A Study in Parallel Rewriting Systems

H. C. M. Kleijn and G. Rozenberg
Institute of Applied Mathematics and Computer Science, University of I.eiden, Wassenaarseweg 80, Leiden, The Netherlands

Abstract

In this paper we study systematically three basic classes of grammars incorporating parallel rewriting: Indian parallel grammars, Russian parallel grammars and L systems. In particular by extracting basic characteristics of these systems and combining them we introduce new classes of rewriting systems ($E T 0 L_{[k]}$ systems, ETOLIP systems and ETOLRP systems) Among others, some results on the combinatorial structure of Indian parallel languages and on the combinatorial structures of the new classes of languages are proved. As far as $E T O L$ systems are concerned we prove that every $E T 0 L$ l language can be gencrated with a fixed (equal to 8) bounded degree of parallelism.

Introduction

The study of parallel rewriting systems constitutes a central trend in formal language theory. The parallel rewriting in its most "pure" form is present in L systems (Rozenberg and Salomaa). Also quite a number of rewriting systems were investigated in the literature which form a "bridge" between pure scquential rewriting systems (as, e.g. context free grammars) and L systems; among those Indian parallel grammars and Russian parallel grammars form two very interesting cases sce, e.g., Siromoney and Krithivasan (1974), Levitina (1972), Skyum (1974), Dassow (1979) and Salomaa (1974).

This paper studies Indian parallel, Russian parallel and ETOL ways of rewriting. We study those systems (and languages they generate) as wall as by combining them we introduce new classes of rewriting systems. In this way this paper directly continues the work begun in Salomaa (1974). We believe that such a comparative study sheds light on both the nature of parallel rewriting and the nature of sequential rewriting. Understanding each of those kinds of rewriting separately, and understanding the differences and similarities between them is, in our opinion, one of the important research areas of formal language theory.
'The paper is organized as follows.
In Section I we introduce some basic notation for our paper.
In Section II we investigate Indian parallel grammars. In particular we prove a result on the combinatorial structure of Indian parallel languages that is analogous to the pumping theorem for context free languages.

In Section III we combine Indian parallel and ETOL ways of rewriting. This results in a new kind of rewriting systems called ETOLIP systems. We investigate the language generating power of those systems. We also formalize the notion of the deterministic part of an ETOL language and then characterize it. Wc believe that in this way we contribute to the understanding of the notion of determinism in grammars.

In Section IV we introduce 1-restricted ETOL systems which, within the frame work of ETOL systems, form a "nondeterministic" counterpart of Indian parallel grammars. We prove a theorem on the combinatorial structure of languages generated by those systems.

In Section V we extend the notion of a 1 -restricted $E T 0 L$ system to a k-restricted $E T O L$ system; that is an ETOL system which uses only tables such that each of them has productions different from identity for no more than k symbols. A very natural question is whether or not with the growth of k one gets larger classes of languages. We prove a rather surprising fact that there exists a k_{0} such that the k_{0}-restricted $E T 0 L$ systems generate all $E T O L$ languages.

In Section VI we combine the Russian parallel mechanism of rewriting with $E T 0 L$ systems and introduce the so called $E T 0 L R P$ systems. We investigate the language generating power of those systems. Also we investigate the relationship between $E 0 L R P$ systems and $E T 0 L$ systems. We provide a normal form for $E 0 L R P$ systems which indicates that computationally those systems resemble a restricted class of controlled two-table ETOL systems. Also we show how every $E T O L$ language can be represented using an $E 0 L R P$ language, a regular language and a homomorphism.

In the last section we provide a diagram of relationships between the different classes of languages considered in this paper.

I. Preiminaries

We assume the reader to be familiar with the theory of parallel rewriting systems, e.g. in the scope of Salomaa (1974), Rozenberg and Salomaa, chapters II and V.Perhaps the following notational matters require an additional explanation.
(1) For a finite set $V, \# V$ denotes its cardinality.
(2) For a word $x, \mid x$ denotes its length and alph (x) denotes the set of letters occurring in x. For a letter $b, \# b x$ denotes the number of occurrences of b in $x . \Lambda$ denotes the empty word.
(3) Given an alphabet Σ (we consider finite alphabets only!) we will often use its barred version $\Sigma^{\prime}:=\left\{a^{a} \mid a \in \Sigma\right\}$. Then for a word $\alpha \in \Sigma^{\prime}, x=a_{1} \cdots a_{n}$, $a_{1}, \ldots, a_{n} \in \Sigma$ we use $\bar{\alpha}$ to denote the word $\bar{a}_{1} \cdots \bar{a}_{n}$. Also $\bar{\Lambda}=\Lambda$. A homomorphism h on Σ^{*} is called weak identity if for every $b \in \Sigma$ either $h(b)=b$ or $h(b)=\Lambda$.
(4) All the rewriting systems that we will consider use context free productions, that is productions of the form $A \rightarrow \alpha$ where A is a letter and α is a word; then A is referred to as the left-hand side of the production and α as its right-hand side. Given a set of productions $P, L H(P)$ denotes the set of all left-hand sides of productions in P. For a rewriting system $G, \operatorname{maxr}(G)$ denotes the maximal length of the right-hand sides of all productions in G. As usual, $\Rightarrow_{G}, \Rightarrow_{G}^{+}$and $\stackrel{*}{*}_{G}$ will be used for denoting the direct derivation relation, the "rcal" derivation relation and the derivation relation in G, respectively; we will also use $\Rightarrow, \Rightarrow \because$ and $\stackrel{*}{\leftrightarrows}$ whenever G is clear from the context. Also $\rightarrow{ }_{G}^{n}, \Rightarrow{\underset{G}{G}}^{n}$ and $\rightarrow \geqslant_{\sigma}^{n}$ will denote the relations "derives in n steps", derives in no more than n steps" and "derives in no less than n steps", respectively.
(5) Given a class X of rewriting systems, $\mathscr{L}(X)$ denotes the family of all languages generated by systems in X. Also if a system is of type X (e.g. ET0L) then the language it generates is also referred to as a type X language. We use $\mathscr{L}(R E G)$ and $\mathscr{L}(C F)$ to denote the classes of regular and context free languages respectively.

II. Indian Parallel Grammars

In this section we will investigate Indian parallel grammars and in particular we will prove a result on the structure of Indian parallel languages which corresponds to the pumping lemma for context free languages. This result will allow us to provide examples of languages that are not Indian parallel.

We start by recalling the definition of an Indian parallel grammar and language.
Definition. (1) An Indian parallel grammar, abbreviated an IP grammar, is a construct $G=(\Sigma, P, S, \Delta)$, where Σ is a nonempty alphabet, Δ a nonempty subset of Σ (the elements of Δ are referred to as terminals), $S \in \Sigma \backslash \Delta$ (the axiom) and P is a finite nonempty set of productions each of which is of the form $A \rightarrow \alpha$, where $A \in \Sigma \backslash \Delta$ and $\alpha \in \Sigma^{*}$. The elements of $\Sigma \backslash \Delta$ are called nonterminals.
(2) Let $x \in \Sigma^{*}$ and $y \in \Sigma^{*}$. We say that x directly derives y in G, denoted as $x \Rightarrow_{G} y$, if there exists a production $A \rightarrow \alpha$ in G such that $x=x_{0} A x_{1} A \cdots A x_{k}$, $y=x_{0} \alpha x_{1} \alpha \cdots \alpha x_{k}, k \geqslant 1$ and $A \notin \operatorname{alph}\left(x_{0} x_{1} \cdots x_{k}\right)$.
(3) As usual $\stackrel{N}{\leftrightarrows}_{G}$ is defined as the transitive and the reflexive closure of the relation \vec{m}_{G}. If $x \stackrel{*}{\rightarrow}_{G} y$ then we say that x derives y in G.
(4) The language of G, denoted $L(G)$, is defined by

$$
L(G)=\left\{x \in \Delta^{*} \mid S \underset{G}{\underset{\vec{G}}{x}} x\right\} ;
$$

we say that $L(G)$ is an Indian parallel language or IP language.

The notions of a derivation and of a derivation tree in an $I P$ grammar are defined analogously to the case of a context free (CF) grammar. Given a derivation D in an $I P$ grammar G, leading from N to y, one can assign to it the unique sequence τ of productions applied (in this order) in D. 'This sequence τ is called the control sequence of D and we also write $\tau(x) \cdots y$ (thus we view τ as both the sequence of productions and as a function); moreover the sequence of words $x=x_{0}, x_{1}, \ldots, x_{n}=y$, corresponding to applications of productions from τ (in this order) is called the trace of $\tau(o n x)$. In the same way we can assign a control sequence to a derivation tree T by first taking a derivation D corresponding to T and then taking the control sequence of D. Given a control sequence τ and a nonterminal symbol A we use τA to denote the sequence of productions resulting from τ by omitting in τ all productions with A as the lefthand side (the so called A-productions).

Analogously to the case of $C F$ grammars we term an $I P$ grammar $G:-$ (Σ, P, S, Δ) reduced if every nonterminal A is reachable (that is $S \stackrel{*}{\rightarrow}_{G} x_{0} A x_{1}$ for some $x_{0}, x_{1} \in \Sigma^{*}$) and productive (that is $A^{{\underset{\sim}{*}}_{G}}$ w for a word $v \in \Delta^{*}$).

The following notion will be useful in the proof of the main theorem of this section.

Definition. Let $G=(\Sigma, P, S, \Delta)$ be an $I P$ grammar and let $A \in \Sigma, \Delta$. Let D be a derivation leading from A to a terminal word x and let τ be the control sequence of D. We say that D is composed if $\tau=\mu \circ \rho$ where $\rho(A)=\alpha A \beta$ for $\alpha, \beta \in \Sigma^{*}, \alpha \beta: \neq \Lambda, \mu(\alpha)=\bar{\alpha}, \mu(\beta)=\bar{\beta}$ and $\bar{\alpha} \bar{\beta} \neq \Lambda$. We also say that A is a composed letter and that the derivation tree corresponding to D is composed.

We will define now a new kind of rewriting systems. They will turn out to be useful in investigating the structure of $I P$ languages.

Definition. (1) An embracing grammar G is a construct $\left(\Sigma ; x_{0}, \ldots, x_{m} ; w\right)$, where $m \geqslant 1, \Sigma$ is a nonempty alphabet and $x_{0}, \ldots, x_{m}, w \in \Sigma^{*}$. The sequence of G, denoted $E(G)$, is defined by $E(G)=w_{0}, w_{1}, \ldots$, where $w_{0}=:: w$ and $w_{i-1}-$. $x_{0} w_{i} x_{1} \cdots x_{m-1} w_{i} x_{m n}$ for $i \geqslant 0$. The language of G, denoted $L(G)$, is defined by $L(G)=\left\{w_{0}, w_{1}, \ldots\right\}$.
(2) A A-augmented embracing grammar G is either an embracing grammar or it is a construct $\left(\Sigma ; x_{0}, \ldots, x_{m} ; w, \Lambda\right)$, where $U(G)=\left(\Sigma ; x_{0}, \ldots, x_{m} ; w\right)$ is an embracing grammar. (If G is an embracing grammar, then we set $U(G)=G$). If G is an embracing grammar, then its sequence and language are defined as above. In the case that G is not an embracing grammar, then its sequence $E(G)$ is defined by $E(G)=\Lambda, w_{0}, w_{1}, \ldots$, where $E(U(G))=w_{0}, w_{1}, \ldots$, and its language is defined by $L(G)=: L(U(G)) \cup\{\Lambda\}$. (is called nontrivial if $L(G)$ is infinite.
'The following obvious result characterizing Λ-augmented embracing grammars is given without a proof.

Lemin II.1. Let G be a Λ-augmented embracing grammar with $U(G)=$ ($\Sigma ; x_{0}, \ldots, x_{m} ; w$). Then G is nontrivial if and only if either $m=1$ and $x_{0} x_{1} \neq \Lambda$, or $m \geqslant 2$ and $\mathfrak{z} \neq \Lambda$, or $m \geqslant 2$ and $x_{i} \neq \Lambda$ for some $i \in\{0, \ldots, m\}$.

Our next result is the main theorem of this section and it concerns the combinatorial structure of $I P$ languages. It is analogous to the celebrated pumping theorem for context free languages. (The existence of such a result is hinted at at the end of Siromoney and Krithivasan (1974)).

Theorem II.1. For every infinite IP language L there exist positive integers n, l and nontrivial Λ-augmented embracing grammars H_{1}, \ldots, H_{t}, such that for every word x in L the following holds: if $|x|>n$, then there exist positive integers $r, t, 1 \leqslant r \leqslant l$ and words x_{0}, \ldots, x_{t}, such that

$$
x=x_{0} 0\left(E\left(H_{r}\right)\right) x_{1} \mathbf{0}\left(E\left(H_{r}\right)\right) x_{2} \cdots 0\left(E\left(H_{r}\right)\right) x_{t}
$$

and for every positive integer $m x_{0} \mathbf{m}\left(E\left(H_{r}\right)\right) x_{1} \mathbf{m}\left(E\left(H_{r}\right)\right) x_{2} \cdots \mathbf{m}\left(E\left(H_{r}\right)\right) x_{t} \in L$, where $\mathrm{m}\left(E\left(H_{r}\right)\right)$ denotes the m th element of $E\left(H_{r}\right)$.

Proof. Let I be an infinite $I P$ language and let $G=(\Sigma, P, S, \Delta)$ be a reduced $I P$ system, generating L.
(1) There exists a positive integer n_{0}, such that for each word $z \in L$, where $z^{\prime}>n_{0}$, there exists a derivation tree for z containing a composed subtree of height smaller than n_{0}. This is seen as follows.
(i) If z is a word of length greater than $m=(\operatorname{maxr}(G))^{* V_{\Lambda}}$, where $\operatorname{maxr}(G)=\max \{\alpha \mid A \rightarrow \alpha \in P\}$, then, clearly every derivation tree of z in G must have a composed subtree.
(ii) Clearly the number of different words in Σ^{*} that can be derived from a word in Σ^{*} without introducing a composed subtree in the derivation tree is smaller than some positive integer \tilde{n} dependent on G only.
(iii) We will demonstrate now that $n_{0}=: \max \{\bar{n}, \bar{m}\}$ satisfies the statement of our claim.

