steps. Since obviously
p(w) < #2Z for every w € 2+, the lemma follows from the above claim. The claim
is proved by induction on p(w) as follows.

(1) If p(w) == 0 then the claim trivially holds.
(2) Let us assume that the claim holds for all w e 2" such that p(w) < 4.
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(3) Let welZ* be such that p(w) = k -+ 1. Clearly = contains an
occurrence of a letter o such that p(¢) = & - 1. If we rewrite each letter o from
alph(e) with p(¢) = & -{- 1 using a production of the form o -» o where p(a) = £
then in lcss than #Z2 steps w derives a word & containing no letter of order
higher than k. Thus, by the induction hypothesis, in no more than #2 —
#E k= H#Z - (k-i- 1) steps w derives 2 nonempty terminal word in 4%,

Thus the induction is completed and the claim holds.
Consequently the lemma holds. |

To state our result on the combinatorial structure of £7'0L;) languages we
need the following two dcfinitions.

DerinitioN. Let K be an infinite language over an alphabet 2 and let
b e 2. We say that K is logarithmically b-clustered if there exists a positive integer
C such that for every word w in K if b e alph(w), then w = wybw, -+~ bw, ,
n =1, wy,..., w, € ¥, b ¢alph(w, --- w,) and | w; | << C logn forj — 0,..., n.

We say that K is logarithmically clustered if there cxists a letter b in 2, such that
K is logarithmically b-clustered.

DeriNiTION. Let K be a language over an alphabet 2. We say that K is
pump-generated if there cxist positive integers 7, ¢ and words 1, ¥y ,..., ¥, ,
u,w, z€2* with |uz ! # A and | uz | < ¢ such that

K o= | xguiwz'x, - wwaix, .

i»0

TuroreMm IV.1. If K is an infinite ETOLyy) language then either K contains
an infinite logarithmically clustered language or K contains a pump-generated
language.

Proof. Let K be an infinite language generated by an ETO0L(;; system
G = (2% S, 4).

(1) Since K is infinite there is a symbol (say 4) in 2 such that 4 % ; y.A8
for some v, 8 € 2*, where 98 £ A. Let £, denote the set of all derivations D
leading from 4 to a word of the form y48 with 8 € £~ and such that at each step
of D all occurrences of the letter under rewriting are rewritten by the same
production. Since K is infinite % , is not empty. Now let D, be a fixed element of
% such that no derivation in &, is shorter than D;. Let D, lead from .4 to
x4 where af € 2'F, and let v, ,..., v, be the productions used by D, (in this order).
Together 7 = (v ..., v;) forms the control sequence of Dy and we can consider r
and each of vy ,..., v, also as a transformation from Z* into X, Note that since
Dy was “‘the shortest” element of &4, cach occurrence rewritten in D, must
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contribute at Jeast one occurrence of A4 to adB. Consequently if v; = 4; — »;
then r(4;) contains an occurrence of A. Liet R = {4 =: 4,, Ay ,...; Ai}.

(2) Assume that R, N alph(af) ¢ @. Let 2€2* be such that S % »
and /1 € alph(z); since G is reduced such a = exists and morcover we can choose a
z which can be derived from S in no more than #2 steps. Let 7(z) = z; and
7%(2) = 7(2) = 2,. Since R, Nalph(af) # &, 2z, contains at least two
occurrences of 4 and consequently for eachn 2= 1, ¥*(z) = z,, contains at least
27 occurrences of /. Let ¢ be the maximal distance between two occurrences
from R, in z (a distance between two occurrences ¢, , ¢, from R, in 2 is the
number of occurrences between ¢, and ¢, in 2; if 2 contains only one occurrence ¢
from R, then th¢ maximal distance is determined by the largest of the two
distances: from ¢ to the leftmost occurrence in z and from ¢ to the rightmost
occurrence in z). Note that ¢ is bounded by (maxr(G))*2.

Then the maximal distance between two occurrences from R 4 in 2, is bounded
by 2 - 2(maxr(G))* +- ¢, and in general, for z > 1, the maximal distance between
two occurrences from R, in 2,, is bounded by 2n - 2(maxr(G))* - ¢. Let then
Zon == UgAuy A -+ Au,, where ug ..., u,, € 2* and A ¢ alph(x, - u,,); we know
that m > 27. By lemma IV.]1 we know that there exist a constant / and a word
w, € 4% such that 4 derives w4 in G in less than [ steps; moreover we can
obviously assume that in rewriting A4 into @ 4 an occurrence of A will never be
introduced. Let b be a fixed letter from alph(e,). Hence 2,, = ugdu, 4 -+ Au,,
derives in less than I steps the word 2,, = V@4 )1%4 " WAV » Vo rores Y € 2%,
which derives in less than I steps the word £,, = xw 2,204 **- @ 4%, € A7 where
the maximal distance between two occurrences of b in %,, is bounded by

(4n(maxr(G))* + ¢) - (maxr(G))* - 2(maxr(G))*
= 4n(maxr(G))* - (maxr(G))? + (maxr(G))* - (g--2) <r-n =5

where 7 = 4(maxr(G))* - (maxr(G))? and s —= (maxr(G))* - (2 5- (maxr(G))*%).
Since m > 2", K == {%,,|n > 1} is an infinite logarithmically b-clustered
language contained in XK.

