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In this paper we study systematically three basic classes of grammars in- 
corporating parallel rewriting: Indian parallel grammars, Russian parallel 
grammars and L systems. In particular by extracting basic characteristics of 
these systems and combining them we introduce new classes of rewriting 
systems (ETOLtkl systems, ETOLIP systems and ETOLRP systems) Among 
others, some results on the combinatorial structure of Indian parallel languages 
and on the combinatorial structures of the new classes of languages are proved. 
As far as ETOL systems are concerned we prove that every ETOL language can 
be generated with a fixed (equal to 8) bounded degree of parallelism. 

INTRODUCTION 

The  study of parallel rewriting systems constitutes a central t rend in formal 
language theory. T h e  parallel rewriting in its most "pure"  form is present in L 
systems (Rozenberg and Salomaa). Also quite a number  of rewriting systems 
were investigated in the literature which form a " b r i d g e "  between pure sequential 
rewrit ing systems (as, e.g. context free grammars) and L systems; among those 
Indian  parallel grammars and Russian parallel grammars form two very 
interesting cases see, e.g., Siromoney and Krithivasan (1974), Levitina (1972), 
Skyum (1974), Dassow (1979) and Salomaa (1974). 

This  paper  studies Indian parallel, Russian parallel and ETOL ways of 
rewriting. We study those systems (and languages they generate) as well as by  
combining them we introduce new classes of rewriting systems. In  this way this 
paper directly continues the work begun in Salomaa (1974). We believe that 
such a comparative study sheds light on both the nature of parallel rewrit ing 
and the nature of sequential rewriting. Unders tanding each of those kinds of  
rewriting separately, and understanding the differences and similarities between 
them is, in our opinion, one of the important  research areas of formal language 

theory. 
T h e  paper is organized as follows. 
In  Section 1 we introduce some basic notation for our paper. 
In  Section I I  we investigate Indian  parallel grammars. In  particular we prove 

a result on the combinatorial  structure of Indian parallel languages that is 
analogous to the pumping  theorem for context free languages. 
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In Section I I I  we combine Indian parallel and ETOL ways of rewriting. 
This  results in a new kind of rewriting systems called ETOLIP systems. We 
investigate the language generating power of those systems. We also formalize 
the notion of the deterministic part of an ETOL language and then characterize 
it. We believe that in this way we contribute to the understanding of the notion 
of determinism in grammars. 

In Section IX: we introduce l-restricted ETOL systems which, within the frame 
work of ETOL systems, form a "nondeterministic" counterpart of Indian 
parallel grammars. We prove a theorem on the combinatorial structure of 
languages generated by those systems. 

In  Section V we extend the notion of a l-restricted ETOL system to a 
k-restricted ETOL system; that is an ETOL system which uses only tables such 
that each of them has productions different from identity for no more than k 
symbols. A very natural question is whether or not with the growth of k one gets 
larger classes of languages. We prove a rather surprising fact that there exists 
a k 0 such that the k0-restricted ETOL systems generate all ETOL languages. 

In Section VI we combine the Russian parallel mechanism of rewriting with 
ETOL systems and introduce the so called ETOLRP systems. We investigate 
the language generating power of those systems. Also we investigate the 
relationship between EOLRP systems and ETOL systems. We provide a normal 
form for EOLRP systems which indicates that computationally those systems 
resemble a restricted class of controlled two-table ETOL systems. Also we show 
how every ETOL language can be represented using an EOI, RP  language, a 
regular language and a homomorphism. 

In  the last section we provide a diagram of relationships between the different 
classes of languages considered in this paper. 

1. I)RI'.'I.I M INARI I'S 

We assume the reader to be familiar with the theory of parallel rewriting 
systems, e.g. in the scope of Salomaa (1974), Rozenberg and Salomaa, chapters I I  
and V.Perhaps the following notational matters require an additional explanation. 

(l) For a finite set V, # V  denotes its cardinality. 

(2) For a word x, ] x  denotes its length and alph(x) denotes the set of 
letters occurring in x. For a letter b, #vx denotes the number of occurrences of b 
in x. A denotes the empty word. 

(3) Given an alphabet Z (we consider finite alphabets only!) we will often 
use its barred version ~'  := {a- [ a 6 27}. Then  for a word ~ ~_ 22~, ~ = a t ... a ,  , 
a t ,..., a, ~ Z we use & to denote the word gx "'" dn. Also ]1- == A. A homo- 
morphism h on Z'* is called weak identity if for every b ~ Z either h(b) = b or 
h(b) = n .  

643/44/2-3 
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(4) All the rewriting systems that we will consider use context free 
productions, that is productions of the form A ~ a where A is a letter and a is 
a word; then A is referred to as the left-hand side of the production and c~ as its 
right-hand side. Given a set of productions P, LH(P) denotes the set of all 
left-hand sides of productions in P. For a rewriting system G, maxr(G) denotes 
the maximal length of the right-hand sides of all productions in G. As usual, 
-~a ,  ---~+ and N a  will be used for denoting the direct derivation relation, the 
"real" derivation relation and the derivation relation in G, respectively; we will 
also use ~ ,  ~ : and % whenever G is clear from the context. Also ~ ,  _~n  and 
~ n  will denote the relations "derives in n steps", dcrives in no more than n 
steps" and "derives in no less than n steps", respectively. 

(5) Given a class X of rewriting systems, 5~(X) denotes the family of all 
languages generated by systems in X. Also if a system is of type AS (e.g. ETOL) 
then the language it generates is also referred to as a type X language. We use 
c, LP(REG) and cS,(CP) to denote the classes of regular and context free languages 
respectively. 

II .  INDIAN PARALLEL GRAMMARS 

In this section we will investigate Indian parallel grammars and in particular 
we will prove a result on the structure of Indian parallel languages which 
corresponds to the pumping lemma for context free languages. This  result will 
allow us to provide examples of languages that are not Indian parallel. 

We start by recalling the definition of an Indian parallel grammar and language. 

DEFINITION. (1) An Indian parallelgrammar, abbreviated an IP grammar, is a 
construct G ~ (Z, P, S, A), where Z is a nonempty alphabet, zl a nonempty 
subset of Z (the elements of A are referred to as terminals), S ~ Z!A (the axiom) 
and P is a finite nonempty set of productions each of which is of the form A ~ c~, 
where £ / c  Z\A and ~ E Z*. The  elements of Z",A are called nonterminals. 

(2) I,et x ~ Z* and y ~ Z*. We say that x directly derives y in G, denoted as 
x ~c, Y, if there exists a production A -7  a in G such that x --: XoAXlA ." Axs;, 
y := Xo~Xlc~ "" axk, k >/ 1 and A ¢ alph(xoXl --" xk). 

(3) As usual ~a* is defined as the transitive and the reflexive closure of the 
relation =>a • I f x  *>aY then we say that x derivesy in G. 

(4) The  language of G, denoted L(G), is defined by 

L(a)  : {x~A* I S ~, x}; 

we say that L(G) is an Indian parallel language or IP language. 
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T h e  not ions of a derivation and of a dcrivation tree in an IP  grammar  are 

defined analogously to the case of a context free (CF) grammar.  Given a deriva- 

t ion D in an 1P grammar  G, leading from x to y,  one can assign to it thc un ique  
sequence z of product ions  applied (in this order) in D. Th i s  sequence z is called 
the control sequence of D and we also write r(x) ..... y (thus we view r as both the 
sequence of product ions  and as a funct ion);  moreover  the sequence of words 

x ---Xo, xa ,..., x ,  = y, cor responding  to applications of product ions  from 
(in this order) is called the trace of z (on x). In  the same way we can assign a 
control  sequence to a der ivat ion tree T by first taking a derivation D corre- 
spond ing  to "/' and then taking the control sequence of D. Given  a control 

sequence z and a non te rmina l  symbol  A we use z"A to denote the sequence of 

p roduct ions  resul t ing from ~ by omit t ing  in r all product ions  with .,I as the left- 
hand  side (the so called A-productions). 

Analogously to the case of C F  grammars  we term an IP  grammar  G 

(Z, P, S, A) reduced if every non te rmina l  A is reachable (that is S ~a  xoAxl for 

some x 0 , xl c- Z'*) and product ive  (that is A *>c; w for a word w ~ A*). 

T h e  following no t ion  will be useful in the proof of the main  theorem of this 
section. 

DEFINITION. Let  G = (X, I', S, A) be an IP  grammar  and let A ~ X \ A .  
Lct D be a derivat ion leading from A to a terminal  word x and let r be the 
control sequence of D. We  say that D is composed if ~- = / ,  o p where p(.4) =- aA/3 

for a,/3 ~ Z '~, ~fi q-- A, #(c~) = &, #(fl) = fl and &fi ,~ A. We also say that A is a 
composed letter and that the derivation tree corresponding to D is composed. 

We will define now a new kind of rewri t ing systems. T h e y  will t u rn  out  to be 
useful in invest igat ing the s t ructure  of IP  languages. 

DEFINITION. (1) An embracing grammar G is a construct  (X; x 0 ..... x.,,,; w), 
where m :-~ 1, X is a n o n e m p t y  alphabet  and x o .... , xm, w a Z'*. T h e  sequence of 
G, denoted E(G), is defined by  E(G) = Wo, w 1 ..... where w 0 =:: w and  wi= 1 --: 

XoZC': 1 "'" Xm_lWiX,, for i ) 0. T h e  language of G, denoted L(G), is defined by 
L ( a )  == {~o, wl .... ). 

(2) A A-augmented embracing grammar G is either an cmbrac ing  g rammar  
or it is a construct  (27; x 0 ..... x,,; w, A), where U(G) = (27; x 0 ..... x,~; w) is an 

embrac ing  grammar .  ( I f  G is an embrac ing  grammar ,  then we set U(G) -- G). 
I f  G is an embrac ing  grammar ,  then  its sequence and language are defined as 
above. In  the case that  G is not  an embrac ing  grammar ,  then its sequence E(G) 
is defined by E(G):= A, Wo, w~ ..... where E(U (G ) )=  Wo, w~,..., and its 

language is defined by L(G) := L(U(G)) t.) {A}. G is called nontrivial if L(G) is 
infinite.  

T h e  following obvious rcsult characterizing A-augmen ted  embrac ing  
g rammars  is given wi thout  a proof. 
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LEM.~IA II.1. Let G be a A-augmented embracing grammar with U(G) : 
(~'; xo ,..., x,~; w). Then G is nontrivial i f  and only if either m : :  1 and XoX x # A, 
or m ~ 2 and w ~ A, or m >~ 2 and x i @ A for some i c (0,..., m}. 

Our next result is the main theorem of this section and it concerns the com- 
binatorial structure of I P  languages. I t  is analogous to the celebrated pumping  
theorem for context free languages. (The  existence of such a result is hinted at 
at the end of Siromoney and Krithivasan (1974)). 