Assume that $z \in L$, where $|z|>n_{0}$, and let T be a derivation trec of z in G. Since : $z \mid>\bar{m}$, (i) implics that T has a composed subtree. If no composed subtrec of T is of height smaller than n_{0}, then (ii) implies that among the last \bar{n} words of the trace of T there are two identical words. Thus T can be shortened to yield a derivation tree $T^{(1)}$ of z in G which is of height smaller than the height of T. If no composed subtree of $T^{(1)}$ is of height smaller than n_{0}, then we iterate the above procedure which yields then the sequence $T, T^{(1)}, T^{(2)}, \ldots$ of derivation trees of z in G such that each next tree in the sequence is of height smaller than the previous one. Thus for some $i \geqslant 1, T^{(i)}$ must be a derivation tree of z in G
such that it contains a composed subtree of height smaller than n_{0}. Hence our claim holds.
(2) For every nonterminal A let $\operatorname{Tcrm}(A)$ denote the set of all words $w \in \Delta^{*}$ such that A can derive w in G in no more than n_{0} steps. Since G is reduced Term (A) is nonempty and (1) implies that if A is composed then 'Term (A) contains a nonempty word.
(3) Now with every composed letter A and every element δ of $\operatorname{Term}(A)$ we associate a fixed nontrivial embracing grammar $G_{A . \delta}$ as follows. Let A be a composed letter and let T_{A} be a fixed composed tree for A. Let τ_{A} be a fixed control sequence of T_{A} and let A, z_{1}, \ldots, z_{q} be the trace of τ_{A} on A. Let p be the largest integer such that $A \in \operatorname{alph}\left(z_{\eta}\right)$ and then let μ_{A}, ν_{A} be the decomposition of τ_{A} such that ν_{A} leads from z_{p} to z_{0} (hence $\tau_{A}=\nu_{A} \subset \mu_{A}$). Thus we have $\mu_{A}(A)=\alpha A \beta, \nu_{A}(A)=\gamma, \nu_{A}(\alpha \beta)=: \bar{\alpha} \beta$ for some $\alpha, \beta \in \Sigma^{*}$ and $\bar{\alpha}, \bar{\beta}, \gamma \in J^{*}$ with $\alpha \beta \neq A$ and $\bar{\alpha} \bar{\beta} \neq A$. Hence $\left(\nu_{A} \backslash A\right)(\alpha A \beta)-w_{0} A w_{1} A \cdots A w_{k}$, where $w_{0}, w_{1}, \ldots, w_{k} \in \Delta^{*}$ and either $k=1$ and $w_{0} w_{1} \neq \Lambda$ or $k \geqslant 2$. Let us consider now an arbitrary element δ from $\Gamma \operatorname{erm}(A)$. We have two cases to consider.
(i) $\delta \nLeftarrow \Lambda$
'Then, by Lemma II.], $G_{A, \delta}=\left(V ; w_{0}, \ldots, w_{k} ; \delta\right)$ is a nontrivial embracing grammar, wherc $V=\operatorname{alph}\left(w_{0} \cdots w_{k} \delta\right)$.
(ii) $\delta=A$.
(ii)(1) If for some $i \in\{0, \ldots, k\}, w_{i} \neq A$, then by Lemma II.1, $G_{A, \delta}=$ ($V ; w_{0}, \ldots, w_{k} ; \Lambda$) is a nontrivial embracing grammar, where $V=\operatorname{alph}\left(w_{0} \cdots w_{k}\right)$.
(ii)(2) If $w_{i}=A$ for every $i \in\{0, \ldots, k\}$, then it must be that $k \geqslant 2$ and, by Lemma II.I, $G_{A, \delta} \ldots\left(V ; w_{0}, \ldots, w_{k} ; \bar{x} \gamma \beta, A\right)$ is a nontrivial A-augmented embracing grammar, where $V=\operatorname{alph}\left(w_{0} \cdots w_{r} \bar{x} \gamma \bar{\beta}\right)$.
(4) Now we complete the proof of the theorem as follows. Let $x \in L$ and $\mid x:>n_{0}$. By (1) there is a derivation tree T of x in G such that T^{\prime} contains a composed subtree of height smaller than n_{0}. Let A be the label of the root of such a subtree, let τ be a fixed control sequence of T and let $S, u_{1}, \ldots, u_{q}=x$ be the trace of τ on S. Let f be the largest integer such that $A \in \operatorname{alph}\left(u_{f}\right)$ and let ρ, π be the decomposition of τ such that ρ leads from S to u_{f} and π leads from u_{f} to u_{g} (hence $\tau: \pi \circ \rho$). Let $\rho(S)=y_{0} A y_{1} A \cdots A y_{t}$, where $t \geqslant 1$ and $A \notin \operatorname{alph}\left(y_{1} \cdots y_{t}\right)$. Let $(\pi A)\left(y_{0} A y_{1} A \cdots A y_{t}\right)=x_{0} A x_{1} A \cdots A x_{t}$, where $x_{1}, \ldots, x_{t} \in \Delta^{*}$ and let $\pi(A)=\delta$; obviously $\delta \in \operatorname{Term}(A)$. Thus $x=\tau(S)=$ $x_{0} \delta x_{1} \delta \cdots x_{t}$ and moreover, for every $m \geqslant 1, x_{0} \theta_{m}(A) x_{1} \theta_{m}(A) \cdots \theta_{m}(A) x_{t} \in L$, where $\theta_{m}=\pi \circ\left(\left(\nu_{A} \backslash A\right) \circ \mu_{A}\right)^{m}$ if $\delta \neq A, \theta_{m}=\nu_{A} \circ \mu_{A} \circ\left(\left(\nu_{A} \backslash A\right) \circ \mu_{A}\right)^{m}{ }^{1}$ if $\delta \because A$, and μ_{A} and ν_{A} are the fixed control sequences from (3). In other words $x=$ $x_{0} 0\left(E\left(G_{A, \delta}\right)\right) x_{1} 0\left(E\left(G_{A, \delta}\right)\right) \cdots \mathbf{0}\left(E\left(G_{A, \delta}\right)\right) x_{t}$ and for every $m \geqslant 1$

$$
x_{0} \mathbf{m}\left(E\left(G_{A, \delta}\right)\right) x_{1} \mathbf{m}\left(E\left(G_{A, \delta}\right)\right) \cdots \mathbf{m}\left(E\left(G_{A, \delta}\right)\right) x_{t} \in L
$$

Thus if we set $n:=n_{0}$ and $\left\{H_{1}, \ldots, H_{l}\right\}$ to be the set of all Λ-augmented embracing grammars $G_{A, \delta}$ as defined in (3) (A is a composed letter and $\delta \in \operatorname{Term}(A))$ then the theorem holds.

Before we state our next result we need the following notion. Let $x==a_{1} \cdots a_{n}$, $n \geqslant 2$, be a word over Σ, where a_{1}, \ldots, a_{n} are occurrences of letters from Σ in x, and let $\left\{\Sigma_{1}, \Sigma_{2}\right\}$ be a nonempty partition of Σ. Then we say that an occurrence $a_{i}, 1 \leqslant i \leqslant n-1$, is a $\left\{\Sigma_{1}, \Sigma_{2}\right\}$-switch if a_{i} is an occurrence of a letter of Σ_{1} and a_{i+1} is an occurrence of a letter from Σ_{2}.

It is well known that the length set of an infinite $C F$ language contains an infinite arithmetic progression. Thus if the length set of an infinite $I P$ language does not contain an infinite arithmetic progression the language is not $C F$; for example $\left\{a^{2^{n}} \mid n \geqslant 1\right\}$ is in $\mathscr{L}(I P): \mathscr{L}(C F)$. (At the same time it should be observed that an infinite $I P$ language the length set of which contains an infinite arithmetic progression does not have to be $C F ;\left\{w w \mid w \in\{0,1\}^{*}\right\}$ is an example.) The following theorem allows us to provide examples of infinite languages such that their length sets do not contain an infinite arithmetic progression and the languages are not in $\mathscr{L}(I P)$.

Theorem II.2. Let L be an infinite IP language over an alphabet 2 'and let Σ_{1}, Σ_{2} be a nonempty partition of Σ, then either (1) the length set of L contains an infinite arithmetic progression, or (2) there exists a positive integer k_{1} such that infinitely many words of L have no more than k_{1} occurrences of symbols of Σ_{1}, or (3) there exists a positive integer k_{2} such that infinitely many words of I. have no more than k_{2} occurrences of symbols of Σ_{2}, or (4) for every nonnegative integer n, there exists a word z in I, such that z has at least $n\left\{\Sigma_{1}, \Sigma_{2}\right\}$-switches.

Proof. Let n be as in the statement of Theorem II.1, and let x in L be such that $|x|>n$. Let H_{r} be as in the statement of Theorem II. 1 and let $U\left(H_{r}\right)=$: ($\Sigma ; w_{0}, \ldots, w_{k} ; z$). If $k=1$, then (1) holds, if $w_{0}, \ldots, w_{k}, z \in \Sigma_{2}^{*}$, then (2) holds, if $w_{0}, \ldots, w_{k}, z \in \Sigma_{1}^{*}$, then (3) holds and if the word $w_{0} \cdots w_{k} z$ contains occurrences of letters both from Σ_{1} and Σ_{2} then (4) holds.

As an example of the application of the above theorem we get the following result.

Corollary II.1. $\left\{a^{n} b^{2^{n}} \cdot n \geqslant 0\right\} \notin \mathscr{L}(I P)$.
This can be generalized to the following result.
Corollary II.2. Let Σ be a finite nonempty alphabet, let Σ_{1}, Σ_{2} be a nonempty partition of Σ and let K_{1} and K_{2} be infinite languages over Σ_{1} and Σ_{2} respectively. If $f: K_{1} \rightarrow K_{2}$ is an injective function and the length set of $K=\left\{x f(x)!x \in K_{1}\right\}$ does not contain an infinite arithnetic progression, then $K \notin \mathscr{L}(I P)$.

Proof. Since the length set of K does not contain an infinite arithmetic progression the case (1) from the statement of the previous theorem does not hold. Cases (2) and (3) from the statement of Theorem II. 2 cannot hold, because f is injective. Case (4) from the statement of 'Theorem II. 2 cannot hold, because each word of K has at most one $\left\{\Sigma_{1}, \Sigma_{2}\right\}$-switch.

III. ET0LIP Systems

In this section we will combine the $I P$ mechanism and the $E T O L$ mechanism of rewriting; the resulting construct is an ETOLIP system. In Siromoney and Siromoney (1975-1976) the IP mechanism was combined with OL systems. However the results stated there are not very helpful in establishing the propertics of ETOLIP' systems; the use of nonterminals changes the situation completely.

Definition. An ETOLIP system is a construct $G:(\Sigma, \mathscr{P}, S, \Delta)$ where $\Sigma, \mathscr{P}, S, \Delta$ are as in $E T 0 L$ systems. Given $x \in \Sigma^{+}$and $y \in \Sigma^{*}$ we say that x directly derives y in G, denoted $x \rightarrow{ }_{G} y$, if $x=x_{1} \cdots x_{n}$ with $n \geqslant 1, x_{1}, \ldots, x_{n} \in \Sigma$, $y: y_{1} \cdots y_{n}$ with $y_{1}, \ldots, y_{n} \in \Sigma^{\times}$and there exists a $P \in$ such that $x_{i} \rightarrow y_{i}$ is production of P for each $i \in\{1, \ldots, n\}$ where $y_{k}:-y_{j}$, whenever $x_{k}-x_{j}$, $1 \leqslant k, j \leqslant n$. The relation $\stackrel{*}{\leftrightarrows}_{G}$ is defined as the transitive and the reflexive closure of \rightarrow_{G}; if $x_{B_{G}}^{*} y$ then we say that x derives y in G. The language of G is defined by $L(G)=\left\{x \in \Delta^{*} S^{*}{ }_{G} x\right\}$.

The notation and the terminology concerning ETOL systems and languages are carried over to $E T O L I P$ systems. In particular an $E 0 L I P$ system is an $E T O L I P$ system $(\dot{\Sigma}, \mathscr{P}, S, \Delta)$ where $\# \mathscr{P}=1$.

First of all we compare the language generating power of EOLIP systems and $I P$ grammars.
'I'heorem III.1. $\mathscr{L}(I P) \subsetneq \mathscr{L}(E 0 L I P)$.
Proof. Let $G=(\Sigma, P, S, \Delta)$ be an $I P$ grammar. If $\Sigma \Delta=\left\{S-A_{1}\right.$, $\left.\mathcal{A}_{2}, \ldots, A_{n}\right\}$, with $n \geqslant 1$, then let, for $j=1, \ldots, n, \Sigma^{(j)}$ denote the set $\left\{A^{(j)}: A \in \Sigma \backslash \Delta\right\}$, such that $\Sigma^{\prime}, \Sigma^{(i)}, \Sigma^{(j)}$, for $i \neq j, 1 \leqslant i, j \leqslant n$, are pairwise disjoint, and let for $j=1, \ldots, n f_{j}$ be a homomorphism defined by $f_{j}\left(A_{i}\right)-A_{i}^{(j+1)}$ for $1 \leqslant j<n, 1 \leqslant i \leqslant n, f_{n}\left(A_{i}\right)=A_{i}^{(1)}$ for $1 \leqslant i \leqslant n$ and $f_{j}(a) \cdots a$ for $1 \leqslant j \leqslant n$ and $a \in \Delta$. Let $\bar{G}=(\bar{\Sigma}, \bar{P}, \bar{S}, \Delta) \in E 0 L I P$, where $\Sigma-\bigcup_{j-1}^{n}, \Sigma^{(j)} \cup \Delta$, $S==A_{1}^{(1)}$ and P the following set of productions.

$$
\begin{aligned}
\bar{P}= & \left\{A_{i}^{(i)} \rightarrow f_{i}(w) \mid A_{i}->w \in P, i=1, \ldots, n\right\} \\
& \cup\left\{A_{j}^{(i)} \rightarrow f_{i}\left(A_{i}\right) \mid 1 \leqslant i, j \leqslant n\right\} \cup\{a \rightarrow a \mid a \in \Delta\} .
\end{aligned}
$$

From this construction it is clear that $S \stackrel{*}{G}_{G} x$ if and only if there exists an integer $j \in\{1, \ldots, n\}$, such that $\bar{S} \stackrel{*}{\rightarrow}_{G} f_{j}(x)$. So $L(\bar{G})=L(G)$. Thus for every $I P$ grammar G there exists an E0LIP system \bar{G}, such that $L(\bar{G})=L(G)$ and so $\mathscr{L}(I P) \subset \mathscr{L}(E 0 L I P)$. Since $\left\{a^{n} b^{2^{n} ;} n \geqslant 0\right\} \in \mathscr{L}(E 0 L I P) \backslash \mathscr{L}(I P)$, see Corollary II.1, it follows that this inclusion is strict.

Remark. The inclusion $\mathscr{L}(I P) \subset \mathscr{L}(E 0 L I P)$ is stated in Siromoney and Siromoney (1975-1976), Theorem 3.2 (in a different formulation). Since its proof there seems to be incorrect, we provided the full proof of Theorem III.1.