(3) Assume that R N alph(ef) := &. Since G is reduced, there cxists a
word & = y,Ay, A -+ Ay, with & > 1 and 4 ¢ alph(y, - ;) such that S % 2.
By Lemma IV.] there exists a derivation leading from 2z to a terminal word;
fix one such derivation and change it in such a way that each time 4 is introduced
it is not rewritten anymore. In this way we get x % xoAx,4 -+ Ax, where
p =1, A ¢ alph(xex, =+ x,) and %, ,..., x, € 4*. Now forn > 0, 77(4) = «"Ap"
and so *(x,Ax, A -+ Axy) = xgxtABrxanAB" -+ a®ABrx, . By Lemma 1V.1
there exists a derivation leading from «A4p to a terminal word. Let us fix onc such
derivation and let the control sequence of this derivation be such that it leads
from A to a terminal word w, it leads from « to a terminal word # and it leads
from 8 to a terminal word ¢; by Lemma IV.1 we can assume that uz # A. Thus
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for each n 22 0, xguwtxpewt™ - wwt™x, € K. Consequently K contains an
infinite pump-generated language {xgu w!"xu wt® -+ wwitx, | n = 0}.

(4) Since either R4 M alph(af) = = or R Malph(af) -~ # the theorem
follows from (2) and (3).

As an cxample of applications of the above theorem we provide now two
examples of languages not in Z(ET0Ly)).

Exavpre IV.] K = {a®"®* 'n = 0} € #(ETO0Ly,;). This is seen as follows.
Since obviously the length set of K docs not contain an infinite arithmetic
progresssion, K does not contain a pump-gencrated language. However it is
easily seen that X does not contain an infinite logarithmically clustered language.

Hence Theorem IV.1 implies that K is not an ET0L(y; language. ||

Exampre IV.2 K . {a"b"c" | n = 0} € L(ETOLyy;). This is scen as follows.
First of all it is obvious that K does not contain an infinite logarithmically
clustered language. Secondly it is easily seen that K does not contain a pump-
generated language.

Thus Theorem IV.1 implies that K ¢ #(ET0L(;). |

It is instructive to notice at this point that {a"b" | n = 0} € L(ET0Ly)).

V. k-Restrictep ET'0L SysTeEMs

In the previous section we have seen that 1-restricted ET'0L systems arc weaker
in their language gencrating power than E7T0L systems in general. Hence it is
natural to consider now k-restricted ETOL systems; that is ETOL systems which
usc only tables such that cach of them has productions different from identity
for no more than £ symbols. The question is whether or not with the growth of 2
one gets larger classes of languages generated by k-restricted ETOL systems,
Answering this question is certainly important for understanding the way that
ETOL systems work; it certainly sheds light on the naturc of parallel rewriting
in general. Intuitively it is clear that the considerable language generating power
of ETOL systems comes from the fact that in rewriting a string x an ETOL system
G can “force” different sorts of letters to behave synchronously. For example, if
occurrences of a letter b in x are rewritten by elements of a set BB then at the same
time occurrences of a letter ¢ must be rewritten by elements of a set C, occur-
rences of a letter d must be rewritten by elements of a set D, ete. (Think, e.g., of
the simplest way to generate {a; a5 - a5 |7 >> 0} where £ is a fixed integer,
k = 2). Hence, intuitively, it scems conceivable that if more letters can be
forced to behave synchronously then the language generating power increases.

In this section we disprove this conjecture by showing a rather surprising fact



150 KLEIJN AND ROZENBERG

that there exists a k, such that kj-restricted ETOL systems generate all ETOL
languages.
Formally k-restricted ETOL systemns are defined as follows.

DrerintTiON.  Let G == (2, #, S, 4) be an ETOL sytem and let & be a positive
integer.

(1) A table PeZ is said to be k-restricted if there exists a subset 2 of ~
such that #2 < kandif 6 — Bisin P forbe Z\Z, then 8 = b.

(2) G is said to be k-restricted if each table of G is k-restricted; we also say
that G is an ETO0Ly; system.

First of all we have the following result.
TueoreM V.1. For every ETOL system G there exists an equivalent ETOL
system G with three tables and such that two tables of G are 2-restricted.

Proof. Let G == (2,7, S, 4) be an ETOL system. It is well known (Rozen-
berg and Salomaa) that every ETOL language may be generated by an ETOL
system containing two tables only. Hence we can assume that & =: {T\, T,}.
Let f and g be homomorphisms on Z, such that f(a) = ¢a and g(a) = $a, where
¢, $¢ 2. Let F be asymbol not in £ U {¢, §}. Let G = (2, 2, S, 4) be an ETOL
system, where & = YU {¢, $,F} and Z == {P,, P, , P;} with
P, ={a—alac{¢, $,Flivia—f(w)a—wel}Uuia—gw)|a—>we Ty,
Po={a—>alacZU{Fiu{e—> M U{§>F}

and
Py={a—>alaeZU{F}Ui—>Fu($—4}.

