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Abstract

The aim of this paper is to present a new class of B-spline-like functions with tension properties. The main feature of these basis
functions consists in possessing C3 or even C4 continuity and, at the same time, being endowed by shape parameters that can be
easily handled. Therefore they constitute a useful tool for the construction of curves satisfying some prescribed shape constraints.
The construction is based on a geometric approach which uses parametric curves with piecewise quintic components.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In several applications it is required to construct smooth functions or parametric curves, interpolating or
approximating a given set of data, and reproducing their salient geometric properties. Classical methods based on
piecewise polynomials, often do not produce interpolants or approximants satisfying the required constraints. Thus
a great deal of research has focused on the study of new function spaces for building constrained curves, see for
instance [5].

The methods proposed so far rarely produce curves with (analytic) smoothness order greater than two, [4], even
if curves with at least C3 continuity are often preferable in some industrial applications as in the design of robot
trajectories.

Therefore, our recent studies have concentrated attention on the construction of a B-spline-like basis such that
any element of the basis is of class Cr with r ≥ 3 and possesses tension parameters to control its shape. The first
results are presented in [9]. The basis functions have been obtained by a simple geometric construction and have
shape parameters with a clear geometric interpretation, which is crucial for their automatic selection. The main tool
for the proposed construction is given by the parametric techniques which consist in regarding the basis functions
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as special parametric curves having piecewise quintic components. The resulting basis in [9] is of class C3 and has
minimal (four intervals) support; this last property which entails a good localization, has the drawback of being able
to model properly only planar curves. Indeed, by construction any curve obtained as the linear combination of such
basis elements, with coefficients in R3, is of course of class C3 but has zero torsion at the knots. This problem can be
solved by considering basis functions with larger support.

The aim of this paper is to present a new one-parameter family of C4 B-spline-like functions with 6 intervals
support possessing shape parameters: as far as we know function spaces with such a high order of smoothness
have never been proposed before in the context of constrained interpolation/approximation. These new functions
are achieved by a two-step procedure.

First, we construct a two-parameter family of C3 B-spline-like functions with 6 intervals support, obtained again
by the parametric approach considering planar curves with piecewise quintic components and geometric continuity of
order three. The goal is reached by coupling the parametric approach with an extension of the geometric construction
presented in [3] where C2

∩ FC3 piecewise quintic curves were obtained. The resulting basis functions overcome the
drawbacks of those in [9] and can be profitably used, in practical applications.

The second step consists in extending our construction to the fourth degree of smoothness by means of the
geometric continuity of order four in the parametric setting. This final result is based on the detailed description
of geometric B-splines given in [2].

We remark that the basis functions in [4] have a three interval support, are of class C3, allow construction of
space curves with non-necessarily zero torsion (see also [3]), and closely imitate the structure of quintic B-splines
with double knots. In particular, any three consecutive intervals have a pair of basis functions associated to it. As
a consequence, the dimension of the spanned space doubles the number of the intervals (plus a given number of
“boundary conditions”). On the other hand, in some practical problems (mainly interpolation) the data extension
matches the number of knots: so it is preferable to deal with spaces of the same dimension of the knot sequence (but
for a given number of “boundary conditions”). This is exactly achieved by the basis elements proposed in [9] (in such
a sense the support of these basis functions is minimal) and by the spaces of functions that we construct in the present
paper.

The remainder of this paper is organized into 4 sections. In the next one we review the basic ideas of the parametric
techniques showing how analytic continuity can be obtained through geometric continuity. In Section 3, we present
the construction of B-spline-like functions of class C3 and analyse their behavior as the shape parameters tend to limit
values, while in Section 4 we extend the geometric construction in order to obtain parametric curves with geometric
continuity of order four and therefore functions of class C4. Section 5 is devoted to some applications and concluding
remarks.

To prevent some possible ambiguities, we emphasize that in the paper, parametric curves are addressed from two
different points of view. First the B-spline-like basis functions are constructed as special parametric curves. Then, as a
possible application, these functions are used in the context of constrained approximation of parametric space curves
(see Section 5).