Here is another way of arriving at $E T 0 L I P$ languages.
For a set P of context free productions on Σ, that is productions of the form $A \rightarrow \alpha, A \in \Sigma, \alpha \in \Sigma^{*}$, where P contains a production for each element of Σ, we use $\operatorname{det}(P)$ to denote the family of all sets of productions R such that $R \subset P$ and R contains exactly one production for each element of Σ.

Definition. Let G be an $E T O L$ system, $G:=(\Sigma, \mathscr{P}, S, \Delta)$. The combinatorially complete (cc) version of G, denoted $G_{c c}$, is the EDTOL system $G_{c c}=(\Sigma, \mathscr{R}, S, \Delta)$, where $\mathscr{R}=\bigcup_{P \in \mathscr{P}} \operatorname{det}(P) . G_{c c}$ is referred to as an $E T 0 L_{c c}$ system (or $E 0 L_{c c}$ system if G is an $E 0 L$ system).
We use $E T 0 L_{c c}$ and $E 0 L_{c c}$ to denote the classes of $E T 0 L_{c c}$ and $E 0 L_{c c}$ systems respectively.
Directly from the above definitions we get the following results.
Lemma III.1. If G is an $E T 0 L$ system then $L\left(G_{c c}\right) \subset L(G)$.
Lemma III.2. (1) $\mathscr{L}(E T 0 L I P)=\mathscr{L}\left(E T 0 L_{c c}\right)=\mathscr{L}(E D T 0 L)$,
(2) $\mathscr{L}(E 0 L I P)=\mathscr{L}\left(E 0 L_{c c}\right)$.

We compare now the classes of $E 0 L$ and $E 0 L_{c c}$ languages.

Thforem III.2. $\mathscr{L}(E 0 I)$ and $\mathscr{L}\left(E 0 L_{c c}\right)$ are incomparable but not disjoint.
Proof. Since in Ehrenfeucht and Rozenberg (1977) it is proved that $\mathscr{L}(C F) \not \subset$ $\mathscr{L}(E D T 0 L)$ and by definition $\mathscr{L}\left(E 0 L_{c c}\right) \subset \mathscr{L}(E D T 0 L)$, it is clear that $\mathscr{L}(C F) \not \subset$ $\mathscr{L}\left(E 0 L_{c c}\right)$. But it is well known that $\mathscr{L}(C F) \subsetneq \mathscr{L}(E 0 L)$ (see, e.g., Rozenberg and Salomaa) and so $\mathscr{L}(E 0 L) \not \subset \mathscr{L}\left(E 0 L_{c c}\right)$. On the other hand $L=\{\propto w \notin w c w: w \in$ $\left.\{0,1\}^{*}\right\} \notin \mathscr{L}(E 0 L)$ sce, e.g., Rozenberg and Salomaa, while L is generated by the $E 0 L_{c c}$ system $G:=\left(\{S, \Varangle, 0,1\},\left\{T_{1}, T_{2}\right\}, S,\{\varnothing, 0,1\}\right)$, where

$$
T_{1}=:\{S \rightarrow ¢ \subset, ¢ \rightarrow ¢ 0,0 \rightarrow 0,1 \rightarrow 1\}
$$

and

$$
T_{2}=\{S \rightarrow ¢ ¢, \phi \rightarrow \phi 1,0 \rightarrow 0,1 \rightarrow>1\}
$$

Thus $\mathscr{L}\left(E 0 L_{c c}\right) \not \subset \mathscr{L}(E 0 L)$. It is clear that $\mathscr{L}(R E G) \subset \mathscr{L}\left(E 0 L_{c c}\right) \cap \mathscr{L}(E 0 L)$ and so the theorem holds.

The following result is useful in establishing the relationship between the language generated by an $E T O L$ system and the language gencrated by the $c c$ version of the same system.

Theorem [11.3. Let G be an $E T 0 L$ system. For every word $w \in L(G) \backslash L\left(G_{c c}\right)$ there exist words $w_{1}, w_{2}, w_{3}, \alpha_{1}$ and α_{2}, where $\alpha_{1} \neq \alpha_{2}$, such that $w==w_{1} \alpha_{1} w_{2} \alpha_{2} w_{3}$ and $w_{1,1}=w_{1} x_{1} w_{2} \alpha_{1} w_{3}, w_{2,2}=w_{1} \alpha_{2} w_{2} \alpha_{2} w_{3}, w_{2,1}=w_{1} \alpha_{2} w_{2} \alpha_{1} w_{3} \in L(G)$.

Proof. Let $G=(\Sigma, \mathscr{P}, S, \Delta)$ be an $E T O L$ system. Let $w \in L(G) \backslash L\left(G_{c c}\right)$.
(1) First of all we may assume that there exists a derivation tree T of w with the following property. If v_{1} and v_{2} are two different nodes on the same level of T such that both have the same label and the same contribution to w, then the subtrees rooted at v_{1} and τ_{2} are identical.

This is seen as follows. Take an arbitrary derivation tree \bar{T} of w and proceed to "clean up" \bar{T} top-down as follows: on each level of \bar{T} replace all subtrees rooted at nodes with the same label and contributing the same result to w by one of those subtrees. Once this procedure ends the resulting tree T satisfies the above conditions.
(2) Let T be a derivation tree of w satisfying (1). Since $w \in L(G) \backslash L\left(G_{c c}\right)$ there must be a level in T on which two different occurrences of the same symbol (say, A) have different contributions to w (say, α_{1} and α_{2}). Then $w=w_{1} \alpha_{1} w_{2} \alpha_{2} w_{3}$ for some $w_{1}, w_{2}, w_{3} \in \Delta^{*}$ and obviously also $w_{1} \alpha_{1} w_{2} \alpha_{1} w_{3}, w_{1} \alpha_{2} w_{2} \alpha_{2} z_{3}$, $w_{1} \alpha_{2} w_{2} \alpha_{1} w_{3} \in L(G)$. Thus the result holds.

Remark. Observe that words $w, w_{1,1}$ and $w_{2,2}$ as stated in the above theorem are all different words, but that it is possible for w and $w_{2.1}$ to be the same word. Also if $w_{2,1}$ can only be obtained as in the proof above, then $w_{2.1} \in L(G) \backslash L\left(G_{c c}\right)$.

As an example of an application of the above result we present the following corollary.

Corollary III.1. If $K \subset\left\{a^{n} b^{n}: n \geqslant 0\right\}$ and $K \in \mathscr{L}(E T 0 L)$ then $K \in$ $\mathscr{L}(E D T 0 L)$.

Proof. If $K=:\{\Lambda\}$ then $K \in L(E D T 0 L)$. Thus assume that $K \neq\{\Lambda\}$. Let $G \in E T 0 L$. gencrate K. Let us assume that there exists a word w in $I(G) \backslash L\left(G_{c c}\right)$. By ' heorem III. 3 there exist $w_{1}, w_{2}, w_{3}, \alpha_{1}$ and α_{2}, where $\alpha_{1} \neq \alpha_{2}$, such that $w=w_{1} \alpha_{1} w_{2} \alpha_{2} w_{3}$ and $w_{1,1}=w_{1} \alpha_{1} w_{2} \alpha_{1} w_{3}, w_{2.2}=w_{1} \alpha_{2} w_{2} \alpha_{2} w_{3}, w_{2,1}=$ $w_{1} \alpha_{2} w_{2} \alpha_{1} w_{3} \in K$. Let us consider all possible "distributions" of α_{1} and α_{2} in w.
(1) If either $\alpha_{1}, x_{2} \in\{a\}^{*}$ or $\alpha_{1}, \alpha_{2} \in\left\{b^{*}\right\}$, then $w_{1,1} \notin K$; a contradiction.
(2) If one of α_{1}, α_{2} is in $\left\{a^{*}\right\}$ and the other one is in $\{b\}^{*}$, then $w_{2,2} \notin K$; a contradiction.
(3) If one of α_{1}, α_{2} contains occurrences of both a and b, then either $w_{1,1} \notin K$ or $w_{2,2} \notin K$; a contradiction.

Thus we get a contradiction in each case and consequently $L(G) L\left(G_{c c}\right)=\not z$. Hence $K==L\left(G_{c c}\right)$ and the corollary holds.
'Iheorem III. 3 leads naturally to the following notions.

Definition. Let $K \in \mathscr{L}(E T 0 L)$. The deterministic core of K, denoted $\operatorname{dcor}(K)$, is defined by $\operatorname{dcor}(K)=\bigcap_{G}\left\{x \mid L(G)=K \wedge x \in L\left(G_{c c}\right)\right\}$.

Definition. (1) If $K \in \mathscr{L}(E T O L)$, then a word w in K is called a social word of K if there exist $w_{1}, w_{2}, w_{3}, \alpha_{1}$ and α_{2}, with $\alpha_{1} \not \equiv x_{2}$, such that $w=w_{1} \alpha_{1} w_{2} \alpha_{2} w_{3}$ and $w_{1,1}=w_{1} \alpha_{1} w_{2} \alpha_{1} w_{3}, w_{2,2}=w_{1} x_{2} w_{2} \alpha_{2} w_{3}, w_{2,1}=w_{1} \alpha_{2} w_{2} \alpha_{1} w_{3}$ are elements of K.
(2) If a word w of K is not a social word of K, then it is called an isolated word of K. The set of isolated words of K is denoted isol (K).

We are able now to characterize the deterministic core of an ETOL language by isolated words.

Theorem III.4. Let $K \in \mathscr{L}(E T 0 I)$. Then $\operatorname{dcor}(K)=\operatorname{isol}(K)$.
Proof. (1) Let $w \in \operatorname{isol}(K)$. From Theorem III. 3 it follows that there exists no $E T 0 L$ system G, such that $K==L(G)$ and $w \in L(G) \backslash I\left(G_{c c}\right)$. Hence $\mathfrak{w} \in \operatorname{dcor}(K)$.
(2) Let w be a social word of K. Then there exist $w_{1}, w_{2}, w_{3}, \alpha_{1}$ and α_{2} as in the statement of 'Theorem III. 3 such that $w_{1,1}=w_{1} \alpha_{1} w_{2} \alpha_{1} w_{3}, w_{2.2}:=$ $w_{1} \alpha_{2} w_{2} \alpha_{2} w_{3}$ and $w_{2,1}=-w_{1} x_{2} w_{2} \alpha_{1} w_{3}$ are words in K. Let $M=\left\{w, w_{1,1}, w_{2,2}, w_{2,1}\right\}$. Obviously there exists an $E T O L$ system H such that $L(H):=K, M$. (This is seen as follows: let G be an $E T O L$ system over a terminal alphabet Δ, generating K and let R denote the regular language $\Delta^{*} M$; since $\mathscr{L}(E T 0 L)$ is closed under intersection with regular languages, sce, e.g., Rozenberg and Salomaa, there exists an $E T O L$ system generating $K \cap R:=K \backslash M)$. Let $H:=(\Sigma, \mathscr{P}, S, \Delta)$ and let $\hat{H}=-(\hat{\Sigma}, \hat{\mathcal{P}}, A, \Delta)$ be the $E T O L$ system constructed as follows: $\hat{\Sigma}_{1}=$ $\Sigma \cup\{A, B, F\}$, where $A, B, F \dot{\oplus} \Sigma$, and

$$
\hat{\mathscr{P}}=\bigcup_{P \in \mathscr{P}}\{P \cup\{A \rightarrow F, B \rightarrow F, F \rightarrow F\}\} \cup P_{i n}
$$

where

$$
P_{i n}-\left\{A \rightarrow S, A \rightarrow w_{1} B w_{2} B w_{3}, B \rightarrow x_{1}, B \rightarrow x_{2}\right\} \cup\left\{x \rightarrow x_{i}, x \in \Sigma \cup\{F\}\right\} .
$$

Hence $\hat{I} \in E T O L$ and it is easy to see that $I(\hat{H})-L(I I) \cup M=K$ and that w and $c_{e_{2.1}} \varphi L\left(\hat{H}_{c c}\right)$. So $w \notin \operatorname{dcor}(K)$.

From (1) and (2) the theorem follows.
Remark. Notice that the above theorem implics that if $K \in \mathscr{L}(E T O L)$ and $A \in K$, then $A \in \operatorname{dcor}(K)$.

We conclude this section with the following two applications of Theorem III.3.

Corollary III.2. If $K \in \mathscr{L}(E T 0 L), K C\{a\}^{*}$ and the length set of K does not contain an arithmetic progression involving three or more elements then $K \in \mathscr{L}(E D T 0 L)$.

Proof. Let G be an $E T 0 L$ system such that $L(G)-K$. If $L(G) \backslash L\left(G_{c c}\right) \neq z$, then Theorem III. 3 implies that the length set of K contains an arithmetic progression involving three elements. Hence $L(G) L\left(G_{c c}\right)==Z$ and $K=$ $L\left(G_{c c}\right)$.

Corollary III.3. If $K \in \mathscr{L}(E T O L)$ and the length set of K is thin (meaning that for each n in the lensth set of K there exist at most two elements x, y of K such that $!x .-\mid y=n$) and it does not contain an arithmetic progression involving three or more elements then $K \in \mathscr{L}(E D T O L)$.

Proof. Similar to the proof of Corollary III.2.

IV. 1-Restricted ETOL Systems

Except for the fact that terminal symbols cannot be rewritten, an IP system is an EDTOL system such that in each table of it at most one symbol is rewritten into something else than the symbol itself. A very natural step at this stage is to consider the "nondeterministic version" of those systems: that is to consider the class of $E T O L$ systems such that in each table of a system from this class at most one symbol can be rewritten into something else than the symbol itself. The difference is that, while as before, in a single derivationstep one chooses one symbol to rewrite, different occurrences of this symbol in a string can be rewritten, in different ways.
'Those systems are termed 1-restricted ETOL systems and they will be considered now.

Definition. A 1-restricted ETOL system, abbreviated $E T 0 L_{[1]}$ system, is an $E T 0 L$ system $G=(\Sigma, \mathscr{P}, S, \Delta)$ such that for every $P \in \mathscr{P}$ there exists a letter b in Σ such that if $c \in \Sigma\left\{\{b\}\right.$ and $c \rightarrow_{p} \alpha$ then $\alpha==c$.

Hence in an $E T 0 L_{[1]}$ system each table can rewrite at most one symbol into something else than the symbol itself.