Clearly L(G) = L(G) and P, and P, arc 2-restricted. Hence the theorem holds. ||

We move now to investigate the influence of increasing the parameter £ onto
the language generating power of ETOL(,) systems. We start by observing the
following.

LEmMma V.1. g(ETOL[l]) g-; g(ETOL[z]).

Proof. Let K = {a*"6*" | n > 0}. By Example IV.1 K ¢ L(ETO0L(y}) whereas
K is generated by the ETOL,) system

G = ({S, a,b},{{S—ab,a—a,b—b},{S— S, a—a% b— b4}, S, {a, b))

Thus the result holds. |
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In the rest of this section we will demonstrate that the above result is not
typical for the situation when one transits from 2 to & -|- 1. We start by defining a
construction which is very essential for the proof of the main result of this section.

The Carrier Construction

Let n be a fixed positive integer.

(1) LetV =4{ay,...,a,,b,.,b,, 4, B Fyandlet U, .., U,, Ty,., T
be the following sets of productions.

n

Uy—={A—->B B>Fa—b,b,—»Flue—ov vel{d B a,b,}
T, ={4-»F,B—>A,a,—-F b —>aju{v->civel {4, B, a,, b}

and for k= 2,...,n

Uy ~{d->F,a.—b.,a, ,->F b, —>Flu{e—z vel{d a,a._, b}

Ty~ B—>Fa >Fb.—a , b_ - >Flu{v—o velViB a,,b,, b ).

Then the construct C - (V5 Uy,.., U, . Ty ,..., T,; a; - a,d) is called a
general carvier.
The reader should note the following. Let

P={S—a - adluv—seivel

4, =1ay,.,a,, A} and G .. (V, %4, S,4,) be the ETOL system, where
A -+ Uper Ur U Uy Te U P. Then I(G) = {a, - a,4} and the only “real
way” to derive @y -+~ @,/ in G (that is we consider only those sequences of tables
that indced rewrite the current word into something else than itself) is to start
with P and then repeat any number of times the cvcle U -+ U, T, -+ T, .

(2) Let C—- (V3 Uy,..,U,, Ty ,..., T, a, - a,A4) be a general carricr,
then the 0, 1-extended carrier of C is a construct (VU {0, 1}; U,9,..., 7,9,
Uiy, UL T, 1,0, T, 1Y ay o0 a,A0) where VN {0, 1) — & and
U =0 0—>0,1 =15 U UL uf0—> 1, L= I for2 K hSn U0 -
ULu{0->0,1 >F)and U0 s U, {0 F 11, for | <Xk < n— |
T — Thu{0—>0,1>F}and 7'} = T, U{0—>F,1->1},T,° «.: T, U
{0 >0, =>Fland T')0 =T,uU{l-»0,0—F}.

THeOREM V.2, L(ETOL(g) — L(£TOL).

Proof. Obviously L(ETOLg) C L(ETOL). To prove the converse inclusion
we proceed as follows.

643/44/2-4



152 KLEIJN AND ROZENBERG

Let K e #(ETOL). Since -#(ETOL) is closed under interscction with regular
languages (Rozenberg and Salomaa), K = U}_, K, s = 1 wherc each K is an
ETOL language such that if x, v € K; then alph(x) = alph(y).

(1) ILetusconsider afixed language K, , 1 < 7 < s, as above (say K; = L).

Let H= (2,2, S,4) be an ETQL system generating L. It is well known
(Rozenberg and Salomaa) that we can assume that ## — 2 (say & = {P,, P\})
and clearly we can assume that there exists a nonterminal (say N) such that N
occurs in every intermediate word in every successful derivation in H.

Let t be a fixed terminal symbol occurring in every word of L(H).

Let X = {G|oeZ)and X — (6| o Z}, where Z, Z, 5 arc pairwise disjoint.

Let (VU {0, 1}; U,..., U0, UL U 90,18 T2, T ey - a,A0)
be a {0, 1}-extended carricr, where X = {0, ,..., 0.} and V, {0, 1}, Z, %, X are
pairwise disjoint.

Let 2" be the following sct of tables over the alphabet 27 = S U XU XU
u{0,13 U {S’}, S’ being a new symbol. (In every of the tables given below
we list only productions different from the identity productions.)

(i) Py ={S"— Sa, - a,A0}.

(i) Fori =—:1,..,n,

RS = Uiﬁu{éi—»Sioi—>86P(,}U{t—>F}
R = U}U{&i—»Sfoi—>8&‘P1}U{l—+F}
PR - ToU{G;,—~6,)V {t "”F},

and

P = TrU{6,—6)U{t—F).

2

() L, ={A>A,B>F,b—>Fb, >F >t 1V—>F}
(iv) Torallded, s ~1,

76 = {4->F, B-»F,N—>F,§—8}.
(v) Fori—=1,.,n,
Ti={A~>F,B »F,N->F, a;,-~4}.

(viy TO={A->F,B—>F N—>F,0—A}.