TH~,Om-M II.1. For every infinite I t '  language L there exist positive integers 
n, l and nontrivial A-augmented embracing grammars l I  1 ..... H t ,  such that 
for every word x in L the following holds: i f  I x ! > n, then there exist positive 
integers r, t, 1 -~ r ~ l and words x o ,..., xt , such that 

x := xoO(E(Hr) ) x~O(E(H.~)) x2.. .  0(E(H~)) x t 

and for every positive integer m xom(E(Hr) ) x ,m(E(H, ) )  x2.. .  m(E(Hr))  xt e L ,  
where m(E(H~)) denotes the ruth element of E(H~). 

Proof. Le tL  be an infinite 1P language and let G = (X, P, S, A) be a reduced 
I P  system, generating L. 

(1) There  exists a positive integer no, such that for each word z ~ L ,  
where ' z ' > no, there exists a derivation tree for z containing a composed 
subtree of height smaller than n o . This  is seen as follows. 

(i) I f  z is a word of length greater than m - .  (maxr(G)) #vN, where 
maxr(G) =- max{ ~ : I A - ~  ~, ~ P L  then, clearly every derivation tree of z in 
G must  have a composed subtree. 

(ii) Clearly the number  of different words in Z'* that can be derived 
from a word in X ~ without  introducing a composed subtree in the derivation 
tree is smaller than some positive integer n dependent  on G only. 

(iii) We will demonstrate now that n o := max(if, ~ )  satisfies the state- 
ment  of our claim. 

Assume that z s L, where ] z ] > n o , and let T be a derivation tree of z in G. 
Since ', z [  > ~ ,  (i) implies that T has a composed subtree. I f  no composed 
subtree of T is of height smaller than no, then (ii) implies that among the last 
words of the trace of T there are two identical words. Thus  2" can be shortened 
to yield a derivation tree T ~I) of z in G which is of height smaller than the height 
of T. I f  no composed subtree of T (t) is of height smaller than n o , then we iterate 
the above procedure which yields then the sequence T, T a~, T~-~,... of derivation 
trees of z in G such that each next tree in the sequence is of height smaller than 
the previous one. Thus  for some i i> 1, ;/'") must  be a derivation tree of z in G 
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such  that  it contains  a composed  subtree  of  height  smaller  than n o . Hence  our  

c la im holds. 

(2) Fo r  every nonte rmina l  A let T e r m ( A )  denote  the set of  all words 

w 6 A * such that  A can derive w in G in no more  than n o steps. Since G is reduced  

T e r m ( A )  is nonempty  and (1) implies  that  if  A is composed  then T e r m ( A )  

contains  a nonempty  word.  

(3) N o w  wi th  every composed  letter A and every e lement  8 of T e r m ( A )  

we associate a f ixed nontr ivia l  embrac ing  g rammar  GA.~ as follows. I ,e t  A be a 

composed  letter and let TA be a fixed composed tree for A.  I ,et  rA be a fixed 

control  sequence  of TA and let ,q, z I ,..., zq be the trace of  TA on A. Le t  p be the 

largest  integer  such that A e- alph(zv) and then let ~A,  vA be the decompos i t ion  

of  rA such that  Va leads f rom z v to  z~ (hence rn = vA o t~A). T h u s  we have 

Ixa(A)  :--: marl, v a ( A )  = Y, vA(afi) :-:: 5fi for some % ,8 ~ Z*  and &, ]3, y -c- A ~ wi th  

cxfl =/ A and ,~]~ @ A. Hence  (vA\A)(aAIg,) ~-- w o A w x A  "'" Aw~. ,  where  

w0, Wl ,..., zt'k ~ A* and e i ther  k = 1 and wow I 4: A or k ~ 2. I ,e t  us consider  

now an arbitrary e lement  ~ f rom T e r m ( A ) .  We  have two cases to consider.  

(i) a / - A .  

T h e n ,  by L e m m a  I I . l ,  Ga.~ =-: (V;  w 0 ,..., wk; 8) is a nontr ivial  embrac ing  

grammar ,  where  V ~: alph(w 0 ' - '  wkS). 

(ii) 3 - - A .  

(ii)(1) I f  for some i e { 0  ..... k}, w; -¢~ A, then by L e m m a  II .1,  G A .  ~ == 

(V;  w 0 ..... wk; A) is a nontr ivia l  embrac ing  grammar ,  where V = alph(w o "" wk). 

(ii)(2) I f  w~ - ,4 for eve~" i ~ {0 ..... k}, then it must  be that  k ~v 2 and, 

by L e m m a  II .1,  Ga.~ .... (V; w o,. . . ,  wk; 5),fl, A) is a nontr ivial  A - a u g m e n t e d  

embrac ing  grammar ,  where  V - -  alph(w o "" wl:~y~). 

(4) N o w  we comple te  the proof  of  the theorem as fifllows. Le t  x c L and 

] x ' > n o. By (1) there  is a der ivat ion tree T of x in G such that T conta ins  a 

composed  subt ree  of  height  smaller  than n o . Let  A he the label of  the root of  

such a subtree ,  let r be a fixed control  sequence  of T and let S ,  u a , . . . ,  u~, = x be 

the trace of  r on S. Le t  f be the largest integer  such that A ~ alph(ut) and let 

p, ~r be the decompos i t ion  of r such that p leads f rom S to u I and 7r leads f rom u, 

to u,, (hence r ::: r rop) .  Let  p ( S )  = yoA3hA " - A y , ,  where t~:> 1 and 

A q~ alph(y~ " " Y t ) .  Let  Or'~A)(yoAy,  A ' "  A y , )  --- x o A x ,  A "'" A x t ,  where  
x~ . . . . .  x t ~_ A *  and let ~r(A) - -  8; obviously 8 e T e r m ( A ) .  T h u s  x .= r (S )  --= 

x 0 3x I a "'" x t and moreover ,  for every m > 1, xoO,,,(A ) x~O,,,(A) . . .  O,,,(A)x, e L ,  

where  0,,, : :  rr o ( ( v a \ A )  o P.a)" i f8  -7' A, 0,,, = v ,  ~/** o ( ( ] ]AI ' l j{ t )  O /ZA)"' 1 i f8 .-= A, 

and /*.4 and vA are the fixed control  sequences  from (3). I n  o ther  words  x -= 

xoO(E(Ga.,)) x ,O(E(Ga.~))  . . . O ( E ( G a , e ) ) x t  and for every m > ] 

xom(/ ' . ' (c .~))  x~m(E(G.~))  ... m ( E ( G . ~ ) ) x ,  e L. 
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' f 'hus if we set n ,:= n o and {/-/1 ..... Hi} to be the set of all A - a u g m e n t e d  
embrac ing  grammars  GA.e as defined in (3) ( / /  is a composed letter and  

e T e r m ( A ) )  then  the theorcm holds. II 

Before we state our  next  result wc need the following notion.  Let  x -- = a~ "" a , ,  

n ) 2, bc a word over Z, where a 1 ..... a~ are occurrences of letters from Z in x, 

and let {Z 1 , Z2} be a n o n e m p t y  part i t ion of S.  T h e n  we say that  an occurrence 

a i ,  1 ~ i ~ n - I, is a {£'1, Z2}-switch if ai i s  an occurrence of a letter of  Z 1 
and  ai~ 1 is an occurrence of a letter from Z 2 . 

It  is well known  that the length set of an infinite CF language contains  an 
infini te  ar i thmetic  progression. T h u s  if the length set of an infinite 1P language 

does not contain an infinite ar i thmetic  progression the language is no t  CF; for 
example {a 2" [ n ~ 1} is in te(IP)~.c~(CF). (At the same t ime it should be observed 
that an infinite IP  language the length set of which contains  an infinite ar i thmet ic  

progression does not  have to be CF; { w w l w  e{O, 1}*} is an example.) T h e  
following theorem allows us to provide examples of infinite languages such that  

their  length sets do not  contain an infinite ar i thmetic  progression and  the 
languages are not in cd(IP). 

TIII':ORE.M II .2.  Let L be an infinite IP  language over an alphabet Z and let 
Z 1 , Z~ be a nonempty partition of Z, then either (1) the length set of L contains an 
infinite arithmetic progression, or (2) there exists a positive integer k I such that 
infinitely many words of L have no more than k 1 occurrences of symbols of  Z~ , or (3) 
there exists a positive integer k 2 such that infinitely many words of L have no more 
than k 2 occurrences of symbols of Z2,  or (4 ) fo r  every nonnegative integer n, there 
exists a word z in L, such that z has at least n (Z  x , Z.a}-switches. 

Proof. Let n be as in the s ta tement  of T h e o r e m  II .1,  and let x in L be such 
that x I > n. Let  H,. be as in the s ta tement  of T h e o r e m  I I . l  and let U(Hr) =: 

(Z;  w 0 ..... wk; z). I f  k "= 1, then (1) holds, if w 0 .... , w~, z 6 Z~*, then  (2) holds, 
if w 0 ..... wl~, z e Z ~ ,  then  (3) holds and if the word w . ' " w k z  conta ins  

occurrences of letters both from Z t and Z. a then (4) holds. II 

As an example of the applicat ion of the above theorem we get the fi)llowing 

result .  

COROI.LARY 21.1. { a'b2" i n ~ O} ~ c~(IP). 

T h i s  can be generalized to the following result. 

(~OROLLARY 21.2. Let S be a finite nonempty alphabet, let Z 1 , Z 2 be a nonempty 
partition of  Z and let K 1 and K 2 be infinite languages over Z x and Z,, respectively. 
I f  f :  K 1 -~ g z is an injective function and the length set of K =: {xf(x) ! x ~ K1} 
does not contain an infinite arithmetic progression, then K ~ ~ ( I P ) .  
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Proof. Since the length set of K does not contain an infinite ari thmetic 
progression the case (1) from the statement of the previous theorem does not 

hold. Cases (2) and (3) from the statement of Theorem II .2  cannot hold, because 
f is injective. Case (4) from the statement of Theorem 11.2 cannot hold, because 
each word of K has at most o n e  {,~YT1 , Z'.~}-switch. | 

I l I .  E T O L I P  SYSTEMS 

In this section we will combine the I P  mechanism and the ETOL mechanism 
of  rewriting; the resulting eonstruct is an ETOLIP system. In Siromoney and 
Siromoney (1975--1976) the I P  mechanism was combined with OL systems. 
I towever the results stated there are not very helpfifi in establishing the propert ies  
of  ETOL1P systems; the use of nonterminals changes the situation completely. 

DF.FINITION. An ETOLIP  system is a construct G : - ( X ,  0~, S, A) where 
Z',.:~, S, A are as in ETOL systems. Given x c S + and y E X  ,~ we say that x 
directlyderivesyhz G, denoted x ~c, Y, i fx  : x I -" x,, wi thn  ) I, x 1 ,..., x,, ~.X, 

Y : YI ""Y~ with 3h .... ,Y,  6 X:* and there exists a P c : : ~  such that xi---~3, i is 
product ion of P for each i ~ { l  ..... n} where y:= := ys ,  whenever x k -= x j ,  
1 ~-~ k, j ~ n. The  relation ~ o  is defined as the transitive and the reflexive 
closure of -~.~; if x~-~; y then we say that x derives y hi G. The language of G is 
defined b y L ( G )  , { x e A *  S G<;x}. 