All notation and terminology concerning ETOL systems are carried over to $E T 0 L_{[1]}$ systems. Also we term an $E T 0 L_{[1]}$ system $G=(\Sigma, \mathscr{P}, S, \Delta)$ reduced if every nonterminal A from Σ is reachable (that is $S \stackrel{*}{\Rightarrow}{ }_{G} x_{0} A x_{1}$ for some $x_{0}, x_{1} \in \Sigma^{*}$) and productive (that is $A \stackrel{*}{\stackrel{*}{G}}_{G} w$ for a word $w \in \Delta^{\circ}$). We will consider reduced $E T 0 L_{[1]}$ systems only.

Before we prove our first technical result we need the following notion.

Definition. Let $G=(\Sigma, \mathscr{P}, S, \Delta)$ be an $E T 0 L_{[1]}$ system.
(1) For every element $\sigma^{*} \in \Sigma$, the set of all productions $\sigma \rightarrow \alpha_{1} \cdots \alpha_{n}$ such that $\sigma \notin \operatorname{alph}\left(\alpha_{1} \cdots \alpha_{n}\right)$, is denoted $\Pi_{\sigma}{ }^{\infty}$.
(2) For every clement $\sigma \in \Sigma$, the order of σ, denoted $\rho(\sigma)$, is defined by $\rho(\sigma)=0$ if $\sigma \in \Delta$, and $\rho(\sigma)=\min _{\pi \in \pi_{\sigma}}\{\max \{\rho(a) \mid a$ occurs at the right-hand side of $\pi\}\}+1$ if $\sigma \notin \Delta$.
(3) For every word $w \in \Sigma^{+}$, where $w:=\sigma_{1} \cdots \sigma_{n}$, with $n \geqslant 1$ and $\sigma_{1}, \ldots, \sigma_{n} \in \Sigma$, the order of w, denoted $\rho(w)$, is defined by

$$
\rho(w)=\max \left\{\rho\left(\sigma_{i}\right) \mid i==1, \ldots, n\right\} .
$$

Since we consider reduced $E T 0 L_{[1]}$ systems only, ρ is a well defined function on Σ^{+}.

The following technical result will be quite useful in proving the main theorem of this section.

Lemma IV.1. Let $G=(\Sigma, \mathscr{P}, S, \Delta)$ be an $E T 0 L_{[1]}$ system. There exists a nonnegative integer l such that every word $w \in \Sigma^{+}$derives a nonempty word in Δ^{*} in no more than l steps.

Proof. As a matter of fact we will prove that: cvery word $w \in \Sigma^{+}$derives a nonempty word in Δ^{*} in no more than (\# $\#$). $\rho(w)$ steps. Since obviously $\rho(w) \leqslant \# \Sigma$ for every $w \in \Sigma^{+}$, the lemma follows from the above claim. The claim is proved by induction on $\rho(w)$ as follows.
(1) If $\rho(w)=0$ then the claim trivially holds.
(2) Let us assume that the claim holds for all $w \in \Sigma^{+}$such that $\rho(w) \leqslant k$.
(3) Let $w \in \Sigma^{+}$be such that $\rho(w)=k+1$. Clearly w contains an occurrence of a letter σ such that $\rho(\sigma)=k+$ I. If we rewrite each letter σ from $\operatorname{alph}(w)$ with $\rho(\sigma)-k+1$ using a production of the form $\sigma \rightarrow \alpha$ where $\rho(\alpha)=k$ then in less than \# $\#$ steps w derives a word \ddot{w} containing no letter of order higher than k. Thus, by the induction hypothesis, in no more than $\# \Sigma \div$ $\# \Sigma \cdot k=\# \Sigma \cdot(k+1)$ steps w derives a nonempty terminal word in Δ^{*}.

Thus the induction is completed and the claim holds.
Consequently the lemma holds.
To state our result on the combinatorial structure of ETO $L_{[1]}$ languages we need the following two definitions.

Definition. Let K be an infinite language over an alphabet Σ and let $b \in \Sigma$. We say that K is logarithmically b-clustered if there exists a positive integer C such that for every word w in K if $b \in \operatorname{alph}(w)$, then $w=w_{0} b w_{1} \cdots b w_{n}$, $n \geqslant 1, w_{0}, \ldots, w_{n} \in \Sigma^{*}, b \notin \operatorname{alph}\left(w_{0} \cdots w_{n}\right)$ and $\left|w_{j}\right| \leqslant C \operatorname{logn}$ for $j \cdots 0, \ldots, n$.

We say that K is logarithmically clustered if there exists a letter b in Σ, such that K is logarithmically b-clustered.

Definition. Let K be a language over an alphabet Σ. We say that K is pump-generated if there exist positive integers r, q and words $x_{0}, x_{1}, \ldots, x_{r}$, $u, z, z \in \Sigma^{*}$ with $\mid u z ; \neq \Lambda$ and $u z \mid<q$ such that

$$
K \therefore-\bigcup_{i \geqslant 0} x_{0} u^{i} w z^{i} x_{1} \cdots u^{i} w z^{i} x_{r}
$$

'Theorem IV.1. If K is an infinite $E T 0 L_{[1]}$ language then either K contains an infinite logarithmically clustered language or K contains a pump-generated language.

Proof. Let K be an infinite language generated by an $E T 0 L_{[1]}$ system $G=(\Sigma, \mathscr{P}, S, \Delta)$.
(1) Since K is infinite there is a symbol (say A) in Σ such that $A{ }^{*}{ }_{G} \gamma A \delta$ for some $\gamma, \delta \in \Sigma^{*}$, where $\gamma \delta \nleftarrow A$. Let \mathscr{D}_{A} denote the set of all derivations D leading from A to a word of the form $\gamma A \delta$ with $\gamma \delta \in \Sigma^{-}$and such that at each step of D all occurrences of the letter under rewriting are rewritten by the same production. Since K is infinite \mathscr{D}_{A} is not empty. Now let D_{0} be a fixed element of \mathscr{F} such that no derivation in \mathscr{D}_{A} is shorter than D_{0}. Let D_{0} lead from A to $\alpha A \beta$ where $\alpha \beta \in \Sigma^{\dagger}$, and let ν_{0}, \ldots, ν_{k} be the productions used by D_{0} (in this order). 'Together $\tau=\left(\nu_{0}, \ldots, \nu_{k}\right)$ forms the control sequence of D_{0} and we can consider τ and each of $\nu_{0}^{\prime}, \ldots, v_{k}$ also as a transformation from Σ^{*} into Σ^{*}. Note that since D_{0} was "the shortest" element of \mathscr{D}_{A}, each occurrence rewritten in D_{0} must
contribute at least one occurrence of A to $\alpha A \beta$. Consequently if $\nu_{j}=A_{j} \rightarrow x_{j}$ then $\tau\left(A_{j}\right)$ contains an occurrence of A. Let $R=\left\{A=: A_{0}, A_{1}, \ldots, A_{k}\right\}$.
(2) Assume that $R_{A} \cap \operatorname{alph}(\alpha \beta) \not \psi^{*} \ell$. Let $z \in \Sigma^{*}$ be such that $S \xrightarrow{*}{ }_{G} z$ and $A \in \operatorname{alph}(z)$; since G is reduced such a z exists and moreover we can choose a z which can be derived from S in no more than $\# \Sigma$ steps. Let $\tau(z)=z_{1}$ and $\tau^{2}(z)=\tau\left(z_{1}\right)=z_{2}$. Since $R_{A} \cap \operatorname{alph}(\alpha \beta) \neq \not \varnothing, z_{2}$ contains at least two occurrences of A and consequently for each $n \geqslant 1, \tau^{2 n}(z)=z_{2 n}$ contains at least 2^{n} occurrences of A. Let q be the maximal distance betwcen two occurrences from R_{A} in z (a distance between two occurrences c_{1}, c_{2} from R_{A} in z is the number of occurrences between c_{1} and c_{2} in z; if z contains only one occurrence c from R_{A} then the maximal distance is determined by the largest of the two distances: from c to the leftmost occurrence in z and from c to the rightmost occurrence in z). Note that q is bounded by $(\operatorname{maxr}(G))^{* \Sigma}$.

Then the maximal distance between two occurrences from R_{A} in z_{2} is bounded by $2 \cdot 2(\operatorname{maxr}(G))^{k} \mathcal{j}^{-} q$, and in general, for $n \geqslant 1$, the maximal distance between two occurrences from R_{A} in $z_{2 n}$ is bounded by $2 n \cdot 2(\operatorname{maxr}(G))^{k} \div q$. Let then $z_{2 n}=u_{0} A u_{1} A \cdots A u_{m}$ where $u_{0}, \ldots, u_{m} \in \Sigma^{*}$ and $A \notin \operatorname{alph}\left(u_{0} \cdots u_{m}\right)$; we know that $m \geqslant 2^{n}$. By lemma IV. 1 we know that there exist a constant l and a word $w_{A} \in \Delta^{*}$ such that A derives w_{A} in G in less than l steps; moreover we can obviously assume that in rewriting A into w_{A} an occurrence of A will never be introduced. Let b be a fixed letter from alph $\left(w_{A}\right)$. Hence $z_{2 n}=u_{0} A u_{1} A \cdots A u_{m}$ derives in less than l steps the word $\bar{z}_{2 n}=y_{0} w_{A} y_{1} w_{A} \cdots w_{A} y_{m}, y_{0}, \ldots, y_{m} \in \Sigma^{*}$, which derives in less than l steps the word $\hat{z}_{2 n}=x_{0} w_{A} x_{1} w_{A} \cdots w_{A} x_{m} \in \Delta^{+}$where the maximal distance between two occurrences of b in $\hat{z}_{2 n}$ is bounded by

$$
\begin{aligned}
& \left(4 n(\operatorname{maxr}(G))^{k}+q\right) \cdot(\operatorname{maxr}(G))^{2 l}-2(\operatorname{maxr}(G))^{2 l} \\
& \quad=4 n(\operatorname{maxr}(G))^{k} \cdot(\operatorname{maxr}(G))^{2 l}+(\operatorname{maxr}(G))^{2 l} \cdot(q-2) \leqslant r \cdot n \div s
\end{aligned}
$$

where $r=4(\operatorname{maxr}(G))^{k} \cdot(\operatorname{maxr}(G))^{2 l}$ and $s:=(\operatorname{maxr}(G))^{2 l} \cdot\left(2 \rightarrow(\operatorname{maxr}(G))^{* \Sigma}\right)$. Since $m \geqslant 2^{n}, K=\left\{\hat{\tilde{N}}_{2 n} \mid n \geqslant 1\right\}$ is an infinite logarithmically b-clustered language contained in K.
(3) Assume that $R \cap \operatorname{alph}(\alpha \beta):=\varnothing$. Since G is reduced, there exists a word $z=y_{0} A y_{1} A \cdots A y_{k}$ with $k \geqslant 1$ and $A \notin \operatorname{alph}\left(y_{0} \cdots y_{k}\right)$ such that $S{\stackrel{*}{\sigma_{G}}}^{*} z$. By Lemma IV. 1 there exists a derivation leading from z to a terminal word; fix one such derivation and change it in such a way that each time A is introduced it is not rewritten anymore. In this way we get $z \stackrel{{ }_{\rightrightarrows}^{G}}{G} x_{0} A x_{1} A \cdots A x_{p}$ where $p \geqslant 1, A \notin \operatorname{alph}\left(x_{0} x_{1} \cdots x_{p}\right)$ and $x_{0}, \ldots, x_{p} \in \Delta^{*}$. Now for $n \geqslant 0, \tau^{n}(A)=\alpha^{n} A \beta^{n}$ and so $\tau^{n}\left(x_{0} A x_{1} A \cdots A x_{p}\right)=x_{0} \alpha^{n} A \beta^{n} x_{1} \alpha^{n} A \beta^{n} \cdots \alpha^{n} A \beta^{n} x_{p}$. By Lemma IV. 1 there exists a derivation leading from $\alpha A \beta$ to a terminal word. Let us fix one such derivation and let the control sequence of this derivation be such that it leads from A to a terminal word w, it leads from α to a terminal word u and it leads from β to a terminal word t; by Lemma IV. 1 we can assume that $u t \neq \Lambda$. Thus
for each $n \geqslant 0, x_{0} u^{n} w t^{n} x_{1} u^{n} w t^{n} \cdots u^{n} w t^{n} x_{p} \in K$. Consequently K contains an infinite pump-generated language $\left\{x_{0} u^{n} w t^{n} x_{1} u^{n} w t^{n} \cdots u^{n} w t^{n} x_{p} \mid n \geqslant 0\right\}$.
(4) Since either $R_{A} \cap \operatorname{alph}(\alpha \beta) \neq \not \approx$ or $R_{A} \cap$ alph $(x \beta) \cdots \not \approx$ the theorem follows from (2) and (3).

As an example of applications of the above theorm we provide now two examples of languages not in $\mathscr{L}\left(E T 0 L_{(11}\right)$.

Example IV. $1 K=\left\{a^{2 n} b^{2 n} \cdot n \geqslant 0\right\} \notin \mathscr{L}\left(E T 0 L_{[1]}\right)$. This is seen as follows. Since obviously the length set of K does not contain an infinite arithmetic progresssion, K does not contain a pump-generated language. However it is easily seen that K does not contain an infinite logarithmically clustered language.

Hence Theorem IV. 1 implies that K is not an $E T 0 L_{[1]}$ language.

Example IV. $2 K \ldots-\left\{a^{n} b^{n} c^{n}: n \geqslant 0\right\} \notin \mathscr{L}\left(E T 0 L_{[1]}\right)$. This is scen as follows. First of all it is obvious that K does not contain an infinite logarithmically clustered language. Secondly it is easily seen that K does not contain a pumpgenerated language.

Thus Theorem IV. 1 implies that $K \notin \mathscr{L}\left(E T 0 L_{[1]}\right)$.【
It is instructive to notice at this point that $\left\{a^{n} b^{n}: n \geqslant 0\right\} \in \mathscr{L}\left(E T 0 L_{[1]}\right)$.

V. k-Restricted ETOL Systevs

In the previous section we have seen that 1-restricted $E T O L$ systems are weaker in their language gencrating power than $E T O L$ systems in general. Hence it is natural to consider now k-restricted $E T O L$ systems; that is $E T 0 L$ systems which use only tables such that each of them has productions different from identity for no more than k symbols. The question is whether or not with the growth of k one gets larger classes of languages generated by k-restricted $E T O L$ systems. Answering this question is certainly important for understanding the way that $E T 0 L$ systems work; it certainly sheds light on the nature of parallel rewriting in general. Intuitively it is clear that the considerable language generating power of $E T 0 L$ systems comes from the fact that in rewriting a string x an $E T O L$ system G can "force" different sorts of letters to behave synchronously. For example, if occurrences of a letter b in x are rewritten by elements of a set B then at the same time occurrences of a letter c must be rewritten by elements of a set C, occurrences of a letter d must be rewritten by elements of a set D, etc. (Think, e.g., of the simplest way to generate $\left\{a_{1}^{2^{n}} a_{2}^{2^{n}} \cdots a_{k}^{2^{n}} \mid n \geqslant 0\right\}$ where k is a fixed integer, $k \geqslant 2$). Hence, intuitively, it seems conceivable that if more letters can be forced to behave synchronously then the language generating power increases.