From the construction it follows that H' = (X', &', §’, 4) is an 8-restricted
ETOL system. ‘That L(H') = I.(H) is seen as follows. S =4 Sa, -+ 2,40 and
then R,% or R,! have to be chosen, which is equivalent with a choice of Py or P,
in H. The choice of R;® (R} respectively) implies that next RY,..., R,°,
Pp..., POAR,..., R P, Pl respectively) have to be used in this order,
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thus deriving & - a,401f S->we Py (S — w e P; respectively). This way of
simulating in H’ direct derivation steps from f1 is iterated. Hence every derivation
S %, = corresponds to S’ -+ Sap - @, A0 Xy 2ay - 0, A0 in such a way
that when, in 11, P, (P, respectively) is used, then, in A, the cycle R%...,R 9
PO PO (R, R, PO, P respectively) is used. Since iterating those
cycles is the only way to get a derivation that does not introduce the rejection
symbol F, we may conclude that S = z if and only if §" = 2a, - a,,410.

The only way to get a terminal word in /4’ from %a; -+ @, A0 is to use tables of
type (iii) through (vi) on the condition that x ¢ 4%; morcover the table /; must
be used first.

Since /, rewrites 7 in ¢, { ¢ alph(z) and £ — F is in every of the tables R/ and
Tiforj—1,2and¢ - 1,..., n, thosc tables cannot be used anymore.

Now using tables of type (iv) through (vi) we get the word ».

(2) Now let us return to the language K. We have K — ;| K, .

Let each K, be generated by an 8-restricted ET0L system G, constructed in
the same way as /4’ was constructed for . in (1).

Let G, = (2@, 70, SO A fori :- |,..,s.

Let Hy — (2, Zw » Sty » 4(»y) result from G, 1 <07 < s, by renaming all
svmbols in G except for the special symbols A, B, I and N from (1) in such a
way that cach symbol & from 4® in G; becomes now 8¢ in H,and 2, N 2, - -
{1, B,F, N} for i +£ j.

Finally let G = (X, U - U Xy U4 U {S} A, S, 4) where

S‘GZ(” o UZ(_\,) U A

and .# consists of the following tables.

(I) {S—>SuiisinZfori =1, s
(II) y(l) yeooy .7’(_@ are in Z.
(T1}) Forevery 1 <l¢ < s and every dyedy {Ad—F, B->F, N> F
8“) > 8} is in A,

Clearly 1(G) = K and G is an 8-restricted ET0L system.
Hence the theorem holds. |

The above result 1s, in our opinion, an instructive result on the nature of
parallel rewriting. It says that a parallel rewriting process (in the scope modelled
by ET0L systems) requires a bounded amount of “‘cooperation” between different
svmbols. T'hat is, very ET0L language can be generated by an £7T0/ system in
which in each rewriting step it suffices to rewrite only a bounded number of
different symbols —not more than 8 of them. 1t is an interesting open problem to
find out the lower bound on the amount of coorperation needed to generate the
whole class of ETOL languages. In Lemma IV} it is shown that to set this
parameter equal to ] is a real restriction, hence | is not the lower bound.
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One should notice at this point that ETO0L(,; systems form in a sensc a
generalization of ETOL systems of index k, see Rozenberg and Vermeir (1975).
Hence it is instructive to compare the above result with the result about ET0L
systems of index k4, which says that increasing the index £ leads to an infinite
hicrarchy of classes of languages, see Rozenberg and Vermeir (1975).

VI. ETOLRP Systems

In this section we study the effect of combining the mechanism of Russian
parallel rewriting (see, e.g., Levitina (1972) and Salomaa (1974)) with the
mechanism of E7TQL rewriting, in a fashion analogous to Section IIT where we
have combined Indian parallel and ETOL ways of rewriting.

We start by recalling the notion of a Russian parallel grammar.

DerinitioN. (1) A composed set of productions over an alphabet 2 is an
ordered pair P — (P, , P,) such that both P, and P, are finite sets of productions
oftheform 4 -» «, A € Z, x € 2* (LH(P,) and LH(P,) do not have to be disjoint).
We refer to P, as the bounded part of P, denoted bnd(P), and to P, as the free
part of P, denoted fr(P).

(2) A Russian parallel grammar, abbreviated RP grammar, is a construct
G = (Z, P, S, 4), where 2, P, 8, 4 are as in the definition of a CF grammar (that
is the total alphabet, the sct of productions, the axiom and the terminal alphabet
of G, respectively), except that P is a composed set of productions over 2:4.

(3) Letxe X and yc 2~ We say that x directly derives y in G, denoted
X ovey if x - xdx o Ax,, where AeZid, n 21, x,..,%,€2 and
A ¢ alph(xg - x,), and either y = x,dx, -+ Axjox; 34 - Ax, for some j,
0<j<n—1,and A—>acfr(P)ory =xgx - ax, and 4 ->xebnd(P).

(4) The relation % is defined as the transitive and the reflexive closure of
= . If x = y, then we say that x derives y in G.

(5) The language of G is defined by L(G) = - {xc 4%} S L x).

Combining the Russian paralle]l rewriting mechanism with E7T0L systems,
we get the following construct.