2. Parametric approach

We construct our basis functions as particular planar parametric curves, according to the so-called parametric
techniques, introduced some years ago in the context of tension methods for shape preserving interpolation,
see for instance [7,8]. To help in the comprehension of the, sometimes heavy, notation, we mention that
throughout the paper bold characters denote vectors, while italic characters and Greek letters are used for scalar
quantities.

In the parametric approach, the graph of the function x → s(x) is seen as the support of a particular planar
parametric curve. Let us consider the curve:

C(t) := (X (t), Y (t)) , t ∈ [t0, t1]. (1)

If we assume that
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X t (t) :=
d
dt

X (t) > 0, (2)

then the first component is invertible and it is well-defined t = t (x), where x = X (t), therefore the image of the curve
(1) can be seen as the graph of a function

s(x) := Y (t (x)), x ∈ [x0, x1], x0 := X (t0), x1 := X (t1). (3)

If the curve C(t) has C l components, then the function s is of class C l as well and its derivatives with respect to the x
variable can be expressed in terms of the derivatives of the two components of C with respect to t .

Dealing with piecewise functions, let us consider, in the parametric setting, two adjacent planar parametric curves
of class C l , C+(t) := (X+(t), Y +(t)) with t ∈ [t0, t1], and C−(u) := (X−(u), Y −(u)), with u ∈ [u0, u1], where
C+(t0) = C−(u1) =: P.

Following [6], we say that C+ and C− have Geometric Continuity of order r ≤ l (GCr for short) at P if there exists
an algebraic curve which meets both curves at P with contact of order r , that is if there exists a reparameterization
u = u(t), of C−, with u(t0) = u1, such that

dpC+(t)

dpt |t=t0
=

dpC−(u(t))

dpt |u(t0)
, p = 0, . . . , r. (4)

Hence, setting

wp :=
dpu(t)

dpt |t=t0
, w1 > 0, p ≥ 1,

C+,C− are GC4 continuous at P if and only if
C+
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We refer to [6], Chapter 5, for further comments on the geometric meaning of GCr continuity and on its connections
with the maybe better known Frénet continuity (FC).

Let us assume now X+
t (t) > 0 and X−

u (u) > 0. According to (3) we may define

s+(x) := Y +(t (x)), s−(x) := Y −(u(x)).

From (4), by elementary computations, it turns out that s+(x) and s−(x) join with continuous derivatives up to order
r at x0 := X+(t0) = X−(u1) if and only if C+,C− are GCr continuous at P. Summarizing, we can obtain a function
of class Cr considering a collection of adjacent segments of GCr planar curves satisfying (2).

3. C3 B-spline-like basis

Our aim is to build up a B-spline-like basis with C3 continuity. Each basis function is regarded as a particular
parametric planar curve whose components are piecewise quintic polynomials with GC3 continuity. If we express the
curve segments in the Bézier form we may derive conditions on the Bézier control points which assure the fulfillment
of GC3 continuity. Let us put, for t ∈ [ti , ti+1],

Ci (t) :=

n∑
j=0

bi, j b
(n)
j (τ ), τ :=

t − ti
hi

, hi := ti+1 − ti ,

where bi, j ∈ R2 are the Bézier control points of Ci and b(n)j , j = 0, . . . , n, denote the Bernstein polynomials
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Fig. 1. Geometric construction of a C1, FC3 join for Bézier curves of degree n.

of degree n. It is well-known (see [2], [6]) that Ci−1 and Ci meet with C1 and FC3 continuities if and only
if the last 4 Bézier control points of Ci−1 and the first 4 Bézier control points of Ci satisfy the relations
determined by the geometric construction shown in Fig. 1, where γi , δi , εi , are free design parameters. If γi =

δi = εi = 1 this construction reduces to the geometric construction of classical C3 analytic continuity.
FC3 continuity is less restrictive than GC3, [6], and indeed in the last case the design parameters are no
longer independent. For symmetry reasons we may set δi = εi , and considering quintic curves (i.e. n = 5),
with some computation we obtain, from (5), that Ci−1 and Ci meet with GC3 continuity at bi−1,5 = bi,0
if and only if

δi = εi =
γi (γi + 1)
2(2 − γi )

, γi 6= 2. (6)

If γi = 1 then (6) gives δi = εi = 1, that is we recover C3 continuity.