In this section we disprove this conjecture by showing a rather surprising fact
that there exists a k_{0} such that k_{0}-restricted $E T 0 L$ systems generate all $E T 0 L$ languages.

Formally k-restricted $E T O L$ systems are defined as follows.
Definition. Let $G=(\Sigma, \mathscr{P}, S, \Delta)$ be an $E T O L$ sytem and let k be a positive integer.
(1) A table $P \in \mathscr{P}$ is said to be k-restricted if there exists a subset Σ of Σ such that $\# \Sigma \leqslant k$ and if $b \rightarrow \beta$ is in P for $b \in \Sigma \backslash \Sigma$, then $\beta=b$.
(2) G is said to be k-restricted if each table of G is k-restricted; we also say that G is an $E T 0 L_{[k]}$ system.

First of all we have the following result.
Theorem V.1. For every ETOL system G there exists an equivalent ETOL system \bar{G} with three tables and such that two tables of \bar{G} are 2-restricted.

Proof. Let $G=(\Sigma, \mathscr{F}, S, \Delta)$ be an $E T 0 L$ system. It is well known (Rozenberg and Salomaa) that every ETOL language may be generated by an ETOL system containing two tables only. Hence we can assume that $\mathscr{P}=\left\{T_{1}, T_{2}\right\}$. Let f and g be homomorphisms on Σ, such that $f(a)=\Varangle a$ and $g(a)=\$ a$, where $\notin, \$ \notin \Sigma$. Let F be a symbol not in $\Sigma \cup\{\notin, \$\}$. Let $\bar{G}=(\bar{\Sigma}, \overline{\mathscr{P}}, S, \Delta)$ be an $E T 0 L$ system, where $\Sigma=\Sigma \cup\{\varnothing, \$, F\}$ and $\overline{\mathscr{P}}=\left\{P_{1}, P_{2}, P_{3}\right\}$ with
$P_{1}=\{a \rightarrow a \mid a \in\{\alpha, \$, F\}\} \cup\left\{a \rightarrow f(w) \mid a \rightarrow w \in T_{1}\right\} \cup\left\{a \rightarrow g(w) \mid a \rightarrow w \in T_{2}\right\}$, $P_{2}=\{a \rightarrow a \mid a \in \Sigma \cup\{F\}\} \cup\{\dot{\phi} \rightarrow A\} \cup\{\$ \rightarrow F\}$
and
$P_{3}=\{a \rightarrow a \mid a \in \Sigma \cup\{F\}\} \cup\{\phi \rightarrow F\} \cup(\$ \rightarrow \Lambda\}$.
Clearly $L(\bar{G})=L(G)$ and P_{2} and P_{3} are 2-restricted. Hence the theorem holds.
We move now to investigate the influence of increasing the parameter k onto the language generating power of $E T 0 L_{[k]}$ systems. We start by observing the following.

Lemma V.1. $\mathscr{L}\left(E T 0 L_{[1]}\right) \subsetneq \mathscr{L}\left(E T 0 L_{[2]}\right)$.
Proof. Let $K=\left\{a^{2^{n}} b^{2^{n}} \mid n \geqslant 0\right\}$. By Example IV. $1 K \notin \mathscr{L}\left(E T 0 L_{[11}\right)$ whereas K is generated by the $E T 0 L_{[2]}$ system

$$
G=\left(\{S, a, b\},\left\{\{S \rightarrow a b, a \rightarrow a, b \rightarrow b\},\left\{S \rightarrow S, a \rightarrow a^{2}, b \rightarrow b^{2}\right\}\right\}, S,\{a, b\}\right) .
$$

Thus the result holds.

In the rest of this section we will demonstrate that the above result is not typical for the situation when one transits from k to $k+1$. We start by defining a construction which is very essential for the proof of the main result of this section.

The Carrier Construction

Let n be a fixed positive integer.
(1) Let $V:=\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}, A, B, F\right\}$ and let $L_{1}, \ldots, L_{n}, T_{1}, \ldots, T_{n}$ be the following sets of productions.

$$
\begin{aligned}
& \dot{V}_{1}=\left\{A \rightarrow B, B \rightarrow F, a_{1} \rightarrow b_{1}, b_{n} \rightarrow F\right\} \cup\left\{v \rightarrow v: v \in V\left\{A, B, a_{1}, b_{n}\right\},\right. \\
& T_{1}-\left\{A \rightarrow F, B \rightarrow A, a_{n} \rightarrow F, b_{1} \rightarrow a_{1}\right\} \cup\left\{v \rightarrow v \vdots v \in V:\left\{A, B, a_{n}, b_{1}\right\}\right\}
\end{aligned}
$$

and for $k=\ldots 2, \ldots, n$

$$
L_{k} \cdot\left\{A \rightarrow F, a_{k} \rightarrow b_{k}, a_{k-1}>F, b_{k} \rightarrow F\right\} \cup\left\{v \rightarrow v, v \in V:\left\{A, a_{k}, a_{k-1}, b_{k}\right\}\right\}
$$

and

$$
T_{k}=\left\{B \rightarrow F, a_{k}>F, b_{k} \rightarrow a_{k}, b_{k-1} \cdots>F\right\} \cup\left\{v \rightarrow v \vee v \in V \backslash\left\{B, a_{k}, b_{k}, b_{k-1} ;\right\} .\right.
$$

Then the construct $C:\left(V ; L_{1}, \ldots, L_{n}, T_{1}, \ldots, T_{n} ; a_{1} \cdots a_{n} A\right)$ is called a general carrier.

The reader should note the following. Let

$$
P:=\left\{S \rightarrow a_{1} \cdots a_{n} A\right\} \cup\{z \rightarrow \tau: v \in V\}
$$

$\Delta_{v}=\left\{a_{1}, \ldots, a_{n}, A\right\}$ and $G \ldots\left(V, M, S, \Delta_{v}\right)$ be the $E T 0 L$ system, where $\Rightarrow \bigcup_{k=1}^{n} l_{k} \cup \bigcup_{k=1}^{n} T_{k} \cup P$. Then $L(G)=\left\{a_{1} \cdots a_{n} A\right\}$ and the only "real way" to derive $a_{1} \cdots a_{n} A$ in G (that is we consider only those sequences of tables that indeed rewrite the current word into something else than itself) is to start with P and then repeat any number of times the cycle $L_{1} \cdots \ell_{n} T_{1} \cdots T_{n}$.
(2) I et $C \cdots\left(V ; U_{1}, \ldots, U_{n}, T_{1}, \ldots, T_{n} ; a_{1} \cdots a_{n} A\right)$ be a general carricr, then the 0,1 -extended carrier of C is a construct ($V \cup\{0,1\} ; L_{1}{ }^{0}, \ldots, L_{n}{ }^{0}$, $\left.\zeta_{1}{ }^{1}, \ldots, U_{n}^{\prime}{ }^{1}, T_{1}{ }^{0}, \ldots, T_{n}{ }^{0}, T_{1}{ }^{1}, \ldots, T_{n}{ }^{1} ; a_{1} \cdots a_{n} A 0\right)$ where $V \cap\{0,1\}=$ and $U_{1}{ }^{0} \rightarrow \ell_{1} \cup\{0 \rightarrow 0,1 \rightarrow 1\}, L_{1}{ }^{1}: l_{1}^{\prime} \cup\{0 \rightarrow 1,1 \rightarrow 1\}$, for $2 \leqslant k \leqslant n L_{k}{ }^{0}-=$ $L_{k} \cup\{0 \rightarrow 0,1 \rightarrow F\}$ and $U_{\varepsilon_{2}}{ }^{1} \cdots U_{k} \cup\{0 \rightarrow F, 1 \rightarrow 1\}$, for $1 \leqslant k \leqslant n-1$ $T_{k}{ }^{0}=T_{k} \cup\{0 \rightarrow 0,1 \rightarrow F\}$ and $T_{k}{ }^{1}=T_{k} \cup\{0 \rightarrow F, 1 \rightarrow 1\}, T_{n}{ }^{0} \cdots T_{n} \cup$ $\{0>0,1 \rightarrow F\}$ and $T_{n}{ }^{1}=T_{n} \cup\{1 \rightarrow 0,0 \rightarrow F\}$.
'Theorem V.2. $\mathscr{L}\left(E T 0 L_{[8]}\right)-\mathscr{L}(E T 0 L)$.
Proof. Obviously $\mathscr{L}\left(E T 0 L_{[\mathrm{s}]}\right) \subset \mathscr{L}(E T 0 L)$. To prove the converse inclusion we procecd as follows.

Let $K \in \mathscr{L}(E T O L)$. Since $\mathscr{L}(E T O L)$ is closed under intersection with regular languages (Rozenberg and Salomaa), $K=U_{i=1}^{s} K_{i}, s \geqslant 1$ wherc each K_{i} is an ETOL language such that if $x, y \in K_{i}$ then $\operatorname{alph}(x)=\operatorname{alph}(y)$.
(1) Let us consider a fixed language $K_{i}, 1 \leqslant i \leqslant s$, as above (say $K_{i}=L$). Let $H=(\Sigma, \mathscr{P}, S, \Delta)$ be an $E T O L$ system generating L. It is well known (Rozenberg and Salomaa) that we can assume that $\# \mathscr{P}=2\left(\right.$ say $\left.\mathscr{P}=\left\{P_{0}, P_{1}\right\}\right)$ and clearly we can assume that there exists a nonterminal (say N) such that N occurs in every intermediate word in every successful derivation in H.

Let t be a fixed terminal symbol occurring in every word of $L(H)$.
Let $\bar{\Sigma}=\{\bar{\sigma} \mid \sigma \in \Sigma\}$ and $\hat{\Sigma}-\{\hat{\sigma} \mid \sigma \in \Sigma\}$, where Σ, Σ, Σ are pairwise disjoint.
Let $\left(V \cup\{0,1\} ; U_{1}{ }^{0}, \ldots, U_{n}{ }^{0}, U_{1}{ }^{1}, \ldots, U_{n}{ }^{1}, T_{1}{ }^{0}, \ldots, T_{n}{ }^{0}, T_{1}{ }^{1}, \ldots, T_{n}{ }^{1} ; a_{1} \cdots a_{n} A 0\right)$ be a $\{0,1\}$-extended carricr, where $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ and $V,\{0,1\}, \Sigma, \bar{\Sigma}, \hat{\Sigma}$ are pairwise disjoint.

Let \mathscr{P}^{\prime} be the following set of tables over the alphabet $\Sigma^{\prime}:=\Sigma \cup \bar{\Sigma} \cup \hat{\Sigma} \cup$ $V \cup\{0,1\} \cup\left\{S^{\prime}\right\}, S^{\prime}$ being a new symbol. (In every of the tables given below we list only productions different from the identity productions.)
(i) $P_{i n}=\left\{S^{\prime} \rightarrow \bar{S} a_{1} \cdots a_{n} A 0\right\}$.
(ii) For $i==1, \ldots, n$,

$$
\begin{aligned}
& R_{i}^{0}=U_{i}^{0} \cup\left\{\bar{\sigma}_{i} \rightarrow \delta \mid \sigma_{i} \rightarrow \delta \in P_{0}\right\} \cup\{t \rightarrow F\} \\
& R_{i}{ }^{1}=U_{i}^{1} \cup\left\{\bar{\sigma}_{i} \rightarrow \delta: \sigma_{i}->\delta \in P_{1}\right\} \cup\{t \rightarrow F\} \\
& P_{i}^{0} \rightarrow T_{i}^{0} \cup\left\{\hat{\sigma}_{i} \rightarrow \bar{\sigma}_{i}\right\} \cup\{t \rightarrow F\},
\end{aligned}
$$

and

$$
P_{i}^{1}=\Gamma_{i}^{1} \cup\left\{\hat{\sigma}_{i} \rightarrow \bar{\sigma}_{i}\right\} \cup\{t \rightarrow F\}
$$

(iii) $I_{1}=\left\{A \rightarrow A, B \rightarrow F, b_{1} \rightarrow F, b_{n} \cdots F, t \rightarrow t, \bar{N} \rightarrow F\right\}$.
(iv) For all $\delta \in \Delta, \delta \neq t$,

$$
T^{\delta}=\{A \cdots F, B \rightarrow F, N \rightarrow F, \bar{\delta} \rightarrow \delta\} .
$$

(v) For $i=1, \ldots, n$,

$$
T^{i}=\left\{A \rightarrow F, B>F, N \rightarrow F, a_{i} \rightarrow A\right\}
$$

(vi) $T^{0}=\{A->F, B \rightarrow F, N \rightarrow F, 0 \rightarrow \Lambda\}$.

From the construction it follows that $H^{\prime}=\left(\Sigma^{\prime}, \mathscr{P}^{\prime}, S^{\prime}, \Delta\right)$ is an 8-restricted $E T O L$ system. That $L_{\mu}\left(H^{\prime}\right)=I .(H)$ is seen as follows. $S^{\prime}=H_{H^{\prime}} \bar{S} a_{1} \cdots a_{n} A 0$ and then $R_{1}{ }^{0}$ or $R_{1}{ }^{1}$ have to be chosen, which is equivalent with a choice of P_{0} or P_{1} in H. The choice of $R_{1}{ }^{0}\left(R_{1}{ }^{1}\right.$ respectively) implies that next $R_{2}{ }^{0}, \ldots, R_{n}{ }^{0}$, $P_{1}{ }^{0}, \ldots, P_{n}{ }^{0}\left(R_{2}{ }^{1}, \ldots, R_{n}{ }^{1}, P_{1}{ }^{1}, \ldots, P_{n}{ }^{1}\right.$, respectively) have to be used in this order,
thus deriving $w a_{1} \cdots a_{n} A 0$ if $S \rightarrow w \in P_{0}\left(S \rightarrow w \in P_{1}\right.$ respectively $)$. This way of simulating in H^{\prime} direct derivation steps from H is iterated. Hence every derivation $S \stackrel{*}{\Rightarrow}_{H} z$ corresponds to $S^{\prime} \xrightarrow{\rightarrow} H^{\prime} \bar{S} a_{1} \cdots a_{n} A 0 \stackrel{*}{\rightarrow} H^{\prime} \bar{z} a_{1} \cdots a_{n} A 0$ in such a way that when, in H, P_{0} (P_{1} respectively) is used, then, in H^{\prime}, the cycle $R_{1}{ }^{0}, \ldots, R_{n}{ }^{0}$, $P_{1}{ }^{0}, \ldots, P_{n}{ }^{0}\left(R_{1}{ }^{1}, \ldots, R_{n}{ }^{1}, P_{1}{ }^{1}, \ldots, P_{n}{ }^{1}\right.$, respectively $)$ is used. Since iterating those cycles is the only way to get a derivation that does not introduce the rejection

The only way to get a terminal word in H^{\prime} from $\approx a_{1} \cdots a_{n} A 0$ is to use tables of type (iii) through (vi) on the condition that $\approx \in \Delta^{*}$; moreover the table I_{1} must be used first.