The  notation and the terminology concerning ETOL systems and languages 

are carried over toETOLIP systems. In  particular an EOLIP system is an ETOLH'  
system (X, .:~, S, A) where #oj0 = 1. 

First  of all we compare the language generating power of EOLIP systems and 
] P  grammars.  

'I'HFOREM III .1 .  .Lf(IP) C 5F(EOL1P). 

Pro@ Let G = ( Z ' , P , S , A )  he an I P  grammar. I f  Z"~A : = { S - - - J 1 1 ,  
-q2 ..... An}, with n ~ 1, then let, for j := 1 ..... ,n,)_2(:~ denote the set 
{A~:~ I A aZ".A}, such that X, X"), Go), for i :/ j ,  1 ~ i, j ~ n, are pairwise 
disjoint, and let f o r j  = 1 ..... n f:  be a homomorphism defined byfj(A~) = A~ s+xl 

for 1 - ~ - j < n ,  1 :z -~i -~n,  f,,(A~) = A ~  ~) for 1 ~ i ~ n  a n d f ; ( a )  ..... a for 
I ~ j < "  '~ -.-. n and a c- A. Let  G = (Z, ]5, ,q, A) ~ EOLIP, where Z = = Uj-1 XcJ~ u A, 
N : : A~ 1) and P the following set of productions. 

/5 == {,.l~o _ * fi(w) [ Ai  -~  w a P, i = 1,..., n} 

w {A~ :) - -~fdA;)  [ I ~. i , j  ~ n} w {a .... a [ a c A } .  
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From this construction it is clear that S No x if and only if there exists an 
integer j e { 1  ..... n), such that ~q Nafj(x). So L ( G ) = L ( G ) .  Thus  for every 
IP  grammar G there exists an EOLIP system G, such that L(G) == L(G) and so 
c~(IP) C ~(EOL1P). Since {a"b 2" ', n >~ 0} E £#(EOLIP)\~(IP), see Corollary 

I I . l ,  it follows that this inclusion is strict. II 

Remark. The  inclusion :.~'(IP)C~(EOLIP) is stated in Siromoney and 
Siromoney (1975-1976), Theorem 3.2 (in a different formulation). Since its 
proof there seems to be incorrect, we provided the full proof of Theorem III .1 .  

Here is another way of arriving at ETOLIP languages. 
For a set P of context free productions on X, that is productions of the form 

A --~ a, A ~ X, ~ ~ X*, where P contains a production for each element of X, 
we use det(P) to denote the family of all sets of productions R such that R C P 
and R contains exactly one production for each element of X. 

DEFINITION. Let G be an ETOL system, G == ( Z , ~ ,  S, A). The  com- 
binatorially complete (cc) version of G, denoted Gc~ , is the EDTOL system 
Gcc = (S, :2, S, A), where ~ = [,)v¢.@ det(P). G~.~ is referred to as an ETOLce 
system (or EOLcc system if G is an EOL system). 

We use ETOLc, and EOL,~ to denote the classes of ETOL** and EOLc#ystems 
respectively. 

Directly from the above definitions we get the following results. 

LEMMA III.1.  I f  G is an ETOL system thenL(Gc~) CL(G).  

LEMMA HI.2.  (1) .~(ETOLIP) -~ c~.(ETOL~c) = c..Sf(EDTOL), 

(2) 5F(EOLIP) ---- =~q~(EOLc~). 

We compare now thc classes of EOL and EOLc~ languages. 

THEOREM III .2.  .L#(EOL ) and 5f(EOLcc ) are incomparable but not disjoint. 

Proof. Since in Ehrenfeucht and Rozenberg (1977) it is proved that cJ(CF) (~ 
.L#(EDTOL) and by definition .W(EOLcc) C C~(EDTOL), it is clear that .L#(CF) ([. 
.~(EOLcc). But it is well known that c.~(CF) C ~(EOL) (see, e.g., Rozenberg and 
Saiomaa) and so ~ (EOL)  q~ .W(EOL¢¢). On the other hand L -~ {¢w¢wcw ' w e 
{0, 1}*} 6 .W(EOL) see, e.g., Rozenberg and Salomaa, while L is generated by the 
EOL,c system G == ({S, ¢, 0, 1), {T 1 , T2), S, {¢, 0, 1}), where 

and 

T 1 =: {S--+ ¢¢¢, ¢--~ ¢0, 0--~ 0, 1 ~ 1} 

Tz = {S--,- ¢¢¢, ¢ --,- ¢!, 0 --,-O, 1 ->- 1~. 
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T h u s  C~(EOLc~) (~ 2)(EOL).  It  is clear that 5 f ( R E G )  C . f ( E O L ~ )  c3 ~ ( E O L )  

and so the t heo rem holds. II 

T h e  fol lowing result  is useful in establ ishing the relat ionship be tween  the 

language generated by an E T O L  system and the language generated by the cc 

version of  the same system. 

THEOREM I11.3. Let  G be an E T O L  system. For every word w eL(G) \L(G¢c)  

there exist words w 1 , w e , w a , eq and ~ , where ~1 -~  Or2 ' $lleh that w == wx~xwz%% 

and zvx. ~ - - -  w 1 9 1 1 w 2 o t l w  3 , w2. 3 = w l , , - x 2 w 2 o ~ 2 w  3 , Ws. 1 .... Wlg~,2w20~lw 3 ~ L(G).  

Pro@ Let  G = (27, :~, S, A) be an E T O L  system. Le t  w ~L(G) ' \L (G~) .  

(1) First  of  all we may  assume that  there exists a der ivat ion tree T of  w 

with  the fol lowing property.  I f  vx and v s are two different nodes on the same level 

of  T such that  both  have the same label and the same cont r ibut ion  to w, then  the  

subtrees  rooted at v a and v 2 are identical.  

T h i s  is seen as follows. T a k e  an arbi t rary derivat ion tree 7~ of  w and proceed  

to "c lean  u p "  7 ~ top -down  as follows: on each level of  T replace all subtrees  

roo ted  at nodes with the same label and cont r ibut ing  the same result  to w by one 

of  those subtrees.  Once  this procedure  ends the resul t ing tree T satisfies 

the above condit ions.  

(2) Le t  21' be a derivat ion tree of w satisfying (1). Since w eL(G) \L(Gc~)  

there  mus t  be a level in T on which  two different occurrences of  the same symbol  

(say, A)  have different  contr ibut ions  to w (say, aa and as). T h e n  w = Wl~lW2~.,w:~ 

for some w~ , w s , w 3 E A :~ and obviously  also w~iwschw.  ~ , gL~lO:2w2~zgb' 3 , 

WlO~W,,Oqw:~ ~ L(G) .  T h u s  the result  holds. II 

Remark.  Observe  that  words w, Wl. x and ws. s as stated in the above theo rem 

are all different words,  but  that it is possible for w and ws. 1 to be the same word.  

Also if w2, a can only be obtained as in the proof  above, then w.,.~ ~L(G) \L (G,c ) .  

As an example  of  an applicat ion of  the above result we present  the fol lowing 
corollary. 

COROLLARY IlI. l. If K C {a"b" in ".>~ 0} and K~_S, Y2(ETOL) then Kc- 
~(EDr0L). 

Proof. I f  K =- {A} then K e L ( E D T O L ) .  T h u s  assume that  K ~ {A}. I ,e t  

G E E T O L  generate  K.  Le t  us assume that  there exists a word w in L(G)\L(Gcc ). 

By T h e o r e m  I I I .3  there  exist w 1 , w2, w3, ~1 and ~2, where al  ;/~ ~z,  such 

that  w --- wxcqw2~2w a and wl. 1 = wic~lw.,~w a , ws. 2 = ~c'l~wz~w:3, w2.1 =-= 

wl~zwseqw a ~ K .  Le t  us consider  all possible "d i s t r ibu t ions"  of  ~l and a s in w. 
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(1) I f  e i t h e r  o~1, ,x 2 E {a}* o r  a : l ,  o~ 2 ~ {b*}, t h e n  Wl,  1 ¢ K ;  a c o n t r a d i c t i o n .  

(2) If one of cq, c~ 2 is in {a*} and the other one is in {b}*, then w2. 2 ~ K;  
a contradiction. 

(3) If  one of ~1, c~, contains occurrences of both a and b, then either 

wx, 1 f- K or w2.~. ¢ K;  a contradiction. 

Thus  we get a contradiction in each case and consequently L(G)'L(G~¢) -- 25. 
Hence K == L(G~) and the corollary holds. II 

Theorem III .3 leads naturally to the following notions. 

DEFINITION. Let K cfW(ETOL). The deterministic core of K, denoted 

dcor(K), is defined by dcor(K) --  ~ a  {x [L(G) - K A x ~L(Gcc)}. 

DEFINITION. (1) If K e 5~(ETOL), then a word w in K is called a social word of 
K if there exist w I , w.,, w~, c~ 1 and ~2, with ~1 =/= ,~2, such that w = wlalw,,~w 3 

and Wl, 1 --" Wlg~lWoO~lW3, 7£',2, 2 :=  WlO~,2"/L~29~2W3 , W2,1 -=  WlOf~2W20~I'g~3 are elements 
of K. 

(2) If a word w of K is not a social word of K, then it is called an isolated 
word of K. The set of isolated words of K is denoted isol(K). 

We are able now to characterize the deterministic core of an ETOL language by 

isolated words. 

THEOREM Il l .4.  Let K c fLP(ETOL). Then dcor(K) = isol(K). 

Proof. (1) Let w e isol(K). From Theorem III .3 it follows that there exists 
no ETOL system G, such that K --= L(G) and w ~-L(G)\L(Gcc). Hence w e dcor(K). 

(2) Let w bc a social word of K. Then  there exist wl ,  w2, w.~, ax and c~ 

as in the statement of Theorem III .3 such that wl, 1 = wiaxw2oqw3, w2,, " := 
wxo~2w2a,,w a and w2.1 = = u'l~2w~lwz are words in K. Let M = {w, w1.1, w2.,, w2.1}. 
Obviously there exists an ETOL system H such that L(H) .... K~,M. (This is seen 
as follows: let G be an ETOL system over a terminal alphabet A, generating K 
and let R denote the regular language A~\M; since ,Lf(ETOL) is closed under  
intersection with regular languages, see, e.g., Rozenberg and Salomaa, there 
exists an ETOL system generating K n R := K\M).  Let H --= (22, ~ ,  S, A) and 
let fI  == ( 2 , ~ ,  A ,A)  be the ETOL system constructed as follows: Ze] = 
Z' U {A, B, F}, where A, B, F ¢ Z', and 

' ~ =  U {Pu{A~F,B-'F,F~F}}wI'~n, 
PegP 
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where 

P~., ~: {A -~  S, A --.~ wzBw~.Bw:~ , B --+ ~ , B --+ .~} w {x ..... ,v ~ x e Z W (F}}. 