DerNiTioN. (1) Let X be an alphabet. A composed table over X' is an ordered
pair P = (P, , P,) such that both P; and P, are finite sets of productions of the
form 4 —>o AeZ, «cX* where LH(P,) U LH(P,) — 2 (but LII(P;) and
LII(P,) do not have to be disjoint). We refer to P, as the bounded component of P,
denoted bnd(P), and to P, as the free component of P, denoted fr(P).

(2) A Russian parallel ETOL system, abbreviated ETOLRP system, is a
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construct G — (2,.7, S, 4) where 2, .#, S, d are as in the definition of an ET0L
system except that P is a finite set of composed tables over X

(3) Let xeZ- and y ¢ 2*. We say that x directly derives v in GG, denoted
x soy, if x —xx, with n 21 and x,..,x,¢2, y==y -3, with
¥1 e Yo € 2% and there exist Pe./, P, Cbnd(P), P, C fr(P) with LH(P}) N
LH(P,) = # such that x, >y, P, U P, for 1 =7 <{n and whenever x; —
y;e P, x; =%, | <i,j < nthen y;, -= ¥,. The relation % is defined as
the transitive and the reflexive closure of —; if ¥ 5 ¥ then we say that x
derives y in G.

(4) The language of G, denoted L((), 1s defined by

LG) ={ved S = .

Thus in an ET0LRP system G a single rewriting step is performed as follows,
Given a word x to be rewritten, one chooses first a composed table P, then one
decides on letters in x all occurrences of which will be rewritten by productions
inbnd(P) (hence in the “‘Indian parallel way”’) and then the other (occurrences of)
letters in x will be rewritten by productions from fr(P) (hence in “normal £OL
fashion”). In this way in the framework of ETOL systems, £TOLRP systems play
the role that RP grammars play in the framework of CF grammars.

All notations and terminology concerning ETOL systems are carried over to
ETOLRP systems. Thus, e.g., an EOLRP system is an ETOLRP system (2, 2, S, 4)
where #7 = 1. Also when we deal with an ETOLRP system we will use the term
“table” to refer to a composed table, this however should not lead to confusion.

First of all we demonstrate that augmenting ET0L systems with the Russian
parallel mechanism yields a class of rewriting systems generating precisely the
class of ETOL languages.

‘Tueorem VL1, L(ETOL) = #(ETOLRP).

Proof. (1) L(ETOL)C L(ETOLRP). This is easily seen. Given an ETO0L
system G == (2,2, S, 4) one constructs an ETOLRP system G by taking for
cvery table P e 2 a composed table P to G where bnd(P) = # and fr(P) —. P.
Clearly L(G) = I(G).

(2) To see that L(ETOLRP)C #(ETOL) we proceed as follows. Let
G = (2,7, S, 4) be an ETOLRP system. For each P ¢ Z let Z(P) be the set of
all composed tables of the form (7, T,) where T; C bnd(P), T, is deterministic,
Ty = fr(P){d > x| A->«efr(P)and A e LH(T})} and LI(Ty) O LH(T,) =
2. Then let G = (X, 2, S, 4) be the ETOLRP system where 7 = Urez Z(P).

Clearly L(G) = L{G) but G has thc pleasant feature that, for cvery table T of
G, {LH(bnd(T)), LII fr T))} forms a partition of Z. Now let £ = {7 ae 2},
2:{dlaeZland X - {d | aec X}, where 2, 2, 3 and 5 are pairwise disjoint.
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Let FeZulZuXul and 2 ~Z2UXSuluSU{F. Let T, —
{d—>dilaecZ}U{i—d acZ}U{o—>F o2} Typ =i@—>alacdlu
{¢ = F ' oeZX2" 4}, and for cvery T€eP, Ry = {64 —>a! a > acbnd T)} U
{d—>aia—>aefe(ThUfo—>F ce 22U L)

Finally let Il = (2", #, S, 4) be the ETOL system with # = {T,, Tyn} U
U;c R, . Note that each seccessful derivation from G is simulated in H in such
a way that a single derivation step from G corresponding to an application of a
table 7"is simulated by two derivation steps in . T'he first step is an application
of the “coordination table” T, which divides letters in a string into those to be
rewritten, in G, by bnd(7') (they become clements of 27) and those to be rewritten,
in G, by fr(T") (thy become clements of 2). The second step rewrites elements
from 2 by productions corresponding to bad(7T) and elements from £ by pro-
ductions corresponding to fr(7). Each successful derivation in A ends by an
application of Ty, thus using the standard synchronization method. Hence

clearly I(G) — I(G) = L(H).
(3) The theorem follows from (1) and (2). [

However the situation is different on the Ievel of EOL systems; that is, augmen-
ting K0/ svstems with the Russian paralle] mechanism of rewriting yields a class
of systems generating a class of languages strictly containing #(EOL).

Tneorem VI.2. L(FOL)C L(EOLRP).

¥

Proof. The inclusion Z(FOL) C.Z(£O0LRP) is obvious. It is well known that
L ={wefa b}* #,u -=2" n = 0}is not an EOL language (Ehrenfeucht and
Rozenberg, 1974). However L is gencrated by the EOLRP system G == ({S, a, b},
P, S, {a, b}), where bnd(P) = {a-- aa} and fr(P) = {S—>a, a— ab, a -> ba,
a—»>a, b->b}. Thus the thcorem holds. [

Before we proceed further in our investigation of EOLRP languages, we notice
the following about the class of RP languages.