Given now the values hi > 0, i = −5, . . . , N + 4, and the increasing vector

ξ−5 < ξ−4 < · · · < ξi < · · · < ξN+5, (7)

we put t−5 := 0, ti+1 := ti + hi , i = −5, · · · , N + 4 and

D(i)i := (ξi , 1) , D(k)i := (ξi , 0) , if i 6= k. (8)

Supposing also to have assigned the two following sets of parameters

Γ := {0 < γi < 2, i = −5, . . . , N + 5}, Λ := {0 < λi , i = −5, . . . , N + 5}, (9)

for k = −2, . . . , N + 2, we can consider the piecewise quintic Bézier curve

C(k)i (t;Γ ,Λ) := (X i (t;Γ ,Λ), Y (k)i (t;Γ ,Λ)), t ∈ [ti , ti+1], i = −3, . . . , N + 2,

whose Bézier control points, b(k)i, j , j = 0, . . . , 5, are determined according to the geometric construction given in
Fig. 2, with εi , δi as in (6), see also [3]. In more detail
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Fig. 2. Geometric construction of the Bézier coefficients of C(k)i for k = i , see (10)–(18). For graphical convenience the superscript k is omitted.

F(−,k)i :=
(λi−1(hi−2 + hi−3)+ hi−1)D

(k)
i + λi (hi + hi+1)D

(k)
i−1

hi−1 + λi−1(hi−2 + hi−3)+ λi (hi + hi+1)
, (10)

F(+,k)i :=
(λi+1(hi+1 + hi+2)+ hi )D

(k)
i + λi (hi−2 + hi−1)D

(k)
i+1

hi + λi+1(hi+1 + hi+2)+ λi (hi−2 + hi−1)
, (11)

E(−,k)i :=
hi−2F(+,k)i + (hi−1 + hi + hi+1)F

(−,k)
i

hi−2 + hi−1 + hi + hi+1
, (12)

E(+,k)i :=
(hi−2 + hi−1 + hi )F

(+,k)
i + hi+1F(−,k)i

hi−2 + hi−1 + hi + hi+1
, (13)

S(k)i :=
hi−1E(+,k)i + hi E

(−,k)
i

hi−1 + hi
, (14)

b(k)i−1,3 :=
δi hi E

(+,k)
i−1 + (δi−1hi−2 + hi−1)E

(−,k)
i

δi hi + δi−1hi−2 + hi−1
, (15)

b(k)i,2 :=
(δi+1hi+1 + hi )E

(+,k)
i + δi hi−1E(−,k)i+1

δi+1hi+1 + hi + δi hi−1
, (16)

b(k)i−1,4 :=
γi hi b

(k)
i−1,3 + hi−1S(k)i

γi hi + hi−1
, b(k)i,1 :=

γi hi−1b(k)i,2 + hi S
(k)
i

γi hi−1 + hi
, (17)

b(k)i−1,5 := b(k)i,0 :=
hi b

(k)
i−1,4 + hi−1b(k)i,1

hi + hi−1
. (18)
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Since hi > 0, from (9) and (6) the points b(k)i, j are convex combinations of D(k)i . Then from (7), the x components of

b(k)i, j form a strictly increasing sequence and X i (t;Γ ,Λ) is strictly increasing as well, and therefore invertible. Setting

x−3 := X−3(t−3;Γ ,Λ), xN+3 := X N+2(tN+3;Γ ,Λ)
xi := X i (ti ;Γ ,Λ) = X i−1(ti ;Γ ,Λ), i = −2, . . . , N + 2,

(19)

for k = −2, . . . , N + 2 we can then define, according to (3),

B(k)(x;Γ ,Λ) := Y (k)i (t (x);Γ ,Λ), x ∈ [xi , xi+1], i = −3, . . . , N + 2. (20)

By construction, for every fixed k, the curve segments C(k)i , i = −2, . . . , N + 2 define a C1 piecewise quintic GC3

curve. From the above considerations and from the properties of Bézier–Bernstein representation, observing also that
the ordinates of b(k)i, j are convex combinations of those of D(k)i , we have the following proposition (see Fig. 3).