H e n c e I )  c = E T O L a n d i t i s e a s y t o s e e t h a t L ( 1 ) )  - L( l l )  u M := K and that w 

and w._,.z ¢ L(Hc~,). So w ¢ dcor(K).  
From (1) and (2) the theorem follows. | 

Remark. Notice that the above theorem implies that if K-c ~ ( E T O L )  and 

-/! ~ K, then :] c- dcor(K).  
We conclude this section with the following two applications of Theorem III .3.  

(:ORO:.LARV I II.2. I f  K e ~ ( E T O L ) ,  K C {a} ~ and the length set of  K does not 

contahz an arithmetic progression involving three or more elements then 

K ~ .L#(ED TOL). 

Pro@ Let G be an ETOL system such tha tL(G)  -- K.  I f  L(G)'.L(G,,) -/~ Z ,  

then Theorem I I I .3  implies that the length se~ of K contains an ari thmetic 
progression involving three elements. Hence L(G)~L(G~, , )= 2;. and K = 
L(G~) .  | 

COROLLAI~V [II.3. I f  K ~ 2"(ETOL)  and the length set of  K is thin (meaning 

that for  each n in the length set of  K there exist at nu)st two elements x, y of  K such 

thai ! x = [ Y i --  n) and it does not contain an arithmetic progression involving 

three or more elements then K e c~q(EDTOL). 

Proof. Similar to tile proof of Corollary I11.2. | 

IV. I-RF, STRICTEO E T O L  SvsTE~,ts 

Fxccpt  for tile fact that terminal symbols cannot be rewritten, an [P  system is 
an E D T O L  system such that in each table of it at most one symbol is rewritten 
into something else than the symbol itself. A very natural step at this stage is to 
consider the "nondeterminis t ic  version" of those systems: that is to consider 
the class of E T O L  systems such that in each table of a system from this class at 
most one symbol can be rewritten into something else than the symbol itself. 
The  difference is that, while as before, in a single derivationstep one chooses one 
symbol to rewrite, different occurrences of this symbol in a string can be 
rewritten, in different ways. 
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Those systems are termed 1-restricted ETOL systems and they will be considered 
nOW. 

D.EFINITION. A 1-restricted ETOL system, abbreviated ETOL[11 system, is an 
ETOL system G = (Z, 9 ,  S, A) such that for every P e ~ there exists a letter b 
in 27 such that if c 6 Z\{b} and c -+p ~ then ~ --= c. 

Hence in an ETOLhl system each table can rewrite at most one symbol into 
something else than the symbol itself. 

All notation and terminology concerning ETOL systems are carried over to 
ETOL[x ] systems. Also we term an ETOLtA ] system G -~ (Z, ~ ,  S, ,4) reduced if  
every nonterminal A from Z is reachable (that is S NG xoAxl for some 
x0, xl e Z ~) and productive (that is A *'G w for a word w e A+). We will consider 
reduced ETOLh] systems only. 

Before we prove our first technical result we need the following notion. 

DEFINITION. Let  G = (Z, ~ ,  S, A) be an ETOLhl system. 

(1) For  every element cr'e Z, the set of all productions e --~ ~t "'" e~ such 
that ~ ¢ alph(cq --" %), is denoted 17o ® . 

(2) For  every element ~ E 2,  the order of o, denoted p(~), is defined by 
p(e) --- 0 if ~ e A, and p(e) --= min~,~%{max{p(a) ] a occurs at the r ight-hand side 
of rr}} + 1 i f a 6 A .  

(3) For  every word w e Z  +, where w . - = - o l - ' - o n ,  with n >~ 1 and 
a 1 .... , (7, e Z, the order of w, denoted O(w), is defined by 

O(w) = max{o(o;) ] i --= 1,..., n}. 

Since we consider reduced ETOLh] systems only, O is a well defined function 
on ~'+. 

T h e  following technical result will be quite useful in proving the main 
theorem of this section. 

I,EMMA IV.1. Let G = ( Z , ~ ,  S, A) be an ETOLh] system. There exists a 
nonnegative integer I such that every word w e Z + derives a nonempty word in A * 
in no more than l steps. 

Proof. As a matter  of fact we will prove that:  every word zv e Z + derives a 
nonempty  word  in A* in no more than ( # Z ) .  p(w) steps. Since obviously 
p(w) ~ # Z  for every w e Z +, the lemma follows from the above claim. The  claim 
is proved by induction on p(w) as follows. 

(1) I fp(w)  : :  0 then the claim trivially holds. 

(2) Let  us assume that the claim holds for all w e Z ~ such that p(w) <~ k. 



PAIU~LLI.;I. REWRITING 147 

(3) Let w~L'~ bc such that p ( w ) =  k-~- I .  Clearly w contains an 
occurrence of a letter a such that p(c 0 = k -r  I. If we rewrite each letter ~r from 

alph(w) with p(~) ~ k -[- I using a production of the form ~r -÷ c~ where p(c~) = k 

then in lcss than # Z '  steps w derives a word w containing no letter of order 
higher than k. Thus,  by the induction hypothesis, in no more than #27 + 
# Z '  • k = # Z  • (k -!  l) steps w derives a nonempty terminal word in A*. 

Thus  the induction is completed and the claim holds. 

Consequently the lemma holds. II 

To state our result on the combinatorial structure of E'I'OL[I 1 languages we 

need the following two dcfinitions. 

DEFINITION. Let K be an infinite language over an alphabet Z' and let 

b e Z. We say that K is logarithmically b-clustered if there exists a positive integer 

C such that for every word w in K if b ~ alph(w), then w = wobw 1 ... bw, ,  
n ~ 1, Wo ,..., w~ ~ 27", b ~ alph(w o --" w,,) and [ wj [ ~ C logn for j == 0,..., n. 

We say that K is logarithmically clustered if there exists a letter b in 27, such that 
K is logarithmically b-clustered. 

DEFINITION. Let K be a language over an alphabet X. We say that K is 
pump%,enerated if there exist positive integers r, q and words x0, x 1 ,..., x,., 

u, w, z ~ Z'* with [ uz I ~/= A and i uz ] < q such that 

K :-= U Xo u i w z i x l  "'" UiWZiXr " 
i~O 

THEOREM IV.I. I f  K is an infinite ETOLh] language then either K contains 
an infinite logarithmically clustered language or K contains a pump-generated 
language. 

Proof. Let K be an infinite language generated by an ETOL[1 ] system 
G = ( ~ , ~ ,  S,A).  

(1) Since K is infinite there is a symbol (say A) in X such that A ~:c yA3 

for some 7, 3 e ~'*, where ) , 3 / -  A. Let ~ a  denote the set of all derivations D 
leading from A to a word of the form 7A3 with ~8 ~ 27- and such that at each step 
of D all occurrences of the letter under rewriting are rewritten by the same 
production. Since K is infinite.~A is not empty. Now let D o be a fixed element of 
~ such that no derivation in c~ a is shorter than D o . Let D O lead from A to 
~A[3 where ~/3 ~ 27 ~, and let v 0 ..... v~ be the productions used by D O (in this order). 
Together r ---- (v o ..... vk) forms the control sequence of D o and wc can consider r 
and each of v 0 ,..., v k also as a transformation from L ~* into X ~. Note that since 
D O was "tile shortest" element of ~ n ,  each occurrence rewritten in D O must  
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cont r ibute  at least one occurrence of A to emi l .  Consequent ly  if vj = A t ~ xj 
then  z(Ai) contains  an occurrence of A. Let  R == {A =: A0,  A 1 ,...,'A~:}. 

(2) Assume that  R A n a l p h ( a / ~ )  ¢ ~ .  Let  z e X *  be such that S * - ~ c z  

and A e alph(z);  since G is reduced such a z exists and moreover  we can choose a 
z which can be derived from S in no more  than  # S  steps. Let ~-(z) = z a and  

r2(z) = z ( z l ) = :  z2.  Since R A n  alph(c~f i )~- ;~ ,  z,, contains  at least two 
occurrences of A and  consequent ly  for each n >/ 1, r'~"(z) = z2, contains  at least 

2 n occurrences of A. Let  q be the maximal  distance between two occurrences 
from Ra in z (a distance between two occurrences c a , co from RA in z is the 

n u m b e r  of occurrences be tween c a and  c., in  z; if z conta ins  only one occurrence c 
f rom R~ then  the maximal  distance is de te rmined  by the largest of the two 

distances: from c to the leftmost  occurrence in z and from c to the r ightmost  

occurrence in z). Note  that  q is b o u n d e d  by (maxr(G))  .*~. 

T h e n  the maximal  distance be tween two occurrences from RA in z~ is b o u n d e d  
by 2 • 2(maxr(G))  ~; -i- q, and in general, for n >/ 1, the maximal  distance be tween 

two occurrences from R A  in  z~, is b o u n d e d  by  2n • 2(maxr(G))  x - '  q. Let  then  

z2. =: u o A u l A  "'" Au ,~  where u 0 ,..., um ~ Z *  and A ¢ alph(u o "- u,.); we know 
that  m > / 2  ". By l emma IV.1 we know that there exist a constant  l and a word 
wA ~ A *  such that  A derives Wn in G in less than  l steps; moreover  we can 

obviously assume that in rewri t ing A into wn an occurrence of A will never  be  

int roduced.  Le t  b be a fixed letter f rom alph(wn). Hence  z2~ =: u o A u l A  "" A u ~  

derives in  less than  1 steps the word 52~ - y o W n y a w a  "'" W A y , . ,  Y0 , '" ,  Y~ ~ 2 " ,  
which  derives in less than l steps the word k,~. = XoWaXaW A "'" WAX., ~ A + where 
the maximal  distance be tween two occurrences of b in z'2. is bounded  by  

(4n(maxr(G))  k + q) " (maxr(G))  2z - i  2(maxr(G))  2~ 

= 4n(maxr(G))  k " (maxr(G))  2~ + (maxr(G))  at ' ( q  -i- 2) ~- r ' n  :- s 

where r = 4(maxr(G))  k" (maxr(G))  'n and  s = (maxr(G)) 2 . '  (2 fi- (maxr(G))#x).  
Since m >~ 2", K :-: {z'2~ ]n  >~ 1} is an infinite logari thmically b-clustered 

language conta ined in K.  