Since I_{1} rewrites \bar{t} in $t, \bar{t} \in$ alph (\approx) and $t \rightarrow F$ is in every of the tables $R_{i}{ }^{j}$ and $T_{i}{ }^{j}$ for $j=1,2$ and i - $1, \ldots, n$, those tables cannot be used anymore.

Now using tables of type (iv) through (vi) we get the word \approx.
(2) Now let us return to the language K. We have $K-\bigcup_{i}^{s}{ }_{1} K_{i}^{-}$.

Let each K_{i} be generated by an 8 -restricted $E T O L$ system G_{i} constructed in the same way as H^{\prime} was constructed for I. in (1).

Let $G_{i}=\left(\Sigma^{(i)}, \mathscr{P}^{(i)}, S^{(i)}, \Delta^{(i)}\right)$ for $i:-1, \ldots, s$.
Let $H_{i} \ldots\left(\Sigma_{(i)}, \mathscr{\mathscr { F }}_{(i)}, S_{(i)}, \Delta_{(i)}\right)$ result from $G_{i}, 1 \leqslant i \leqslant s$, by renaming all symbols in G_{i} except for the special symbols A, B, F and N from (1) in such a way that each symbol δ from $\Delta^{(i)}$ in G_{i} becomes now $\delta_{(i)}$ in H_{i} and $\Sigma_{(i)} \cap \Sigma_{(j)}$.$\{A, B, F, N\}$ for $i \neq j$.

Finally let $G=\left(\Sigma_{(1)} \cup \cdots \cup \Sigma_{(s)} \cup \Delta \cup\{S\}, \mathscr{Z}, S, \Delta\right)$ where

$$
S \notin \Sigma_{(7)} \cup \cdots \cup \Sigma_{(s)} \cup \Delta
$$

and M consists of the following tables.
(I) $\left\{S \rightarrow S_{(i)}\right\}$ is in for $i=1, \ldots, s$.
(II) $\mathscr{H}_{(1)}, \ldots$, 汾 $_{(s)}$ are in \mathscr{R}.
(III) For every $1 \leqslant i \leqslant s$ and every $\delta_{(i)} \in \Delta_{(i)}\{A \rightarrow F, B \rightarrow F, A \rightarrow F$ $\left.\delta_{(i)}>\delta\right\}$ is in \neq

Clearly $L(G)=K$ and G is an 8 -restricted $E T O L$ system.
Hence the theorem holds.
The above result is, in our opinion, an instructive result on the nature of parallel rewriting. It says that a parallel rewriting process (in the scope modelled by ETOL systems) requires a bounded amount of "cooperation" between different symbols. 'That is, very ETOL language can be generated by an ETOL system in which in each rewriting step it suffices to rewrite only a bounded number of different symbols-not more than 8 of them. It is an interesting open problem to find out the lower bound on the amount of coorperation needed to generate the whole class of ETOL languages. In Lemma M. 1 it is shown that to set this parameter equal to 1 is a real restriction, hence 1 is not the lower bound.

One should notice at this point that $E T 0 I_{[k]}$ systems form in a sense a generalization of $E T O L$ systems of index k, see Rozenberg and Vermeir (1975). Hence it is instructive to compare the above result with the result about $E T O L$ systems of index k, which says that increasing the index k leads to an infinite hierarchy of classes of languages, see Rozenberg and Vermeir (1975).

VI. ET0LRP Systems

In this section we study the effect of combining the mechanism of Russian parallel rewriting (see, e.g., Levitina (1972) and Salomaa (1974)) with the mechanism of $E T O L$ rewriting, in a fashion analogous to Section III where we have combined Indian parallel and ETOL ways of rewriting.

We start by recalling the notion of a Russian parallel grammar.

Definition. (1) A composed set of productions over an alphabet Σ is an ordered pair $P=\left(P_{1}, P_{2}\right)$ such that both P_{1} and P_{2} are finite sets of productions of the form $A \rightarrow \alpha, A \in \Sigma, \alpha \in \Sigma^{*}\left(L H\left(P_{1}\right)\right.$ and $L H\left(P_{2}\right)$ do not have to be disjoint). We refer to P_{1} as the bounded part of P, denoted bnd (P), and to P_{2} as the free part of P, denoted $\mathrm{fr}(P)$.
(2) A Russion parallel grammar, abbreviated $R P$ grammar, is a construct $G=(\Sigma, P, S, \Delta)$, where Σ, P, S, Δ are as in the definition of a $C F$ grammar (that is the total alphabet, the set of productions, the axiom and the terminal alphabet of G, respectively), except that P is a composed set of productions over $\Sigma: \Delta$.
(3) Let $x \in \Sigma$ and $y \subset \Sigma^{*}$. We say that x directly derives y in G, denoted $x{ }_{c} y$ if $x \ldots x_{0} A x_{1} \cdots A x_{n}$, where $A \in \Sigma \Delta, n \geqslant 1, x_{0}, \ldots, x_{n} \in \Sigma$ and $A \notin \operatorname{alph}\left(x_{0} \cdots x_{n}\right)$, and either $y=x_{0} A x_{1} \cdots A x_{j} \alpha x_{j: 1} A \cdots A x_{n}$ for some j, $0 \leqslant j \leqslant n-1$, and $A \rightarrow \alpha \subset \operatorname{fr}(P)$ or $y=x_{0} \alpha x_{1} \cdots \alpha x_{n}$ and $A \rightarrow \alpha \in \operatorname{bnd}(P)$.
(4) The relation $\stackrel{*}{G}_{G}$ is defined as the transitive and the reflexive closure of $\rightarrow{ }_{G}$. If $x{ }_{\sigma_{G}} y$, then we say that x derives y in G.
(5) The language of G is defined by $L(G)=\left\{x \subset \Delta^{*} \mid S \stackrel{*}{=} x\right\}$.

Combining the Russian parallel rewriting mechanism with ETOL svstems, we get the following construct.

Definition. (1) Let Σ be an alphabet. A composed table over Σ is an ordered pair $P=\left(P_{1}, P_{2}\right)$ such that both P_{1} and P_{2} are finite sets of productions of the form $A \rightarrow \alpha, A \in \Sigma, \alpha \subset \Sigma^{*}$ where $L H\left(P_{1}\right) \cup L H\left(P_{2}\right)-\Sigma$ (but $L I I\left(P_{1}\right)$ and $L I I\left(P_{2}\right)$ do not have to be disjoint). We refer to P_{1} as the bounded component of P, denoted bnd (P), and to P_{2} as the free component of P, denoted $\mathrm{fr}\left(P^{\prime}\right)$.
(2) A Russian parallel ETOI system, abbreviated ETOLRP system, is a
construct $G-(\Sigma, \mathscr{F}, S, \Delta)$ where $\Sigma, \mathscr{F}, S, \Delta$ are as in the definition of an $E T 0 L$ system except that P is a finite set of composed tables over Σ.
(3) Let $x \in \Sigma^{-}$and $y \in \Sigma^{*}$. We say that x directly derizes y in G, denoted $x \because G y$, if $x-x_{1} \cdots x_{n}$ with $n \geqslant 1$ and $x_{1}, \ldots, x_{n} \in \Sigma, y=y_{1} \cdots y_{n}$ with $y_{1}, \ldots, y_{n} \in \Sigma^{*}$, and there exist $P \in \not \mathscr{F}^{\prime}, P_{1} \subset \mathbf{b n d}(P), P_{2} \subset \operatorname{fr}(P)$ with $L H\left(P_{1}\right) \cap$ $L H\left(P_{2}\right)=\not \chi_{1}$ such that $x_{i} \rightarrow y_{i} \in P_{1} \cup P_{2}$ for $1 \leqslant i \leqslant n$ and whenever $x_{i} \rightarrow$ $y_{i} \in P_{1}, x_{i}=x_{j}, 1 \leqslant i, j \leqslant n$ then $y_{i}=y_{j}$. The relation ${ }^{*}{ }_{G}$ is defined as the transitive and the reflexive closure of $\rightarrow \sigma ;$ if $x \stackrel{*}{*}_{G} y$ then we say that x derives y in G.
(4) The language of G, denoted $I(C)$, is defined by

$$
L(G)=\left\{x \in \Delta^{*}: S \stackrel{*}{\Longrightarrow} x\right\} .
$$

Thus in an $E T O I, R P$ system G a single rewriting step is performed as follows. Given a word x to be rewritten, one chooses first a composed table P, then one decides on letters in x all occurrences of which will be rewritten by productions in bnd (P) (hence in the "Indian parallel way") and then the other (occurrences of) letters in x will be rewritten by productions from $\mathrm{fr}(P)$ (hence in "normal $E 0 L$ fashion"). In this way in the framework of $E T 0 L$ systems, ET0IRP systems play the role that $R P$ grammars play in the framework of $C F$ grammars.

All notations and terminology concerning $E T O L$ systems are carried over to $E T 0 L R P$ systems. Thus, e.g., an $E 0 L R P$ system is an $E T O L R P$ system $(\Sigma, \mathscr{F}, S, \Delta)$ where \#:\% =- 1. Also when we deal with an $E T 0 L R P$ system we will use the term "table" to refer to a composed table, this however should not lead to confusion.

First of all we demonstrate that augmenting ETOL systems with the Russian parallel mechanism yields a class of rewriting systems generating precisely the class of $E T 0 L$ languages.
'Theorem VI.1. $\mathscr{L}(E T 0 I)=\mathscr{L}(E T 0 L R P)$.
Proof. (1) $\mathscr{L}\left(E^{\prime} T^{\prime} O L\right) \subset \mathscr{L}(E T O L R P)$. This is easily seen. Given an ETOL system $G=(\Sigma, \mathscr{P}, S, \Delta)$ one constructs an $E T 0 L R P$ system \bar{G} by taking for cvery table $P \in \mathscr{P}$ a composed table \bar{P} to \bar{G} where bnd $\left(P^{\bar{\prime}}\right)=\approx$ and $\operatorname{fr}(\bar{P})=P$. Clearly $L(\bar{G})=I(G)$.
(2) To see that $\mathscr{L}(E T O L R P) \subset \mathscr{L}(E T O L)$ we procced as follows. Let $G=(\Sigma, \mathscr{J}, S, \Delta)$ be an $E \Gamma O L R P$ system. For each $P \in \mathscr{P}$ let $Z(P)$ be the set of all composed tables of the form $\left(T_{1}, T_{2}\right)$ where $T_{1} \subset \operatorname{bnd}(P), T_{1}$ is deterministic, $T_{2}=\operatorname{fr}(P)\left\{A \rightarrow x \mid A \rightarrow \alpha \in \operatorname{fr}(P)\right.$ and $\left.A \in L H\left(T_{1}\right)\right\}$ and $L H\left(T_{1}\right) \cup L H\left(T_{2}\right)=$ Σ. Then let $G=(\Sigma, \mathscr{P}, S, \Delta)$ be the $E T O L R P$ system where $\overline{\mathscr{M}}=\bigcup_{P \in 刃} Z(P)$.

Clearly $L(G)=L(G)$ but \bar{G} has the pleasant feature that, for every table T of $\bar{G},\{L H(\mathbf{b n d}(T)), L I I$ fr $T))\}$ forms a partition of Σ. Now let $\Sigma=\{\bar{a} ; a \in \Sigma\}$, $\dot{\Sigma}::=\{\dot{a} \mid a \in \Sigma\}$ and $\hat{\Sigma}: \cdots\{\hat{a} \mid a \in \Sigma\}$, where $\Sigma, \bar{\Sigma}, \dot{\Sigma}$ and $\hat{\Sigma}$ are pairwise disjoint.

Let $F \oplus \Sigma \cup \bar{\Sigma} \cup \dot{\Sigma} \cup \hat{\Sigma}$ and $\Sigma^{\prime}=\Sigma \cup \Sigma \cup \dot{\Sigma} \cup \hat{\Sigma} \cup\{F\}$. Let $T_{c}=$ $\{\vec{a} \rightarrow \dot{a} \mid a \in \Sigma\} \cup\{\ddot{a} \rightarrow \hat{a}, a \in \Sigma\} \cup\left\{\sigma \rightarrow F ; \sigma \in \Sigma^{\prime} ; \bar{\Sigma}\right\} . T_{\mathrm{fin}}=\{\bar{a} \rightarrow a \mid a \in \Delta\} \cup$ $\left\{\sigma \rightarrow F^{:} \sigma \in \Sigma^{\prime}\left\{\begin{array}{l}\}\end{array}\right\}\right.$, and for every $T \in \overline{\mathscr{P}}, R_{T}=\{\dot{a} \rightarrow \bar{a} \mid a \rightarrow x \in$ bnd $\left.T)\right\} \cup$ $\left\{\hat{\alpha} \rightarrow \bar{\alpha}_{i} a \rightarrow \alpha \in \operatorname{fr}(T)\right\} \cup\left\{\sigma \rightarrow F_{\mid} \sigma \in \Sigma^{\prime}(\dot{\Sigma} \cup \hat{\Sigma})\right\}$.

Finally let $H=\left(\Sigma^{\prime}, \mathscr{P}, \bar{S}, \Delta\right)$ be the $E T 0 L$ system with $\mathscr{R}=\left\{T_{c}, T_{\text {fin }}\right\} \cup$ $U_{T \in \bar{Y}} R_{n}$. Note that each seccessful derivation from G is simulated in H in such a way that a single derivation step from \bar{G} corresponding to an application of a table T is simulated by two derivation steps in H. 'Ihe first step is an application of the "coordination table" T_{c} which divides letters in a string into those to be rewritten, in \bar{G}, by bnd (T^{\prime}) (they become clements of $\dot{\Sigma}^{\prime}$) and those to be rewritten, in \bar{G}, by $\operatorname{fr}\left(T^{\prime}\right)$ (thy become clements of $\bar{\Sigma}$). The second step rewrites elements from $\dot{\Sigma}$ by productions corresponding to bnd (T) and elements from $\hat{\Sigma}$ by productions corresponding to $\mathrm{fr}(T)$. Each successful derivation in H ends by an application of $T_{\text {fin }}$ thus using the standard synchronization method. Hence clearly $L(G)=-L(G)=L(H)$.
(3) The theorem follows from (1) and (2).