Proposition 1. The functions B(k)(.;Γ ,Λ), k = −2, . . . , N + 2, defined in (20) are non-negative and of class C3.
Moreover,

B(k)(x;Γ ,Λ) = 0, x 6∈ (xk−3, xk+3),

N+2∑
k=−2

B(k)(x;Γ ,Λ) = 1, x ∈ [x0, xN ]. �

In the case λi = γi = 1, ∀ i , setting

ξi :=
1
5
(ti−2 + ti−1 + ti + ti+1 + ti+2), (21)

by using a computer algebra system, we have that ξi plays the role of the classical Greville abscissa, see [1],1 that is
X i (t) = t, t ∈ [ti , ti+1] so that the B(k) in (20) are C3 piecewise quintic functions.

The free parameters λi , γi act as tension parameters and allow us to control the shape of B(k). Indeed, from the
construction (see Fig. 2), it is not difficult to see that, as λi , γi approach 0 then the Bézier control points

b(k)i−1,3, b(k)i−1,4, b(k)i−1,5,b(k)i,0 , b(k)i,1 ,b(k)i,2 → D(k)i .

Thus if λi , γi tend to zero, i = k − 3, . . . , k + 3, the function B(k)(.;Γ ,Λ) approaches the polygonal line, P(k), with
vertices D(k)j , j = −5, . . . , N + 5. Summarizing, the parameters in Λ and Γ can be seen as local shape parameters

stretching the graph of the function B(k)(.;Γ ,Λ) from a quintic C3 spline function (in the case λi = γi = 1, ∀ i) to
the polygonal line P(k) and then they can be used to control the shape of the functions B(k)(.;Γ ,Λ). Moreover, such
parameters inherit a clear geometric interpretation from the geometric construction depicted in Fig. 2. These facts
make the functions in (20) a useful tool in constrained interpolation/approximation, both in the functional and in the
parametric setting, whenever a high smoothness is required.

We will refer to the functions B(k)(.;Γ ,Λ), k = −2, . . . , N + 2, as six interval supported, C3 tensioned quintic
parametric B-splines, with knots (19), associated to the sets of shape parameters Γ and Λ.We remark that, in contrast
with the basis functions provided in [9], if used to construct spatial curves, the functions B(k) produce curves whose
torsion does not necessarily vanish at the knots.

4. C4 B-spline-like basis

In this Section we briefly outline how the above procedure can be extended to obtain a B-spline-like basis with C4

continuity. Using the parametric approach, C4 continuity can be achieved defining each basis function as a parametric
planar piecewise polynomial curve with GC4 continuity, see (5).

1 (21) is the classical expression for Greville abscissas for quintic B-splines but the result is not obvious in this context because we are dealing
with a proper subspace.
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Fig. 3. Six interval supported C3 tensioned quintic parametric B-spline with the corresponding polygonP(k) (top) and its third derivative (bottom).
Knot sequence: [0 1 2.5 4 4.5 6 7]. Left: λi = γi = 1, ∀ i. Right: λi = .1, γi = .9, ∀ i.

Fig. 4. Geometric construction of a C1, FC4 join for Bézier curves of degree n.

We recall, see [2,6], that two polynomial curve segments Ci−1 and Ci meet with C1 and FC4 continuity if and only
if the last 5 Bézier control points of Ci−1 and the first 5 Bézier control points of Ci satisfy the relations determined
by the geometric construction shown in Fig. 4, where γi , δi , εi , ρi , σi , τi are free design parameters and if they are all
equal to 1 lead to the geometric construction of classical C4 analytic continuity.