(3) Assume that  R ~ alph(c~fl) := ~ .  Since G is reduced, there exists a 

word  z - -  y o A y l A  "" A y k  with  k >/ 1 and  A ~ a lph (y  o "" Yk) such that  S * a  z- 
By L e m m a  IV.1 there exists a derivat ion leading from z to a te rminal  word;  
fix one such derivat ion and change it in such a way that  each t ime A is in t roduced  
it is not  rewri t ten anymore .  I n  this way we get z N a  XoAXa A "'" A x ,  where 
p >~ l ,  A ¢ alph(xox a "'" x~) and  xo ..... x~ e A*. Now for n >~ 0, .~(A) = c~"Afl '~ 

and  so " r ' ( x o A x l A  "'" A x e )  = Xo~x'~Afi'~xaod~Afl . . . .  oPAf l '~x~.  By L e m m a  IV.1 
there exists a derivat ion leading from c~Afl to a te rminal  word. Le t  us  fix one such 
derivat ion and  let the control sequence of this derivat ion be such that it leads 
from A to a te rminal  word w, it leads from a to a te rminal  word u and  it leads 
from fl to a te rminal  word t; by L e m m a  IV.I  we can assume that  ut ~ A .  T h u s  
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for each n )~ 0, XoU"Wt'XlU"Wt' . . . .  u'*wt"x~ ~ K. Consequently K contains an 
infinite pump-generated language {XoW*WtnXlU~Wt .. . . .  unwt~x~ [ n ,>i 0}. 

(4) Since either RA (3 a]ph(,~/9) @ Z or R a ;3 alph(.~fl) ,,= ~ the theorem 
follows from (2) and (3). | 

As an example of applications of the above theorem we provide now two 
examples of languages not in ~,a(ETOLhj). 

EXAMPLE IV.I K = {a"-"b 2" : n ~ 0} ~ c.~.(ETOLhj). This is seen as follows. 
Since obviously the length set of K does not contain an infinite arithmetic 
progresssion, K does not contain a pump-generated language. However it is 
easily seen that K does not contain an infinite logarithmically clustered language. 

Hence Theorem IV.1 implies that K is not an ETOL[1 ] language. | 

EXAMPLE IV.2 K .... {a"b'c" I tl ~ 0} ¢ .S{)(ETOL[ll). This is seen as follows. 
First of all it is obvious that K does not contain an infinite logarithmically 
clustered language. Secondly it is easily seen that K does not contain a pump- 
generated language. 

Thus  Theorem IV.1 implies that K 6 5L~'(ETOLt~]). | 

It  is instructive to notice at this point that (a"b" [ n ~ 0} e.Lf(ETOLr~]). 

V. k-REsTRICTI-:D ETOL SYSTE.MS 

In the previous section we have seen that l-restricted ETOL systems arc weaker 
in their language generating power than ETOL systems in general. Hence it is 
natural to consider now k-restricted ETOL systems; that is ETOL systems which 
use only tables such that each of them has productions different from identity 
for no more than k symbols. The  question is whether or not with the growth of k 
one gets larger classes of languages generated by k-restricted ETOL systems. 
Answering this question is certainly important for understanding the way that 
ETOL systems work; it certainly sheds light on the nature of parallel rewriting 
in general. Intuitively it is clear that the considerable language generating power 
of ETOL systems comes from the fact that in rewriting a string x an ETOL system 
G can "force" different sorts of letters to behave synchronously. For example, if 
occurrences of a letter b in x are rewritten by elements of a set B then at the same 
time occurrences of a letter c must be rewritten by elements of a set C, occur- 
rences of a letter d must be rewritten by elements of a set D, etc. (Think, e.g., of 

2 n the simplest way to generate s,,2%2-t,1 -2 "" ak I n ) 0} where k is a fixed integer, 
k ~> 2). Hence, intuitively, it seems conceivable that if more letters can be 
forced to behave synchronously then the language generating power increases. 

In  this section we disprove this conjecture by showing a rather surprising fact 
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that there exists a k o such that ko-restricted ETOL systems generate all ETOL 
languages. 

Formally k-restricted ETOL systems are defined as follows. 

DErINITIOX. Let G == (Z, ~ ,  S, A) be an ETOL sytem and let k be a positive 
integer. 

(1) A table P ~ . ~  is said to be k-restricted if there exists a subset Z of Z 
such that # Z  ~< k and if b ~ ~ is in P for b ~ S \Z ,  then/3 - b. 

(2) G is said to be k-restricted if each table o f G is k-restricted; we also say 
that G is an ETOLt~:j system. 

First of all we have the following result. 

THEOREM V.1. For every ETOL system G there exists an equivalent ETOL 
system G with three tables and such that two tables of G are 2-restricted. 

Proof. Let G == (Z, 2~, S, A) be an ETOL system. It  is well known (Rozen- 
berg and Salomaa) that every ETOL language may be generated by an ETOL 
system containing two tables only. Hence we can assume that ~ --  (T t , 7",}. 
L e t f  and g be homomorphisms on Z, such tha t f (a )  --=- ¢a and g(a) -= $a, where 
¢, $ ~ Z. L e t F  be a symbol not in Z u {¢, $}. Let (7 =: (•, ~ ,  S, A) be an ETOL 
system, where ~'  = X t_) {¢, S, F} and ~ == {Px, Pz, Ps} with 

P 1 -  {a -,- a [ a 6 {¢, $, F}} w {a --.f(w) ~a a --.- w 6 7'1} U {a ~ g(w) [ a -,- w 6 7"~}, 

/°2 = {a -+  a I a c Z U (F}} U {¢ ~ A} U {$ --*F} 

and 

P3--{a--~a a~Zu~F}}u{¢-- -~F}w($-- -~A}.  

ClearlyL(G) = L ( G )  and P2 and Pz are 2-restricted. Hence the theorem holds. II 

We move now to investigate the influence of increasing the parameter k onto 
the language generating power of ETOLIk I systems. We start by observing the 
following. 

LEMMA V.1. ~f'(ETOLtll) C .~q'(ETOLI21). 

Proof. Let K = {aZnb o," [ n >~ 0}. By Example IV.I K ¢ f~(ETOL[I]) whereas 
K is generated by the ETOL[21 system 

c = ( { s ,  a, b}, ( { S  ~ ab, a - +  a, b ~ b}, { S  ~ S,  a - - ,  a s, b - *  b~}}, S ,  (a, b}). 

Thus  the result holds. | 
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In  the rest of this section we will demons t ra te  that the above result is not  

typical for the si tuation when  one transits f rom k to k -!-- 1. W e  start by defining a 

const ruct ion  which is very essential  for thc proof  of  the main result  of  this section. 

T h e  Carr ier  Cons t ruc t ion  

Let  n be a fixed posi t ive integer.  

(1) Le t  I." = -tart ,..., a,, , b 1 .... , b~,  .4, B, F} and let E' 1 ..... U, , ,  "1' 1 ..... "1",~ 

bc thc fol lowing sets of  product ions .  

t 4  = {.4 -~- B, B --+ F, a 1 --+ b l ,  b,  ---~ ~'} vo .[~. -+  v ~' ~ V',{& B, ,,~,/,~',.}, 

T~ -= {A . - .  F, B -+  A, a., ---,- F, t h .... aa} to {v ---* v i v z V",{A, B, a , , ,  bl} ) 

and for k . . . .  2,..., n 

Uz: -: {A. .... F,  ak ~ bk , a~. 1 - ~ F, b1~ ..... F} u ~.r,. _~ v v ~ V'.{,J, a~ , ak-1 , b/;}} 

and 

T~. ..... [B ---~F, at: ~F ,  b k - ~  a1; , bk_1 - ~ F }  to {v - ~  v v ~ V \ { B ,  al,., b k ,  bk_l}}. 

T h e n  the const ruct  C ~ (V;  U 1 .... , U, , ,  7" 1 .... , T,,; a t 

gener a l  carrier.  

T h e  reader  should note the following. I ,et  

• "" a n d  ) is called a 

P -= { X - ~  a t ' ' '  a n A }  u [v ~ v : v ~ V}, 

A :  = { a l , . . . , a  . . . .  4} and G .... (F ' , ,~ ,  S,A.,,) be the E T O L  system, where  

:~  - :  (~=1  ~"t: u ~)~=1 T~ to P.  T h e n  L ( G )  = {al ... a~A}  and the only " rea l  

way"  to dcrivc a I -"  a~A in G (that is wc consider  only those sequences  of  tables 

that  indeed rewri te  the current  word into someth ing  else than itself) is to start 

with P and then  repeat any n u m b e r  of  t imes  the cvcle U 1 -"  C:,~ T 1 -. ' T,, . 

(2) l , c t  C :-: (1/'; U 1 .... , U~, , 7' 1 ,..., T,~; a 1 "." a , ,A)  be a general carrier, 
t hen  the 0, l - e x t e n d e d  carrier  o f  C is a construct  ( V u { 0 ,  I}; UI°,..., U~ °, 

Ux t ..... l.',, ~, T~°,..., T,, °, TQ ..... T,).; a I ... a , ,dO)  where V c~ {0, 1} = ~v and 

/710 -= /'.7~ t o{0 - , - ( ) ,  1--~ 1}, U1 z : .  Uz LJ {0--~- I, I --'- I}, f o r 2  ---~k ~ n L:jfl - :  

Ul: to {0- -~- 0, 1 --~-F} and U f l - : =  Uk to {0 --,- F,  1 - +  1}, for 1 ~ k ~ n - - I  
"&o -_: :r,,. u {o  - , -  o, I --:.- i,-} a n d  :Z;?- = Tk  u ( 0  -->- P ,  l . . . .  1}, T~O .... 7",, u 
{ 0  ~0,  I - - + F }  and T n t =  T ,  u { 1 - ~ 0 , 0 - - ~ F } .  

THEOREM \:.2. . ~ ( E T O L r s l )  ~ / ( E T O L ) .  

P r o @  Obvious ly  :g?.(ETOLts 0 C C~(E7"OL). T o  prove the converse inclusion 
we proceed as follows. 

643/44.ra-4 
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Let K ~ C~(ETOL). Since .LP(ETOL) is closed under intersection with regular 
languages (Rozenberg and Salomaa), K = Ui~ x K i ,  s ) 1 where each Ki  is an 
ETOL language such that if x, y • K~ then alph(x) - alph(y). 

(1) Let us consider a fixed language K i ,  i ~ i <~ s, as above (say Ki = L). 
Let H = (27,~, S, A) be an E T O L  system generating L. It  is well known 
(Rozenberg and Salomaa) that we can assume that # ~  =: 2 (say ~ :-= {P0, PI}) 
and clearly we can assume that there exists a nonterminal (say N)  such that N 
occurs in every intermediate word in every successful derivation in H. 

Let t be a fixed terminal symbol occurring in every word of L(H). 
Let 22 =: {6 [ cr ~ 22} and 2.7 =_ {d [ ¢r a 27}, where 27, Z, ~' are pairwise disjoint. 
Let (V v {0, 1}; U~°,..., Un", Ux~,...,U, t, T,°,...,Tn °, /'1 t ..... T,,1; a t "" a nAO) 

be a {0, 1}-extended carrier, where 27 = {cq .... , ~r,} and V, {0, 1}, 27, 22, 2 are 
pairwise disjoint. 