However the situation is different on the level of $E O L$ systems; that is, augmenting $E O L$ systems with the Russian parallel mechanism of rewriting yields a class of systems generating a class of languages strictly containing $\mathscr{L}(E O L)$.

Theorem VI.2. $\mathscr{L}(E 0 L) \subseteq \mathscr{L}(E 0 L R P)$.
Proof. The inclusion $\mathscr{L}(E 0 L) \subset \mathscr{L}(E 0 L R P)$ is obvious. It is well known that $L=\left\{w \in\{a, b\}^{*} \cdot \#_{u} w==2^{n}, n \geqslant 0\right\}$ is not an $E 0 I$. language (Ehrenfeucht and Rozenberg, 1974). However L is gencrated by the E0LRP system $G=(\{S, a, b\}$, $P, S,\{a, b\})$, where $\operatorname{bnd}(P)=\{a \rightarrow a a\}$ and $\operatorname{fr}(P):=\{S \rightarrow a, a \rightarrow a b, a \rightarrow b a$, $a \rightarrow a, b \rightarrow b\}$. Thus the theorem holds.

Before we proceed further in our investigation of $E 0 L R P$ languages, we notice the following about the class of $R P$ languages.

In Salomaa (1974) the following is stated (Theorem 5). Assume that k_{i}, $i=1,2, \ldots$ is a sequence of natural numbers, such that the set $\left\{a^{k_{i}} \mid i \geqslant 1\right\}$ is not regular. Then the language $L_{k}=\left\{a^{k_{i}} b^{k_{i}} \mid i \geqslant 1\right\}$ is not in $\mathscr{L}(R P)$. Consequently L_{k} is not in $\mathscr{L}(I P)$.

This theorem can be slightly generalized yielding the following result.

Theorem VI.3. Let $\tau=\left(k_{1}, k_{2}, \ldots\right)$ and $\rho=\left(l_{1}, l_{2}, \ldots\right)$ be infinite sequences of natural numbers, such that there exists a bijective function f from $\{x \mid x$ occurs in $\tau\}$ onto $\{x \mid x$ occurs in $\rho\}$ such that $f\left(k_{i}\right)==l_{i}$ for $i=1,2, \ldots$. If cither $\left\{a^{k_{i}} \mid i \geqslant 1\right\}$ or $\left\{b^{l_{i}}: i \geqslant 1\right\}$ is not regular, then $L_{k, t}:=\left\{a^{k_{i} i b_{i}} \mid i \geqslant 1\right\}$ is not in $\mathscr{L}(R P)$.

Proof. Assume the contrary. Let $G=(\Sigma, P, S, \Delta) \in R P$ generate $L_{k, l}$.

Since $\left\{a^{i, 2}, i \geqslant 1\right\}$ or $\left\{b^{L_{2}} \mid i \geqslant 1\right\}$ is not regular, $L_{k, l}$ is not context free. Then there is at least one nonterminal A in G with the properties
(i) $S \rightarrow \tilde{z}_{1} A z_{2} A z_{3}$ for some $z_{1}, z_{2}, z_{3} \in L^{*}$ and
(ii) there exist $x_{1}, x_{2} \in \Delta^{*}, x_{1} \neq x_{2}$, such that $A \xrightarrow{*} x_{1}$ and $A \stackrel{*}{\leftrightarrows} x_{2}$. (If such an A does not exist, then $L_{k, l} \in \mathscr{L}(C F)$).

Continue the rewriting from $z_{1} A z_{2} A z_{3}$ eliminating all nonterminals except A. Since we may assume that all nonterminals generate some terminal word, $z_{1} A z_{2} A z_{3}$ derives $y_{1} A y_{2} A \cdots A y_{m}$ in G, with $m \geqslant 3$ and $y_{j} \in \Delta^{*}$ for $j=: 1, \ldots, m$. Then both of the words $y_{1} x_{1} y_{2} x_{1} \cdots x_{1} y_{m_{i}}$ and $y_{1} x_{2} y_{2} x_{2} \cdots x_{2} y_{m}$ are in $L_{k, l}$.

Since $m \geqslant 3$, both x_{1} and x_{2} are words over a one letter alphabet and $\operatorname{alph}\left(x_{1}\right)=\operatorname{alph}\left(x_{2}\right)$.

Consequently $x_{1}: \ldots x_{2}$; a contradiction. Thus the result holds.
As a direct application of the above theorem we get the following example of a language that is not Russian parallel.

Exampie 11.1. $L-\left\{a^{n} b^{2^{n}} \mid n \geqslant 0\right\} \neq \mathscr{P}(R P)$.
It is instructive at this point to contrast Theorem VI. 3 with Corollary II. 2 about $I P$ languages.

We show now that the language gencrating power of $E 0 L R P$ systems is stronger than the language gencrating power of either $R P$ grammars or $E 0 L I P$ systems.
'Theorem VI.4. $\mathscr{L}(R P) \subseteq \mathscr{L}(E 0 L R P)$.
Proof. Let $G=(\Sigma, P, S, \Delta)$ be a $R P$ system. Let $\Sigma: A=\left\{A_{1}, \ldots, A_{n}\right\}$. Then $\Sigma^{(j)}=\left\{A^{(j)} \mid A \in \Sigma \backslash\right\}$ for $j \ldots 1, \ldots, n$ and $\Sigma, \Sigma^{(i)}$ and $\Sigma^{(j)}$ are pairwise disjoint if $i \neq j, 1 \leqslant i, j \leqslant n$.

Let f_{j} for $j=:=1, \ldots, n$ be a homomorphism on Σ, defined by $f_{j}(A)==A^{(j=1)}$, $j=1, \ldots, n-1, f_{n}(A)=A^{1}$ for $A \in \Sigma^{n}, \Delta$ and $f_{j}(a)=: a$ if $a \in \Delta, 1 \leqslant j \leqslant n$.

Let P^{\prime} be a composed table of productions over $\Sigma^{\prime}=\Delta \cup \bigcup_{j=1}^{n} \Sigma^{(j)}$, defined by

$$
\operatorname{bnd}\left(P^{\prime}\right)=\left\{A_{j}^{(j)} \rightarrow f_{j}(w) \mid A_{j} \rightarrow w \in \operatorname{bnd}(P), j=1, \ldots, n\right\}
$$

and

$$
\begin{aligned}
\operatorname{fr}\left(P^{\prime}\right):- & \left\{A_{j}^{(j)}->f_{j}(w) \mid A_{j} \rightarrow w \in \operatorname{fr}(P), j=1, \ldots, n\right\} \\
& \cup\left\{A_{i}^{(j)} \rightarrow f_{j}\left(A_{i}\right) \mid 1 \leqslant i, j \leqslant n\right\} \cup\{a \rightarrow a \mid a \in \Delta\} .
\end{aligned}
$$

It is casily scen that $H=-\left(\Sigma^{\prime}, P^{\prime}, S^{\prime}, \Delta\right)$, where $S^{\prime}=S^{(1)}$, is an $E 0 L R P$ system, which generates $L(G)$.

By example VI. $L=\left\{a^{n} b^{2^{n}} \mid n \geqslant 0\right\}$ is not a $R P$ language. However it is easily seen that $L \in \mathscr{L}(E 0 L)$, and so by Theorem VI. $2 L$ is an $E 0 L R P$ language.

Hence the theorem holds.

Theorem VI.5. $\mathscr{L}(E 0 L I P) \subsetneq \mathscr{L}(E 0 L R P)$.
Proof. The inclusion follows immediately from the definitions of EOLIP systems and E0LRP systems.

It is well known that $\mathscr{L}(C F) \not \subset \mathscr{L}(E D T O L)$ (Ehrenfeucht and Rozenberg, 1977) and $\mathscr{L}(C F) \subsetneq \mathscr{L}(E 0 L)$ (sce, e.g. Rozenberg and Salomaa). Since $\mathscr{L}(E 0 L I P) \subset \mathscr{L}(E D T O L)$ (see Section 1II), it follows that $\mathscr{L}(E O L I P \subsetneq$ $\mathscr{L}(E O L R P)$.

We move now to compare $E O L R P$ systems with $E D T O L$ systems. Our first result tells us that one can generate very $E 0 L R P$ language by an $E 0 L R P$ system in which all successful "computations" are organized in a way that reminds "computations" in an ETOL, system with two tables.

Definition. An $E 0 L R P$ system $G=(\Sigma, P, S, \Delta)$ is said to be in strong disjoint normal form if $L H(\operatorname{bnd}(P)) \cap L H(\mathbf{f r}(P))=\varnothing$ and each successful derivation D in G is such that at each step of D either only productions from bnd (P) are used or only productions from $\mathrm{fr}(P)$ are used and moreover applications of bnd (P) and of $\mathrm{fr}(P)$ alternate in D.

Theorem VI.6. For every E0LRP system G there exists an equivalent E0LRP system H in strong disjoint normal form.

Proof. Let $G=(\Sigma, P, S, \Delta)$ be an $E 0 L R P$ system. Let $\Sigma==\{\bar{a} \mid a \in \Sigma\}$, $\hat{\Sigma}=\{\hat{a} \mid a \in \Sigma\}$, where Σ, Σ and $\hat{\Sigma}$ are pairwise disjoint, and let $\Sigma^{\prime}=\Sigma \Sigma \cup$ $\bar{\Sigma} \cup \hat{\Sigma}$. Let P^{\prime} be the composed table with bnd $\left(P^{\prime}\right)=\{a \rightarrow \alpha \mid a \rightarrow \alpha \in \operatorname{bnd}(P)\} \cup$ $\{a \rightarrow \hat{a} ; a \in I H(\operatorname{fr}(P))\}$ and $\operatorname{fr}\left(P^{\prime}\right)=\left\{\hat{a} \rightarrow \alpha^{\prime}, a \rightarrow \alpha \in \operatorname{fr}(P)\right\} \cup\{\bar{a} \rightarrow a \mid a \in \Sigma\}$.

Let $H=\left(\Sigma^{\prime}, P^{\prime}, S, \Delta\right)$.
Clearly $L(H)=L(G)$ and H is in strong disjoint normal form. Hence the theorem holds.

It is instructive to compare E0LRP systems in strong disjoint normal form with $E T O L$ systems. An $E 0 L R P$ system in strong disjoint normal form can be considered as an $E T O L$ system with two tables one of which (the bounded part) is deterministic. It is well known that (see, e.g., Rozenberg and Salomaa) every ETOL language can be generated by an ETOL system with two tables only, one of which is deterministic. However an $E 0 L R P$ system in strong disjoint normal form is using its "tables" in a very special (restrictive) way. In each successful derivation the application of the two tables must alternate. Although one can show that for every $E T O L$ language K one can find a positive integer k and an $E T O L$ system G with two tables T_{1}, T_{2} (one of which is deterministic, T_{1} say) such that G gencrates K and cach successful derivation in G uses the tables T_{1}, T_{2} in the fashion $T_{1}^{l_{1}} T_{2} T_{1}^{l_{2}} T_{2} \cdots T_{1}^{l_{n}} T_{2}$, where $n \geqslant 1,1 \leqslant l_{1}, \ldots, l_{n} \leqslant k$, it is not known whether or not one can set in the above $k==1$ (we conjecture
that not). If one can set $k=1$ in the above, then we would get that $\mathscr{L}(E 0 I R P):-=$ $\mathscr{L}(E T 0 L)$; otherwise we would get $\mathscr{L}(E 0 L R P) \subseteq \mathscr{L}(E T O L)$.

Anyhow, we are not able to prove or to disprove the equation $\mathscr{L}(E 0 I R P)=:$ $\mathscr{L}(E T O L)$; we conjecture that $\mathscr{L}(E 0 L R P) \subsetneq \mathscr{L}(E T 0 L)$. However we will demonstrate now that the class $\mathscr{L}(E 0 I, R P)$ provides a quite clegant representation of the class $\mathscr{L}(E T 0 L)$.
'Theorem VI.7. For every ETOL language K there exists an EOLRP language \bar{K}, a regular language R and a weak identity ϕ, such that $K=\phi(\bar{K} \cap R)$.

Proof. Let $K \in \mathscr{L}(E T 0 L)$. We can assume that there exists an $E T 0 L$ system $G=(\Sigma, \mathscr{P}, S, \Delta)$ generating K such that $\mathscr{P}=\left\{T_{1}, T_{2}\right\}$ where T_{1} is a deterministic table. Let $\bar{\Sigma} \cdot\{a \mathfrak{a} \cdot a \in \Sigma\}$ and $\bar{\Sigma}=\{\hat{a}, a \in \Sigma\}$ where $\Sigma, \bar{\Sigma}$ and $\hat{\Sigma}$ are pairwise disjoint, $\Sigma^{\prime}=\Sigma \cup \overline{\Sigma^{\prime}} \cup \hat{\Sigma} \cup\left\{{ }^{*}, \mathfrak{£}, 1,2, \$, £_{\mathcal{N}}, F, S^{\prime}\right\}$ where $\left\{{ }^{*}, \mathfrak{£}, 1,2\right.$, $\left.S, \notin, F, S^{\prime}\right\} \cap(\Sigma \cup \bar{\Sigma} \cup \hat{\Sigma})-Q$, and let $\Delta^{\prime}=\Delta \cup \hat{\Sigma} \cup\{*, 1,2, S, £\}$. Let P be a composed table such that its bounded component and its frec component are defined by:

$$
\begin{aligned}
\operatorname{bnd}(P)= & \left\{\bar{a} \rightarrow|S \bar{x} S 1| a \rightarrow \alpha \in T_{1}\right\} \\
\operatorname{fr}(P)= & \left\{\bar{a} \rightarrow 2 S \bar{\alpha} \$ 2 \mid a \rightarrow x \in T_{2}\right\} \cup\left\{S^{\prime} \rightarrow \mathbb{C} S\right\} \cup\left\{\mathrm{c} \rightarrow \operatorname{per}\left(\overline{\Sigma^{\prime}}\right) \mathrm{c}\right\} \\
& \cup\{\bar{a} \rightarrow a ; a \in \Delta\} \cup\{\bar{a} \rightarrow a \mid a \in \Sigma\} \cup\left\{a \rightarrow F \mid a \in \Sigma^{\prime}\right\} \\
& \cup\{\hat{a} \rightarrow F \mid \hat{a} \in \bar{\Sigma}\} \cup\{c \rightarrow £\} \cup\{\ell \rightarrow F\} \cup\left\{\sigma \rightarrow \sigma \mid \sigma \in\left\{*, S, 1,2, F^{*}\right\}\right\},
\end{aligned}
$$

where $\operatorname{per}(\bar{\Sigma})$ denotes the word $* \bar{a}_{1} \cdots \bar{a}_{n} \times \bar{a}_{2} \bar{a}_{1} \cdots \bar{a}_{n} * \cdots * \bar{a}_{n} \cdots \bar{a}_{1^{*}}$, which consists of all permutations of the elements of $\bar{\Sigma}$ separated by $*$.