In Salomaa (1974) the following is stated (Theorem 5). Assume that &,
i == |, 2,... is a sequence of natural numbers, such that the set {a*:| ¢ > 1} is
not regular. Then the language L, = {a*b% | i = 1} is not in L(RP). Conse-
quently Ly, is not in .Z([P). '

"I'his theorem can be slightly generalized yielding the following result.

Turorem VI.3. Letr = (kR , ky,...)andp = (I, ; ,...) be infinite scquences
of natural numbers, such that therc exists a bijective function f from {x | x
occurs in 7} onto {x | x occurs in p} such that f(&;) == [; fori =1, 2,... . If cither
{a“ )7 > 1} or {b% i >= 1} is not regular, then L, , := {a*b% | i = 1} is not in
ZL(RP).

Proof. Assume the contrary. Let G = (2, P, S, 4)e RP generate Ly ;.
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Since {a* 7 2= 1} or {b'+]{ = 1} is not regular, L, , is not context free. Then
there is at least one nonterminal A in G with the propertics

(1) S = 5ydz,dz,forsome 2y, 2, , 25 € 2% and

(i) there exist x;,,x,c 4™, x # a,, such that A% x; and A % x,.
(If such an A does not exist, then L., € Z(CF)).

Continue the rewriting from 2,.42,.12, eliminating all nonterminals except A.
Since we may assume that all nonterminals generate some terminal word,
2z, A2, derives 1, Ay, 4 - Ay, in G, withm 2= 3and y; e 4= forj - « 1,..., m.
Then both of the words y,a, yoa; ==* 2y, and Jx, V9%~ XY, arein Ly ;.

Since m = 3, both x; and x, are words over a one letter alphabet and
alph(x,) = alph(x,).

Consequently x; :-: xy; a contradiction. Thus the result holds. ||

As a direct application of the above theorem we get the following example of a
language that is not Russian parallel.

Examrie V9L, L — {a"6®" | n = 0} ¢ Z(RP).

It is instructive at this point to contrast Theorem VI.3 with Corollary I1.2
about /P languages.

We show now that the language gencrating power of E0LRP systems is stronger
than the language generating power of cither RP grammars or FOLIP systems.

‘THeoREM V14, Z(RP)C L(EOLRP).

Proof. Let G = (X, P, S,4) be a RP system. Let X4 {4, .., A}
Then 20 ={AD | Ae X4} forj .- 1,...,n and 2, 2 and 2V are pairwise
disjointif i #£ 7, 1 < 1,j < n

Let f; for j === 1,..., n be a homomorphism on Z, defined by f;(4) = A9+,
J=ho,n—1, fi(4d) = A for Ac2'4 and fi(a) —a if acd, 1 <j < n

Let P’ be a composed table of productions over 2 = 4 U {J;,; X0, defined
by

bnd(P) = {49 — fj(w) | 4; > webnd(P),j -: 1,..., n}
and

fr(P') — {AY > fw) | A, > we fr(P), ] = 1,...,n}
U4 > f(4) 11 <ij<njufa->ajaca)

It is casily scen that /T = (27, P/, §', 4), where S" = SW, is an EOLRP system,
which generates L(G).
By example VI.l L == {¢"6*" [ n > 0} is not a RP language. However it is
easily seen that L € #(£OL), and so by Theorem VI.2 L is an EOLRP languagec.
Hence the theorem holds. [
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TueoreMm VLS. #(EOLIP)C #(EOLRP).

Proof. The inclusion follows immediately from the definitions of EOLIP
systems and FOLRP systems.

It is well known that L(CF)¢ Z(EDTOL) (Ehrenfcucht and Rozenberg,
1977) and ZL(CF)C #(EOL) (sce, e.g. Rozenberg and Salomaa). Since
L(EOLIP)C L(EDTOL) (see Section 1II), it follows that S(EOLIP C
ZL(EOLRP). ]

We move now to compare EQLRP systems with EDTOL systems. Our first
result tells us that one can generate very EQLRP language by an EOLRP system
in which all successful “‘computations” are organized in a way that reminds
“computations’” in an ET'OL system with two tables.

DeriNITION.  An EOLRP system G = (2, P, S, 4) is said to be in strong
disjoint normal form if LH(bnd(P)) "LH(fr(P)) = ¢ and each successful
derivation D in G is such that at each step of D either only productions from
bnd(P) are used or only productions from fr(P) are used and moreover applica-
tions of bnd(P) and of fr(P) alternate in D.

Turorem VI.6. For every EOLRP system G there exists an equivalent EOLRP
system H in strong disjoint normal form.

Proof. Let G = (Z, P, S, 4) be an EOLRP system. Let 2 =: {@|ae X},
S =:{d|aeZ}, where 2, Z and X are pairwise disjoint, and let 2’ == 2V
2 U X. Let P’ be the composed table withbnd(P’) = {a — « | a— x e bnd(P)} U
{a - d aclLH(fr(P))} and fr(P)={d—o' a—>acfe(P)yU{a—alacl}

let H = (X', P, S, 4).