Let ~ '  be the following set of tables over the alphabet 27' =-: 22 u Z w 2~" t) 
V u {0, 1} u {S'}, S '  being a new symbol. (In every of the tables given below 
we list only productions different from the identity productions.) 

(i) P. ,  = {S'--* & , ' "  a.AO}. 

(ii) F o r i : - :  1 .... ,n, 

and 

R ,  ° == Ui ° u {6~ --* ~ [ ~r~ -~  ~ ~ Po} u {t  --+ F}  

p o == TO W {~, - - ,  6,} td {t--->F}, 

(iii) 11 = {A - ~ A ,  B--+F, b x -+F,  b.--~F, t---~ t, I~'--+F}. 

(iv) For a l l S e A ,  8-.At, 

T ~ = { A - - ~ F ,  B - * F , N  .... F,g---* 8}. 

(v) F o r i =  1 ..... n, 

T i = - :  {A .... F, B , 'F, N - * F ,  a~.-÷ A}. 

(vi) T ° = {A - ~ F, B -*  F, N - >  F, O ~ A}. 

From the construction it follows that H '  = (Z", J,¢~', S',  A) is an 8-restricted 
ETOL system. That  L(H ' )  = L ( H )  is seen as follows. S '  =-/~, Saa "" a,,AO and 
then Rx ° or Rx I have to be chosen, which is equivalent with a choice of Po or 17x 
in H. The  choice of R1 ° (R11 respectively) implies that next R2°,..., Rn °, 
P1 o ..... Pn°(Re x ..... R,, 1, Pll, . . . ,  Pn I, respectively) have to be used in this order, 
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thus deriving Wa I ' "  a,,.q0 if S --~ w G 170 (S  ~ w G P1 rcspectively). This  way of 
simulating in H'  direct derivation steps from I t  is iterated. Hence every derivation 

S *=>1¢ a corresponds to S'  -:xl" ,gal " 'a , ,AO *n"  ~ a ~ -  a, .40 in such a way 
that when, in II, Po (P1 respectively) is used, then, in H ' ,  the cycle Ri ° ..... R,fl, 
Pl°,..., Pn ° (Rll , . . . ,  Rn i, Pl  1, .... Pn l, respectively) is used. Since iterating those 
cycles is the only way to get a derivation that does not introduce the rejection 
symbol F, we may conclude that S 7-.- n z if and only if S' ~-lt" 5a~ "" a,v'tO. 

The  only way to get a terminal word in l I '  from Za~ ".. a,,AO is to use tables of 
type (iii) through (vi) on the condition that z e A*; moreover the table 11 must  
be used first. 

Since 11 rewrites [ in t, i c alph(z) and t - ,  F is in every of the tables Rfl and 
Tfl f o r j  -= l,  2 and i - 1,..., n, those tables cannot be used anymore. 

Now using tables of type (iv) through (vi) we get the word z. 

(2) Now let us return to the language K. We have K - [,J~° : / < ; .  
Let each K i be generated by an 8-restricted ETOL system G~ constructed in 

the same way as H '  was constructed for L in (1). 
l ,e t  Gi = (Z  m, y(i~, SU), A~i~) for i : :  1,..., s. 

Let  H,  - :  (Z(i) , .~(,.) , S(,) , A(,)) result from Gi ,  1 ,-.'~ i <-~ s, by renaming all 
symbols in G i except for the special symbols .//, B, F and N from (I) in such a 
way that each symbol 8 from A ~i) in G,. becomes now 8(i ) in H~ and Z(o ~ Z(;) - = 
{A, B, F,  N)  for i ~c j .  

Finally let G --- (Za) t~ ... w Z(s ) u A w {S}, ~ ,  S, A) where 

and .~ consists of the following tables. 

(I) {S- -+S(o  } i s i n . R f o r i  := I ..... s. 

( II)  "J(x),.-.,.Y~(,) are in.°X. 

( I l l )  For  every 1 ~-;~ i ~[ s and every 8(~) ~A(i  ) {.4 - ~ F ,  B .~-F, A : - , - F  

8~i ) ~8}isin.'~. 

Clearly L(G) = K and G is an 8-restricted ETOL system. 
l tence  the theorem holds. | 

The  above result is, in our opinion, an instructive result on the nature of 
parallel rewriting. I t  says that a parallel rewriting process (in the scope model led 
by ETOL systems) requires a bounded amount of"coopera t ion"  between different 
symbols. That  is, very ETOL language can be generated hv an ET'OL system in 
which in each rewriting step it suffices to rewrite only a bounded number  of 
different symbols - -no t  more than 8 of them. It is an interesting open problem to 
find out the lower bound on the amount of coorperation needed to generate the 
whole class of ETOL languages. In Lemma IV.I it is shown that to set this 
parameter  equal to I is a real restriction, hence I is not the lower bound. 
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One should notice at this point that ETOL[k I systems form in a sense a 
generalization of ETOL systems of index k, see Rozenberg and Vermeir (1975). 
Hence it is instructive to compare the above result with the result about ETOL 

svstems of index k, which says that increasing the index h leads to an infinite 
hierarchy of classes of languages, see Rozenberg and Vermeir (1975). 

VI.  E T O L R P  SYS'rI.:M$ 

In this section we study the effect of combining the mechanism of Russian 
parallel rewriting (see, e.g., Levitina (1972) and Salomaa (1974)) with the 
mechanism of ETOL rewriting, in a fashion analogous to Section I I I  where we 
have combined Indian parallel and ETOL ways of rewriting. 

We start by recalling the notion of a Russian parallel grammar. 

DEFINITIOX. (1) A composed set of  productions over an alphabet 22 is an 
ordered pair P - (P~ , P2) such that both/)1 and/)2 are finite sets of productions 
of the form A -- ~ ~, A 6 Z, ~ • Z ~ (LH(P~) and LH(I',z) do not have to be disjoint). 
We refer to P1 as the bounded part of P, denoted bnd(P) ,  and to/)2 as the free 
part of P, denoted fr(P).  

(2) A Russian parallel grammar, abbreviated R P  grammar, is a construct 
G = (Z', P, S, A), where 27, P, S, A are as in the definition of a CF grammar (that 
is the total alphabet, the set of productions, the axiom and the terminal alphabet 
of G, respectively), except that P is a composed set of productions over Z',A. 

(3) Let x • Z and y c~ Z "'~. We say that x directly derives y in G, denoted 
x > ~ y  if x =-:xoAx 1 " ' ' A x e ,  where A • Z ~ A ,  n ~'- 1, x o ..... x , , c27  and 
A ~ alph(x 0 "" x,), and either y = xoAx 1 "" Axjax j , l ,4  "" Ax,~ for some j, 
0 = V j ~ n - -  1, and A ~ c ~ c f r ( P )  o r y  =x0:~x l ' ' ' ~ x ,  and A - -~a6bnd(P) .  

(4) The relation ~ a  is defined as the transitive and the reflexive closure of 
=- ,  . I f x  ~'c;Y, then we say that x derivesy in G. 

(5) The  language of G is defined byL(G)  = { x c  A* [ S ~ x}. 

Combining the Russian parallel rewriting mechanism with ETOL systems, 
we get the following construct. 

DF.FI.xrrIoN. (1) Let Z be an alphabet. A composed table over 22 is an ordered 
pair P = (P, ,/)2) such that both P1 and P2 are finite sets of productions of the 
form A ~ ~, A e X, o~ c_ Z* where LH(P1) u LH(P.,) ~ Z (but LII(PI)  and 
LH(P.,) do not have to be disjoint). We refer to I '  1 as the bounded component of  P, 

denoted bnd(P) ,  and to P., as the free component of  P, denoted fr(P).  

(2) A Russian parallel ETOL system, abbreviated ETOLRP system, is a 
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construct G --  (Z, 2/, S, A) where Z, , : ,  S, A are as in the definition of an ETOL 
system except that P is a finitc set of composed tables over Z. 

(3) Let x 6 Z -  and y c Z*. We say that x directly derives y hi G, denoted 
x ~'-aY, if x = x l " ' x , ~  with n ~: 1 and x 1 ..... x,~c:Z, y ..... )k . . . .  Y, with 
3h ..... y ,  e 22 ~, and there exist P e . / ,  P~ C b n d ( P ) ,  P., C f r (P )  with LH(P1) 
LH(P2) = Z such that x i --~ 3'i c- 1)1 u P,, for l :~ i :.~. n and whenever x,. 
) ' i c - -P1 ,x :  - - x j ,  I ~ i , j  ~ n  then) , i  -=35.  The  relation No, is defined as 
the transit ive and the reflexive closure of ->(;; if x ~ a Y  then we say that x 
derives y in G. 

(4) The  lan~,uage of G, denoted L(G), is defined by 

L(G) = {x c A "  : S ~. x}. 

Thus  in an ETOLRP system G a single rewriting step is performed as follows. 
Given a word x to be rewritten, one chooses first a composed table P, then one 
decides on letters in x all occurrences of which will be rewritten by productions 
in b n d ( P )  (hence in the " Ind ian  parallel way") and then the other (occurrences of) 
letters in x will be rewritten by productions from f r (P)  (hence in "normal  EOL 
fashion"). In  this way in the framework of ETOL systems, ETOLRP systems play 
the role that RP grammars play in the framework of C F  grammars. 

All notations and terminology concerning ETOL systems are carried over to 
ETOLRP systems. Thus,  e.g., an EOLRP system is an ETOLRP system (Z, .~, S, A) 
where # . ~  := I. Also when we deal with an ETOLRP system we will use the term 
"table"  to refer to a composed table, this however should not lead to confusion. 

Firs t  of all we demonstrate that augmenting ETOL systems with the Russian 
parallel mechanism yields a class of rewriting systems generating precisely the 
class of ETOL languages. 

THEOREM VI. l. i,a(ETOL) := c.~(ETOLRI'). 

Proof. (I) ~J'.(E'I'OL) C~(ETOLRP) .  This  is easily seen. Givcn an ETOL 
system G ~= (X, J ,  S, A) one constructs an ETOLRP system (_7 by taking for 
ever3: table P 6 ~ a composed table P to 67 where b n d ( P )  .... ;~ and f r (P )  =- P. 
Clearly L((.7) - L ( G ) .  

(2) To see that f~(ETOLRP)C cJ.(ETOL) we proceed as follows. Let  
G = (Z, :~ ,  S, A) be an ETOLRP system. For  each P c - , ~  let Z(P) be the set of 
all composed tables of the form (7'1, T2) where T 1 C bnd (P ) ,  7"~ is deterministic, 
T 2 = f r (P) \{A--+ :~ [ A --> a c= f r (P )  and A ~LH(TO} and LII('II) wLtf(7'.~) -= 
Z. Then  let (2: = (Z, ;'~, S, A) be the ETOLRP system where .~ - -  U p ~  Z(P). 