Let $H=\left(\Sigma^{\prime}, P, S^{\prime}, \Delta^{\prime}\right)$ be an $E 0 L R P$ system.
(1) Note that if x is a word such that $\phi \bar{S}=_{I I}^{+} x$ and $£ \neq \operatorname{alph}(x)$ then $\operatorname{per}(\bar{\Sigma})$ is a subword of x, and so for all $\bar{a}, \bar{b} \in \bar{\Sigma}$, where $\bar{a}: \neq \bar{b}$, both $\bar{a} \bar{b}$ and \bar{b} are subword of x. $\bar{\Sigma}$ ut $\bar{a} b={ }_{H} 1 \$ \bar{\alpha} \$ 12 \$ \bar{\beta} \$ 2$ if and only if $a \rightarrow \alpha \in T_{1}$ and $b \rightarrow \beta \in T_{2}$. Thus if $S^{\prime} \cdots{ }_{H} \mathrm{C} S \rightarrow \overline{刃 i}_{I}^{2} w \in L(H)$ then w contains the subword 12 or 21 if and only if in one direct derivation step of such a derivation a rule of the form $a \rightarrow 1 \$ \bar{\alpha} \$ 1$ and a rule of the form $\bar{b} \rightarrow 2 \$ \bar{\beta} \$ 2$ have been applied.
(2) Now let R be the regular language defined by $R=(\hat{\Sigma} \cup\{*, 1$, $2, \$\})^{*} f(\Delta \cup\{1,2, \$\})^{*}\{\{\mid$ either w contains the subword 12 or w contains the subword 21$\}$ and let ϕ be a weak identity on Δ^{\prime} defined by $\phi(a)=a$ if $a \in \Delta$ and $\phi(a)=\Lambda$ if $a \in \Delta^{\prime} \backslash \Delta$. Then (1) implies that $L(G)=\phi(L(I) \cap R)$ and so the theorem holds.

VII. The Relationship Diagram

The aim of this section is to establish the relationship diagram between various classes of languages considered in this paper.

First of all to construct the relationship diagram we can use the following known results.

Lemma VII.1. (1) $\mathscr{L}\left(C F_{\text {fin }}\right) \subsetneq \mathscr{L}(C F)$ (see, e.g., Salomaa, 1973),
(2) $\mathscr{L}\left(C F_{\text {fin }}\right) \subsetneq \mathscr{L}\left(I I^{\prime}\right)$ (sce, e.g., Skyum, 1974),
(3) $\mathscr{L}(C F)$ and $\mathscr{L}(I P)$ are incomparable but not disjoint, (see, e.g., Skyum, 1974),
(4) $\mathscr{L}(C F) \subseteq \mathscr{L}(R P)$ (sec, c.g., Levitina, 1972),
(5) $\mathscr{L}(C F) \varsubsetneqq \mathscr{L}(E 0 L)$ (see, e.g., Rozenberg and Salomaa),
(6) $\mathscr{L}(C F) \not \subset \mathscr{L}(E D T O L)$ (see, e.g., Ehrenfeucht and Rozenberg, 1977),
(7) $\mathscr{L}(E D T O L) \subsetneq \mathscr{L}(E T O L)$ (see, e.g., Rozenberg and Salomaa),
(8) $\mathscr{L}(E 0 L)$ and $\mathscr{L}(E D T O L)$ are incomparable but not disjoint (sce, e.g., Rozenberg and Salomaa).
'Then in addition to results established in previous sections we also need the following results.

Lemma VII.2. $\mathscr{L}(I P) \subset \mathscr{L}(R P)$.

Proof. The inclusion $\mathscr{L}(I P) \subset \mathscr{L}(R P)$ is an immediate consequence of the definitions of $I P$ grammars and $R P$ grammars.
'That it is strict follows from Lemma VII. 1 points (3) and (4).
Lemma YII.3. (1) $\mathscr{L}(I P)$ and $\mathscr{L}(E O L)$ are incomparable but not disjoint.
(2) $\mathscr{L}(R P)$ and $\mathscr{L}(E 0 L)$ are incomparable but not disjoint.

Proof. (1) It is known that $L=\left\{\propto w \notin w w!w \in\{0,1\}^{*}\right\}$ is not an $E 0 L$ language (Rozenberg and Salomaa). Since the $I P$ grammar ($\{S, C, \notin, 0,1\},\{S \rightarrow C C C$, $C \rightarrow C 0, C \rightarrow C 1, C \rightarrow ¢\}, S,\{e, 0,1\}$) generates L, it is clear that $\mathscr{L}(I P)$ is not contained in $\mathscr{L}(E 0 L)$. The first part of the lemma follows then from Lemma VII. 1 points (1), (2), (3) and (5).
(2) From (1) and Lemma VII. 2 it follows that $\mathscr{L}(R P)$ is not contained in $\mathscr{L}(E 0 L)$. Since $\left\{a^{n} b^{n} c^{n}: n \geqslant 0\right\}$ is an $E 0 L$ language and not a $R P$ language (Levitina, 1972) and $\mathscr{L}\left(C F_{\text {fin }}\right) \subset \mathscr{L}(E 0 L) \cap \mathscr{L}(R P)$ the second statement of the lemma holds.

Lemma VII.4. (1) $\mathscr{L}(C F) \varsubsetneqq \mathscr{L}\left(E T 0 L_{[1]}\right)$.
(2) $\mathscr{L}(R P) \not \subset \mathscr{L}\left(E D T 0 L_{[11}\right)$.
(3) $\mathscr{L}\left(E D T O L_{[1]} \varsubsetneqq \mathscr{L}\left(E T O L_{[1]}\right)\right.$.

Proof. (1) Clearly

$$
\mathscr{L}(C F) \subset \mathscr{L}\left(E T 0 L_{\{1]}\right) \quad \text { and } \quad\left\{a^{2^{n}} \mid n \geqslant 0\right\} \in \mathscr{L}\left(E T 0 L_{[1]}\right) \backslash \mathscr{L}(C F) .
$$

(2) and (3) From (1) and Lemma \II.1 points (4) and (6) the second and third statement of this lemma follow immediately.

Lemma VII.5. (1) $\mathscr{L}(I P) \subset \mathscr{L}\left(E D T 0 I_{[1]}\right)$.
(2) $\mathscr{L}(E 0 L)$ and $\mathscr{L}\left(E D T 0 I_{\left.4_{1}\right]}\right)$ are incomparable but disjoint.

Proof. (1) and (2). Obvious.
Lemma III.6. $\mathscr{L}(E O L)$ and $\mathscr{L}\left(E T 0 L_{[1]}\right)$ are incomparable but not disjoint.
Proof. It is proved in Section IV that $I=\left\{a^{2^{n}} b^{2^{n}} \mid n \geqslant 0\right\} \notin \mathscr{L}\left(E T 0 L_{[1]}\right)$. It is casy to see that $L \in \mathscr{L}(E 0 L)$, so $\mathscr{L}(E 0 L)$ is not contained in $\mathscr{L}\left(E T O L_{[1]}\right)$. On the other hand from the previous result it follows that $\mathscr{L}\left(E T 0 L_{[1]}\right)$ is not contained in $\mathscr{L}(E O L)$.

Hence the result holds.

Lemma VII.7. $\mathscr{L}(R P) \subset \mathscr{L}\left(E T 0 L_{[1]}\right)$.
Proof. Let $G=(\Sigma, P, S, \Delta)$ be a $R P$ grammar. Let P be given by the following tables.

If $A \rightarrow w \in \operatorname{bnd}(P)$ then \mathscr{P} contains a table $\{A \rightarrow w\} \cup\left\{a->a: a \in \Sigma_{i}\{A\}\right\}$ and if $A \rightarrow w \in \mathbf{f r}(P)$ then \mathscr{P} contains a table $\{A \rightarrow w, A \rightarrow A\} \cup\{a \rightarrow a ; a \in$ $\left.\sum_{i} ;\{A\}\right)$. (\mathcal{P} consists of these tables only.) Clearly the $E T 0 L_{11}$ system $(\Sigma, \mathscr{P}, S, \Delta)$ generates $L(G)$.

Lemma VHI.8. The following pairs of families of languages are incomparable but not disjoint.
(1) $\mathscr{L}(R P)$ and $\mathscr{L}(E 0 L I P)$,
(2) $\mathscr{L}(R P)$ and $\mathscr{L}(E D T O L)$,
(3) $\mathscr{L}\left(E T O L_{[1]}\right)$ and $L(E O I I P)$,
(4) $\mathscr{L}\left(E T O L_{[1]}\right)$ and $\mathscr{L}(E D T O L)$.

Proof. This follows from $\mathscr{L}\left(E 0 L I I^{\prime}\right) \subset \mathscr{L}(E D T 0 L)$, Lemma VII. 1 points (4) and (6) the previous lemma and Examples IV.I and VI.I.

Lemin VII.9. $\mathscr{L}\left(E D T 0 L_{[1]}\right) \subset \mathscr{L}(E 0 L I P)$.
Proof. Let $G=(\Sigma, \mathscr{P}, S, \Delta)$ be an $E D T 0 L_{[1]}$ system, where $\mathscr{P}=\left\{T_{1}, \ldots, T_{n}\right\}$. Let $\Sigma^{(j)}=\left\{a^{(j)} \mid a \in \Sigma\right\}$ for $j=1, \ldots, n$ where $\Sigma, \Sigma^{(i)}$ and $\Sigma^{(j)}$ are pairwise disjoint if $i \neq j, 1 \leqslant i, j \leqslant n$. Let $f_{j}, j=1, \ldots, n$ be a homomorphism on Σ, defined by $f_{j}(a):=a^{(j+1)}$ if $1 \leqslant j \leqslant n-1$ and $f_{n}(a)=a^{(1)}$. Let P be the following table of productions over $\Delta \cup \bigcup_{j \ldots \mathrm{x}}^{n} \Sigma^{(j)} \cup\{F\}$, where $F \notin \Sigma \cup \bigcup_{j=1}^{n} \Sigma^{(j)}$:

$$
\begin{aligned}
P= & \left\{a^{(j)} \rightarrow f_{j}(w) ; a \rightarrow w \in T_{j}, j=1, \ldots, n\right\} \cup\left\{a^{(i)} \rightarrow f_{j}(a) ; a \in \Sigma, j:=1, \ldots, n\right\} \\
& \cup\left\{a^{(j)} \rightarrow a, a \in \Delta, j=1, \ldots, n\right\} \cup\{a \rightarrow F \mid a \in \Delta \cup\{F\}\} .
\end{aligned}
$$

Let $H=\left(\Sigma^{\prime}, P, S^{\prime}, \Delta\right)$ be the $E 0 L I P$ system, where $\Sigma^{\prime}=\Delta \cup \bigcup_{j=1}^{n} \Sigma^{(j)} \cup\{F\}$ and $S^{\prime}=S^{(1)} \in \Sigma^{(1)}$.

Clearly H generates $L(G)$.
Since $\left\{a^{2^{n}} b^{2^{n}} ; n \geqslant 0\right\} \in \mathscr{L}(E 0 L I P) ; \mathscr{L}\left(E D T 0 L_{[1]}\right)$ the lemma holds.
Lemma \II.10. $\mathscr{L}\left(E T O L_{[1]}\right) \subsetneq \mathscr{L}(E 0 L R P)$.
Proof. 'I'he proof of the inclusion is analogous to the proof of the previous theorem, except that now we set

$$
\begin{aligned}
\operatorname{fr}(P)= & \left\{a^{(j)} \rightarrow f_{j}(w): a->w \in T_{j}, j=: 1, \ldots, n\right\} \text { and } \\
\operatorname{bnd}(P)= & \left\{a^{(j)} \rightarrow f_{j}(a): a \subset \Sigma, j:=1, \ldots, n\right\} \cup\left\{a^{(j)} \rightarrow a \mid a \in \Delta, j=-1, \ldots, n\right\} \\
& \cup\{a \rightarrow F: a \in \Delta \cup\{F\}\} .
\end{aligned}
$$

Since $\left\{a^{2^{n}} b^{2^{n}}: n \geqslant 0\right\} \in \mathscr{L}(E 0 L R P) \mathscr{L}\left(E T 0 L_{[1]}\right)$ the lemma holds.
Finally, combining all those comparison results we have, we get the following theorem.
'Theorem VII.1. The following diagram holds:

(If there is a directed chain of edges in the diagram leading from a class X to a class Y then $X \subsetneq Y$, an undirected chain means that we do not know whether the
inclusion is proper. A dotted directed edge leading from a class X to a class Y means that we do not know whether $X \subset Y$, but we do know that $Y \not \subset X$. Otherwise X and Y are incomparable but not disjoint.)

References

Dassow, 1). (1979), On some extensions of Indian parallel context free grammars, Department of Mathematics, Wilhelm-Pieck-Cniversity, Rostock, GDR.
Ehrenfelcht, A., and Rozenbrig, G. (1974), The number of occurrences of letters versus their distribution in some EOL languages, Inform. Contr. 26, 256-271.
Ehrenfectit, A., and Rozenberc, G. (1977), On some context free languages that are not deterministic ETOI, languages, R.A.I.R.O. Inform. Théor. 11, 273-291.
Levitai, M. K. (1972), O nekotoryh grammatikah s pravilami globalnoi podstanovki, Automat. Perevoda Tekstov Ser. 2, No. 3, 32-36 (In Russian).
Rozfiblerg, G., And Salomat, A., "The Wathematical Theory of L Systems," Academic Press, New York, in press.
Rozenberg, G., and Vermeir, D. (1975), "On E'「OL, Systems of Finite Index," Dept. of Math., Liniv. of Antwerp, U.I.A., Tech. Rept. 75-13.
Saloman, A. (1973), "Formal Languages," Academic Press, N"ew YorkiLondon.
Salomat, A. (1974), Parallelism in rewriting systems, in "Automata, Languages and Programming," Lecture Notes in Computer Science No. 14, pp. 223-233, SpringerVerlag, Berlin:New York.
Skytu, S. (1974), Parallel context free languages. Inform. Contr. 26, 280-285.
Sirovioner, R., And Krithivasan, K. (1974), Parallel context-free languages, Inform. Contr. 24, 155-162.
Siromoniy, G., and Simomonfy, R. (1975-1976), Parallel 0L languages, Internat. J. Comput. Mat/ı 5, 109-123.