Clearly L(H) == L(G) and H is in strong disjoint normal form. Hence the
theorem holds. [

It is instructive to compare EOLRP systems in strong disjoint normal form with
ETOL systems. An EOLRP system in strong disjoint normal form can be con-
sidered as an ETQL system with two tables one of which (the bounded part) is
deterministic. It is well known that (see, e.g., Rozenberg and Salomaa) every
ETOL language can be generated by an ETOL system with two tables only, one
of which is deterministic. However an FOLRP system in strong disjoint normal
form is using its “‘tables” in a very special (restrictive) way. In each successful
derivation the application of the two tables must alternate. Although one can
show that for cvery ETOL language K one can find a positive integer & and an
ETOL systemn G with two tables Ty, T, (one of which is deterministic, 7 say)
such that G gencrates K and cach successful derivation in G uses the tables
Ty, T, in the fashion ThT,TkT, -+ TinT,, where n > 1, 1 < I ,..., I, <k,
it is not known whether or not one can set in the above £ == 1 (we conjecture
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that not). If onc can set £ = [ in the above, then we would get that Z(FOLRP) —
L(ETOL); otherwise we would get Z(EOLRP) (. Z(ETOL).

Anvhow, we are not able to prove or to disprove the equation #(EOLRP) —
L(ETOL); we conjecture that L(EOLRP)C #(ETOL). However we will
demonstrate now that the class £(E0LRP) provides a quite clegant representa-

tion of the class ZL(ETOL).

‘TueoreM V1.7, For every ETOL language K there exists an EOLRP language
K, a regular language R and a weak identity ¢, such that K = $(K N R).

Proof. Let Ke F(LTOL). We can assume that there exists an ET0L system
G — (2,2, S, 4) generating K such that & = {T,, 1} where Ty is a deter-
ministic table. Let & . {@#'ae X} and & = {4 ae X} where 2, X and X are
pairwise disjoint, 2’ = JUX U Sy ,¢,1,2,8, £, F, S’} where {*, ¢, 1, 2,
S, LF,SINEUVEVE) = ¢, andletd =40 EU{*1,2,8, L) Let Pbe
a composed table such that its bounded component and its freec component are

defined by:

bnd(P) ={a— 18a81 |a—>ac T}
fr(P) — {@-> 28332 | a—> xe T,} U {S — ¢S} U {¢ — per(X)¢}
V{@d—a acdjV{d—dlacliVuia-~F|acl}
U{d-»Fide2iv{e—->L1{f—-Flufo—oloe{*$1,2,F},

where per(y) denotes the word #@; -+ @,=d,d@; - @,% -+ %@, - &, which
consists of all permutations of the elements of 2 separated by =.
Let H = (2", P, §', 4") be an EOLRP system.

(1) Note that if x is a word such that ¢S =} x and [ ¢ alph(x) then
per(2) is a subword of «, and so for all @, b € X, where @ +/ 6, both @b and bz are
subword of x. Zut @b =, 18a$1288$2 if and onlyif ¢ — o e Ty andb—Be T, .
Thus if $" =, ¢S ->3* we L(H) then w contains the subword 12 or 21 if and
only if in onc direct derivation step of such a derivation a rule of the form
d—» 1$3$1 and a rulc of the form § -» 288S2 have been applied.

(2) Now let R be the regular language defined by R = (Fu{x, 1,
2, SH* L4 U {l, 2, $})" {w | either w contains the subword 12 or @ contains the
subword 21} and let ¢ be a weak identity on 4 defined by ¢(a) = a if ac 4 and
é(a) = A if ae 4" 4. Then (1) implies that L(G) == (L(II) N R) and so the
theorem holds. ||

VII. THe ReLaTioNsHIP DIaGraM

The aim of this scction is to establish the relationship diagram between
various classcs of languages considered in this paper.
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First of all to construct the relationship diagram we can use the following
known results.

Lemyva VILL. (1) £(CFyyn) G Z(CF) (see, e.g., Salomaa, 1973),

(2) ZL(CFpin) C Z(IP) (sce, e.g., Skyum, 1974),

(3) Z(CF) and £(IP) are incomparable but not disjoint, (see, e.g.,
Skyum, 1974),

4) L(CF)C Z(RP) (sec, c.g., Levitina, 1972),

(5) L(CF)C L(EOL) (see, e.g., Rozenberg and Salomaa),

(6) ,Z’(CF)(Z,?(ED'I‘OL) (see, e.g., Ehrenfeucht and Rozenberg, 1977),

(7) Z(EDTOL)C Z(ETOL) (see, e.g., Rozenberg and Salomaa),

(8) -#(EOL) and #(EDTOL) arc incomparable but not disjoint (see, c.g.,
Rozenberg and Salomaa).

Then in addition to results established in previous sections we also need the
following results.

Levva VIL2. Z(IP)C #(RP).