Clearly L(G) = L(G) but C has the pleasant feature that, for every table T of 
67, (LH(bnd(T) ) ,LH f r  T))} forms a partit ion of Z. Now let Z = { d l a  E Z}, 
~" ::.: {d I a c_- Z)  and ~ :..: (d [ a e Z}, where Z, Z,  )) and ~'  are pairwise disjoint. 
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Let FcZw2u)2w£2 and X ' - : Z u Z u 2 t J z ~ u { l s ' } .  Let T~-=- 
. #. ---( 

{ a - * ~ i i a e Z } w { i ~ - , d  a e Z } w  {~-- ,F]  ~ e Z  ~Zj. Tnn = { a - ~ - a l a e A }  W 
! #: ) 

{or --~- F cr ~ Z' \As, and for every 7' e ~ ,  R r -- {(i ---- t7 ] a .... a E b n d  7/')} W 
{d --+ & i a ~ ~ e fr(T))  w {e ~ F ,  a e X",(Z" u ~')). 

Finally let H .... (X',.~, S, A) be the ETOL system with ~ - { T ~ ,  Tfin} W 
Ur~ p R , .  Note that each seccessful derivation from G / is simulated in H in such 
a way that a single derivation step from (~ corresponding to an application of a 
table T is simulated by two derivation steps in IL The first step is an application 
of  the "coordination table" T~ which divides letters in a string into those to be 
rewritten, in G, by bnd(7 ' )  (they become elements of)_:.') and those to be rewritten, 
in C2, by f r (T)  (thy become elements of 2)). The  second step rewrites elements 
from 2 by productions corresponding to bnd(T)  and elemcnts from 2 by pro- 
ductions corresponding to fr(T).  Each successful derivation in H ends by an 
application of Tfi  n thus using the standard synchronization method. Hence 
clearly L(G) =- L(G) = L(H).  

(3) The theorem follows from (1) and (2). II 

However the situation is different on the level of EOL systems; that is, augmen- 
ting b;OL systems with the Russian parallel mechanism of rewriting yields a class 
of  systems generating a class of languages strictly containing ZF.(EOL). 

q'm:.OREM \:1.2. .C~(EOL) ~ c~°.(EOLRP). 

Proof. The inclusion co~.(EOL) C .~(EOLRP) is obvious. It is well known that 
L = {w ~ {a, b}* ' # , w  : :  2 ", n ~; 0} is not an EOL language (Ehrenfeucht and 
Rozenberg, 1974). However L is generated by the EOLRP system G =: ({S, a, b}, 
P, S, (a, b}), where bnd(P)  - {a ---, aa} and f r (P)  := {S -~ a, a -~ ab, a -~ ba, 
a-~-a ,  b ..... b}. Thus  the theorem holds. | 

Before we proceed further in our investigation of EOLRP languages, we notice 
the following about the class of R P  languages. 

In Salomaa (1974) the following is stated (Theorem 5). Assume that k~, 
i =: 1, 2,... is a sequence of natural numbers, such that the set {a ki ] i ~ 1} is 
not regular. Then  the language LI~ = {al~,b ~'~ ] i .>1 I} is not in C~(RP). Conse- 
quently Lk is not in .LP(IP). 

This theorem can be slightly generalized yielding the following result. 

THEOREM VI.3. Let r --= (k I , k~ ,...) and p = (11, l 2 .... ) be infinite sequences 
of  natural numbers, such that there exists a bijective function f from {x I x 
occurs in r} onto (x I x occurs in p} such that f ( k i )  =: I i for i = 1, 2 ..... I f  either 
{a t;~ ] i -~ 1} or {b ~i ] i >/ 1} is not regular, then Lk.t := {a1:~b t~ ] i >/ 1} is not in 
.~(RP) .  

Proof. Assumc the contrary. Let G =: (27, P, S, A) e R P  generate L~,~. 
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Since { a " - : i  ~ 1} or {b t, i i -~ l} is not  regular,  La:,~ is not  context  free. T h e n  

there  is at least one non te rmina l  A in G with  the proper t ies  

(i) S ~ z l A z , , A z  a for some z 1 , z2 ,  z.~ c L'* and 

(ii) there  exist x l ,  x . ~ c A " ,  x 1 =~ x z ,  such that  A "'-. x x and A * - x  2. 
( I f  such an A does not exist, then Ll:,z ~- cd(CF)).  

Cont inue  the rewr i t ing  from z l A z z A z  a e l imina t ing  all nontcrmina ls  except  A.  
Since we may  assume that  all non te rmina ls  generate  some terminal  word,  
z l A z 2 A z  a d c r i v e s y l A y 2 A  "" Ay , ,  in G, wi th  m ~ 3 a n d y j  c A* f o r j  = : 1,..., m. 

T h e n  bo th  of the words  y l x l y2x l  ".. x ly ,~ and 3qx,,y2x2 ."  X~ym are in Lk. z . 
Since m ~ 3, both  x x and x 2 are words  over a one let ter  a lphabet  and  

a lph(xj)  - -  alph(x2). 
Consequen t ly  x 1 : :  x2; a contradic t ion .  T h u s  the result  holds. | 

As a direct  appl ica t ion  of the above theorem we get the fol lowing example  of a 
language tha t  is not  Russ ian  parallel .  

EXAMPLE VI . ] .  L - -  {a'b'~"]n ~ 0 } ¢ ~ J ( R P ) .  

I t  is ins t ruct ive  at this  poin t  to contrast  T h e o r e m  VI.3 with Corol lary  I I .2  
about  I P  languages.  

We show now that  the language generat ing power  of E O L R P  systems is s t ronger  
than  the language genera t ing  power  of  e i ther  R P  grammars  or E O L I P  systems. 

THEORE.".I VI.4.  C~(Rl') ~ ~ ) (EOLRP) .  

Proof. Let  G - - ( 2 ,  P , S , A )  be a R P  system. Let  Z.~A ={A 1 .... ,A~} .  
T h e n  L "°) = {A ~i) [ A c Z~,A} for j := 1 .... , n and Z, L "~° and Z li) are pairwise 
d is jo int  i f i  ~ / ' ,  1 ~. i , j  ~ n. 

I , e t . / i  f o r j  :=: l , . . . ,  n be a h o m o m o r p h i s m  on Z', def ined by f~ (A)  == A (j-~1~, 
j =  1 .... , n - -  l ,  f , ( A )  = A  1. for Ac=Z~A and f j (a )  = : a  if a - c A ,  I . . < j ~ n .  

Let  P '  be a composed  table  of p roduc t ions  over  Z '  = A vo {.);=1 L'(J), def ined 
by 

b n d ( P ' ) - =  ~a(J) v*5 ~ f~(w) i A j  ~ w ~ b n d ( P ) ,  j .-- l , . . . ,  n} 

and 

f r ( P ' )  :== {A~ ~) -~f#(w)  ] Aj  --+ w ~ f r ( P ) ,  j = 1,..., n} 

va {A~ j) - ~ f j ( A i )  ] i ~ i, j ~ n} vo (a -~- a [ a c A}. 

I t  is easily seen that  H =- (Z", P ' ,  S ' ,  A), where  S '  = S a), is an E O L R P  system, 
which generates  L(G) .  

By example  V I . l  L == {a"b"" in  > /0}  is not  a R P  language.  However  it is 
easily seen that  L ~ .LP(EOL), and so by T h e o r e m  VI.2  L is an E O L R P  language.  

Hence  the theorem holds.  II 
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THEOREM VI.5. f~.(EOLIP) C C~(EOLRP). 

Proof. The inclusion follows immediately from the definitions of EOLIP 
systems and EOLRP systems. 

It is well known that c~'(CF)(~ .Z~(EDTOL) (Ehrenfcucht and Rozenberg, 
1977) and c~(CF)C..W(EOL) (see, e.g. Rozcnberg and Salomaa). Since 
.LP(EOLIP) C£g(EDTOL) (see Section 1II), it follows that c~W.(EOLIPC 
.Sf(EOLRP). | 

We move now to compare EOLRP systems with EDTOL systcms. Our first 
result tells us that one can generate very EOLRP language by an EOLRP system 
in which all successful "computations" are organized in a way that reminds 
"computations" in an ETOL system with two tables. 

DEFINITION'. An EOLRP system G --  (22, P, S, A) is said to be in strong 
disjoint normal form if LH(bnd(P) )nLH( f r (P) )  = ~ and each successful 
derivation D in G is such that at each step of D either only productions from 
bnd (P )  are used or only productions from f r (P)  are used and moreover applica- 
tions o f b n d ( P )  and of f r (P)  alternate in D. 

~II'IIEOREM VI.6. For every EOLRP system G there exists an equivalent EOLRP 
system H in strong disjoint normal form. 

Proof. Let G -  (ZT, P, S, A) be an EOLRP system. Let ~' =: {all a e 22}, 
2 =: {d [ a e Z'}, where )_J, • and 2 are pairwise disjoint, and let Z '  ~, 27 U 
2 L; Z'. Let P' be the composed table with bnd (P ' )  = {a ~ = ] a - ~  e e bnd(P)} u 
{a ~ d : a ~ LIt(fr(P))} and f r (P ' )  - -  {d ~ ~ '  a ~ ~ 6 fr(P)} tj  {d ~ a [ a e 22}. 

I,et H ~- (Z', P', S, A). 
Clearly L(H) - .L(G)  and H is in strong disjoint normal form. Hence the 

theorem holds. II 

It is instructive to compare EOLRP systems in strong disjoint normal form with 
ETOL systems. An EOLRP system in strong disjoint normal form can be con- 
sidered as an ETOL system with two tables one of which (the bounded part) is 
deterministic. It  is well known that (see, e.g., Rozenberg and Salomaa) every 
ETOL language can be generated by an ETOL system with two tables only, one 
of which is deterministic. However an EOLRP system in strong disjoint normal 
form is using its "tables" in a very special (restrictive) way. In  each successful 
derivation the application of the two tables must alternate. Although one can 
show that for every. ETOL language K one can find a positive integer k and an 
ETOL system G with two tables T 1 , T 2 (one of which is deterministic, T 1 say) 
such that G generates K and each successful derivation in G uses the tables 
Ta, 7"2 in the fashion TbT2T~2T 2 .'. TI,T2, where n >~ 1, 1 ~< l 1 ..... l ,  ~ k, 
it is not known whether or not one can set in the above k == 1 (we conjecture 
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that not). I f  one can set k --  I in ti~e above, then we would get that .Z)(EOI.RP) :--: 
.~(ETOL); otherwise we would get ~' (EOLRP)  ~ fLf(ETOL). 

Anyhow, wc are not able to prove or to disprove the equation ~°.(EOLRP) =: 
.~(ETOL); we conjecture that ~SF(EOLRP) C=C~.(ETOL). However we will 
demonstrate now that thc class .~ (EOLRP)  provides a quite clegant represcnta- 
tion of the class fLP(ETOL). 