Proof. The inclusion Z(IP)C L(RP) is an immediate consequence of the
definitions of IP grammars and RP grammars.
T'hat it is strict follows from Lemma VII.1 points (3) and (4). ||

Lemya VIL3. (1) L(IP) and £(EOL) are incomparable but not disjoint.
(2) Z(RP)and L(EOL) are incomparable but not disjoint.
Proof. (1) ItisknownthatL = {gwewcw 'w e {0, 1}*}is not an EQL language
(Rozenberg and Salomaa). Since the TP grammar ({S, C, ¢,0, 1}, {S — CCC,
C—C0,C—Cl,C—¢}, S, {¢ 0, 1}) generates L, it is clear that £(IP) is not

contained in Z(FOL). The first part of the lemma follows then from Lemma
VII.1 points (1}, (2), (3) and (5).

(2) From (1) and Lemma VII.2 it follows that #(RP) is not contained in
ZL(EOL). Since {a"b"c™ |n > 0} is an EQL language and not a RP language
(Levitina, 1972) and Z(CFy;,) C Z(EOL) N Z(RP) the second statement of the
lemma holds. [

LemMva VIL4, (1) L(CF)C L (ETOLg)).
(2) ZL(RP)T L(EDTOLp,).
(3) ZL(EDTOLy & L(ETOL)).

Proof. (1) Clearly

P(CF)C P(ETOLy) and  {a¥|n > 0} e L(ETOL ;)\ £(CF).
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(2) and (3) TFrom (1) and Lemma VIL] points (4) and (6) the second and
third statement of this lemma follow immediately. [

Lemva VILS. (1) LUP)C . L(EDTOL ).
(2) L(EOLYand L(EDTOl.,)) arve incomparable but disjoin!.

Proof. (1) and (2). Obvious. [

Levna VILG.  L(EOL) and #(ETOLy)) are incomparable but not disjoint.

Proof. It is proved in Section IV that I, = {a®'h?" | n = 0} ¢ L(ETOLyy).
It is casy to see that L. € Z(FOL), so £ (FOL) is not contained in ZL(ETO0L).
On the other hand from the previous result it follows that #(ETO0Lp;) is not
contained in #(EOL).

Hence the result holds. |}

Lesiva VILT. L(RP)C Z(ETOLy)).

Proof. let G = (2, P, S, 4) be a RP grammar. Let P be given by the
following tables.

If A— webnd(P) then 2 contains a table {4 —w} U {a->a'!ac X {4}
and if 4 — w e fr(P) then # contains a table {4 >w, 4 > 4}V {a->a ac
L3 (Z consists of these tables only.) Clearly the ET'0Lyy system (2, Z, S, 4)
gencrates L(G). [

Levnya VIS, The following pairs of families of languages are incomparable
but not disjoint.
(1) #(RP)and L(EOLIP),
(2) L(RP)and F(EDTOL),
(3) L(ETOLy;) and L(£0L1P),
(4) L(ETOLy) and L(EDTOL).

Proof. This follows from Z(EOLIP)C ¥ (EDTOL), Lemma VII.1 points (4)
and (6) the previous lemma and Examples IV.] and VL.1. |

Levva VLY.  L(EDTOLy) S L(EOLIP).

Proof. letG = (X, 2, S, d)be an KDTOLy,; system, where # = {1},..., T,,}.
Let 29 ={a? jae X}forj =:1,..., n where X, 29 and XD are pairwise disjoint
ifi 77,1 <i,j<n Letf;,j=1,.,nbeahomomorphism on Z, defined by
fila) - - a"Vif 1 <5 << n— |andf,(a) = aV. Let P be the following table of
productions over 4 U J;., 29 U {F}, where F ¢ X U Uk, Z0:

P={aV>f(w)ia—weTl;,j=1,.,nu{a"—>f(a)acZ,j =1,.,n
U{a¥->a acd,j=1,.,n}ufa-~>Flacdu{F}.
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Let H = (2", P, §', 4) be the EOLIP system, where 27 — 4 U U;=1 ZD Y (F}
and §" = SWe XM,
Clearly H generates L(G).
Since {a®"h?" | n = 0} € L(EOLIP\#(EDTOL)) the lemma holds. ||
Levma VILIO. L(ETOLy) C £(EOLRP).
Proof. 'I'he proof of the inclusion is analogous to the proof of the previous
theorem, cxcept that now we set
fr(P) ={a" > f(w)!a->we T;,j = 1,...,n} and
bnd(P) = {a — fa) jac Z,j = 1,.,n}U{aD ->alacd,j—=1,.,n}
U{a—>F aecdU{F}}.
Since {a?"b?"  n > 0} e L(EOLRP).L(ETOL(;)) the lemma holds. |
Finally, combining all thosc comparison results we have, we get the following

theorem.

‘THEOREM VIL1. The following diagram holds:

L(eTOL)
L (ECLRP)
————— L (eDTOL)
L(EOL) LegTor, ) L{EOLIP)
h
L(EBTOL[IJ)

L (CFfin)

(If there is a directed chain of edges in the diagram leading from a class X' to a
class ¥ then X ¥, an undirected chain means that we do not know whether the
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inclusion is proper. A dotted directed edge leading from a class X to a class ¥
means that we do not know whether X C VY, but we do know that Y X,
Otherwise X and Y arc incomparable but not disjoint.)
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