'['HEOaEM VI.7. bbr eve~ 3, ETOL language K there exists an EOLRP language 
K, a regular language R and a u'eak identity ~, such that K = c~(K ~ R). 

Proof. Let K ~ cd'(ETOL). We can assume that there exists an ETOL systcm 
G -= (Z, ,~ ,  S, A) generating K such that .~ .... {T~, "/',} where T~ is a detcr- 
ministic tablc. Let  Z - {/7-' a ~ Z} and Z' = {d ' a c 22} where Z, ~ and 2~" are 
pairwise disjoint, 22' - -  2 2 U Z L ;  Z'L) {", ¢, 1, 2, S , £ , F ,  S'} where {*, ¢, 1, 2, 
S , £ , b ,  S'} n ( X u  2 2 u  Z') = ~ ,  and let A'  = A W Z ' u  {*, 1, 2, S,£}. Let  P b e  
a composed table such that its bounded component  and its free component are 
defined by: 

b n d ( P )  = {o -~  1S~SI I a ~ a ~ T~} 

f r (P )  = {~--~ 2S.~$2 I a - ~ ~ 6 T,,} w { S ' - ~  ¢S} u {¢ --~ per(X)¢} 
u {a--~ a ' a -~ A} k) {ii--~ d l a ~ X} w {a .-~ F I aE X} 
u {d- -> V i d e 2}  w {¢ - ,  £} u {£ ~ F} u {or --~ cr ! ~ ~ {*, S, 1,2, F}}, 

where p e r ( Z )  denotes the word . a  1 "-(7,~d2/71 .-" g , . . - . . ~ 7 ,  ... ar.~, which 
consists of all permutat ions of the elements of Z separated by ~.:. 

Let H = (£' ,  P, S', A') be an EOLRP system. 

(1) Note that if x is a word such that ¢S ~ ~--+ x and £ ¢ alph(x) then 
p e r ( Z )  is a subword of x, and so for all a, b e Z ,  where a :/: 6, both dgand  ggare  
subword of x. 2 u t  ab ~ - ,  1 $&$125/352 if and only if a - ~  a e T 1 and b ~ / 3  ~_ To . 
Thus  if S'  =-, ¢S _.>}e w e L ( H )  then w contains the subword 12 or 21 if and 
only if in one direct derivation step of such a derivation a rule of the form 
d - ~  1$~$1 and a rule of the form 5 - - ,  2S/~$2 have been applied. 

(2) Now let R be the regular language defined by R = ( 2 u  {,~, 1, 
2, $})*£(A U {1, 2, $})*~,{w ] either w contains the subword 12 or w contains the 
subword 21} and letq~ be a weak identity on A' defined by~(a )  =- a i r a  eZl and 
d,(a) = A if a eA'\,A. Then  (1) implies that L(G) .... ~(L(H) a R) and so t h e  

theorem holds. | 

VII.  THE RELATIONSHIP DIAGRAM 

The  aim of this section is to establish the relationship diagram between 
various classes of languages considered in this paper. 
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First of all to construct the relationship diagram we can use the following 
known results. 

LEMMA VII. I. (1) <.9~- (CFnn) C f£g(CF) (see, e.g., Salomaa, 1973), 

(2) £~°(CFfin) C CJ(lI') (see, e.g., Skyum, 1974), 

(3) .~(CF) and Zg(IP) are incomparable but not disjoint, (see, e.g., 
Skyum, 1974), 

(4) .~(CF) C cS°(RP) (see, e.g., Levitina, 1972), 

(5) 2/~(CF) ~ ~(EOL) (see, e.g., Rozenberg and Salomaa), 

(6) .£P(CF)(~.~(EDTOL) (see, e.g., Ehrenfcucht and Rozenberg, 1977), 

(7) c~(EDTOL)C .~(ETOL) (see, e.g., Rozenberg and Salomaa), 

(8) ~LP(EOL) and £g(EDTOL) arc incomparable but not disjoint (see, e.g., 
Rozenberg and Salomaa). 

Then in addition to results established in previous sections we also need the 
following results. 

L~:M~tA VII.2. ,£P(IP) C_ ~LP(RP). 

Proof. The inclusion c~(IP) C &P(RP) is an immediate consequence of the 
definitions of 1P grammars and RP grammars. 

That it is strict follows from Lemma VII.I points (3) and (4). II 

LEMMA VII.3. (1) fLP(IP) and C~(EOL) are incomparable but not disjoint. 

(2) C~(RP) and ~'(EOL) are incomparable but not disjoint. 

Proof. (1) It is known thatL = {¢wCu, ew I w e {0, 1}*} is not an EOL language 
(Rozenberg and Salomaa). Since the IP grammar ({S, C, ¢, 0, I}, {S ~ CCC, 
C---~ C0, C--+ Cl, C---~ ¢}, S, {¢, 0, 1}) generates L, it is clear that ~(IP)  is not 
contained in C~(EOL). The first part of the lemma follows then from Lemma 
VII.l  points (1), (2), (3) and (5). 

(2) From (1) and Lemma VII.2 it follows that Zg(RP) is not contained in 
C~(EOL). Since {a"b"cn[n ~ 0} is an EOL language and not a RPlanguage 
(Levitina, 1972) and c.~°(CFfin) C C~(EOL) n C~(RP) the second statement of the 
lemma holds. II 

LEMMA VII.4. (1) S~'(CF) C .£¢(ETOLI11). 

(2) ~(RP) g ~(EDTOLm). 
(3) ~(EDTOLm g ~(ETO&ll). 

Proof. (I) Clearly 

cJ(CF) C ~(ETOL[I]) and ~a e" [ n ~> 0} e c,£P(ETOLhl)\,£P(CF). 
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(2) and (3) F r o m  (1) and L e m m a  VII . I  points  (4) and (6) the second and 

th i rd  s ta tement  of this l emma follow immedia te ly .  ! 

l,~.;~t.~ih VII .5 .  (1) ~(IP)C.~2?(EDTOLlal). 
(2) £F~ (EOL) and .W. (EDTOLhl ) are incomparable but disjoint. 

Pro@ (1) and (2). Obvious .  ! 

L}:.x,k~t:~ VII .6.  c~c(EOL) and £g(ETOL[~ j) are incomparable but not disjoint. 

Proof. I t  is proved in Sect ion IX,: that  L -- {a""b"" ] n ~ 0} ~ 5f(ETOL[t]). 
I t  is easy to see that  L ~ C~(EOL), so £F.(EOL) is not  contained in .L~(ETOLhl ). 
On the o ther  hand  f rom the previous  result  it follows tha t  ,L~(ETOL[~]) is not  

conta ined  in £¢,(EOL). 
I Ience  the resul t  holds. ! 

LE~X.~rA \ : I I .7 .  c.gq~(RP) C CS(ETOLI~I). 

Pro@ l . e t  G = ( X , P , S , A )  be a RP grammar .  Let  P be given by  the 
fol lowing tables. 

I f  A --~ w ~ b n d ( P )  then ~ contains a table {A --~ zo} U {a --~- a ~: a ~ X',{A}} 
and if A ~ w e f r ( P )  then :fi contains  a table {A - >  w, A ~ A} k9 {a ->  a ', a 
2;,{A}}. ( 3  consists of these tables only.) Clearly the ETOLIx I system (27, :~, S, A) 
generates  L( G). ! 

I.E.~,IMA VII .8 .  
but not disjoint. 

(1) 
(2) 
(3) 
(4) 

l'roof . 
and (6) the  previous  l emma  and Examples  IV.1 and VI . l .  

The follo=,ing pairs of families of languages are incomparable 

(~. (RP) and 5#. (EOLIP), 
:g..'( RP ) and ~q'( ED TOL ), 
.U(ETOL[~]) and L( EOLlt'), 
L,q(ETOL[~]) and 5¢(EDTOL). 

Thi s  follows fl-om CS(EOLIP) C ~:(EDTOL), L e m m a  VII .  l points  (4) 
! 

!,E,X.I.~I:, VII .9 .  .LP(EDTOL[1]) ~ .~:(EOLIP). 

Proof. Le t  G = (27,~,  S, A) be an EDTOLh] system, where,~A = {T 1 ..... Tn}. 
I ,e t  2Y~) = {a o) i a ~ Z'} f o r j  = i ..... n where  )2, L'") and 27cJ) are pairwise disjoint  
i f / @ j ,  1 ~ i , j  ~ n. L e t f j  , j  = 1 ..... n be a h o m o m o r p h i s m  on 27, defined by  

f j (a )  : ~ a ~j~-I~ if 1 -~ j ~ n - -  l a n d r e ( a )  = am.  Le t  P be the fol lowing table  of 
n produc t ions  over  A u O)na Z°} u [F}, where F ~ 2.." k) [,):=j Z'~J): 

P = {a I~ - ~ f j ( w )  i a - ~  w ~ Tj , j  - -  1 ..... n} w {a" '  - > L ( a )  i a ~ 2 , j  = 1 .... , n} 
w {a~J~-+ a ,  a c- A , j  = 1 ..... n} ~ {a - -~F  l a c- A u tl~}~. 
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Let H = (~", P, S',  A) be the EOLIP system, where Z' ~: A u U~'=t ~"J~ w {F} 
and S '  = S m e 22 ~1). 

Clearly H generates L(G). 
Since {aZ"b z" ', n i!.'-'- 0} ~ £f(EOLIP)',,coC~(EDTOL[fl) the lemma holds. | 

LEMMA VII.IO. !/?(ETOL[1]) C/f(EOLRP).  

Proof. The proof of the inclusion is analogous to the proof of the previous 
theorem, except that now we set 

f r ( P )  = {a~J) --* f i ( w )  ] a -  ,- w e T~ , j  =: 1 . . . . .  n )  a n d  

b n d ( P )  = {a  'j) --+f~(a) i a e Z ' , j  := 1 . . . . .  n )  w {a'J)--~- a I a e A , j  == 1, . . . ,  n} 

u (a  - 7  F ', a e zJ v { F ) ) .  

Since {a2"b'Z"in >/0}-c_-c~f(EOLRP)~,..Lf(ETOLhl) the lemma holds. ] 

Finally, combining all those comparison results we have, we get the following 
theorem. 

'l'~r~.om~M VII.1. The following diagram holds: 

L (EOL) 

[(ETOL) 

_ ~  L(EDTOL) 

L(EOLIP) 

........ L(EDTOL[I] ) 

L.(CF)~~/~// L(Ip) 

L(eFfi n) 

(If  there is a directed chain of edges in the diagram leading from a class X to a 
class Y then X C Y, an undirected chain means that we do not know whether the 
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inclusion is proper.  A dot ted  directed edge leading f rom a class .¥  to a class Y 

means  that  we do not  know whether  X C  Y, but  we do know that  Y ~ X .  

Otherwise  X and Y are incomparab le  but  not  disjoint.) 
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