Dealing with the more restrictive GC4 continuity these design parameters are no longer independent.
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For the sake of simplicity we shall study a one-parameter family of basis functions, setting for instance γi , i =

−5, . . . , N +5 as the free parameter. For symmetry reason we may set δi = εi , ρi = τi , and considering quintic curves
(i.e. n = 5), with some computation we obtain from (5) that Ci−1 and Ci meet with GC4 continuity at bi−1,5 = bi,0
if and only if εi , δi are as in (6) and

ρi = τi =
γi (γ

2
i + 2γi + 4)

7γ 2
i − 40γi + 40

, σi =
(γi + 1)(γ 2

i + 2γi + 4)γ 2
i

11γ 4
i + 23γ 3

i − 108γ 2
i + 56γi + 32

. (22)

If γi = 1 then (6) and (22) give δi = εi = ρi = τi = σi = 1, that is C4 continuity. With a construction similar to that
used for building GC3 curves, assuming to be given the values hi > 0, i = −5, . . . , N +4, and the strictly increasing
vector (7), taking the points D(k)i as in (8), we can consider, for an assigned set of parameters Γ := {0 < γi ≤ 1, i =

−5, . . . , N + 5}, the piecewise quintic Bézier curve C
(k)
i (t;Γ ) := (X i (t;Γ ), Y

(k)
i (t;Γ )), t ∈ [ti , ti+1], whose Bézier

control points are determined, according to Section 3 in [2], by (14)–(18), with

F(−,k)i :=
(ψi−1hi−2 + ωi−1hi−3 + hi−1)D

(k)
i + (ψ̄i−1hi + ω̄i−1hi+1)D

(k)
i−1

ψi−1hi−2 + ωi hi−3 + hi−1 + ψ̄i−1hi + ω̄i−1hi+1
,

F(+,k)i :=
(ψ̄i hi+1 + ω̄i hi+2 + hi )D

(k)
i + (ωi hi−2 + ψi hi−1)D

(k)
i+1

hi + ψ̄i hi+1 + ω̄i hi+2 + ωi hi−2 + ψi hi−1
,

E(−,k)i :=
θi hi−2F(+,k)i + (δi (hi−1 + hi )+ θ̄i hi+1)F

(−,k)
i

θi hi−2 + δi (hi−1 + hi )+ θ̄i hi+1
,

E(+,k)i :=
(θi hi−2 + δi (hi−1 + hi ))F

(+,k)
i + θ̄i hi+1F(−,k)i

θi hi−2 + δi (hi−1 + hi )+ θ̄i hi+1
,

where δi , εi , ρi , σi , τi are as in (6) and (22) and the remaining auxiliary parameters, provided in [2], are

θi :=
ρi−1δi hi−1(δi−1hi−2 + hi−1 + δi hi )

(δi−1hi−2 + hi−1)(hi−1 + γi hi )− ρi−1δi hi−2hi
, (23)

θ̄i :=
δiρi+1hi (δi hi−1 + hi + δi+1hi+1)

(hi−1γi + hi )(hiδi+1hi+1)− ρi+1δi hi−1hi+1
, (24)

λ̄i :=
ρiδi+1hi (ρi hi−1 + hi + γi+1hi+1)

(δi hi−1 + hi )(hi + γi+1hi+1)− ρiδi+1hi−1hi+1
, (25)

φi :=
δi−1ρi hi−1(γi−1hi−2 + hi−1 + ρi hi )

(γi−1hi−2 + hi−1)(hi−1 + δi hi )− ρiδi−1hi−2hi
, (26)

λi :=
σiθi hi−1(φi hi−2 + ρi hi−1 + σi hi )

(φi hi−2 + ρi hi−1)(δi hi−1 + δi hi )− σiθi hi−2hi
, (27)

φ̄i :=
σi θ̄i hi (σi hi−1 + ρi hi + λ̄i hi+1)

(δi hi−1 + δi hi )(λ̄i hi+1 + hiρi )− σi θ̄i hi−1hi+1
, (28)

ψi :=
σi hi (δi hi−1 + δi hi + θ̄i hi+1)

(δi hi−1 + δi hi )(λ̄i hi+1 + ρi hi )− σi θ̄i hi−1hi+1
, (29)

ψ̄i−1 :=
σi hi−1(θi hi−2 + δi hi−1 + δi hi )

(φi hi−2 + ρi hi−1)(δi hi−1 + δi hi )− σiθi hi−2hi
, (30)

ω̄i−1 :=
φ̄i (λi hi−2 + σi hi−1 + ρi hi + λ̄i hi+1)(hi−1 + ψ̄i−1hi )

(φi hi−2 + ρi hi−1 + σi hi )(σi hi−1 + hiρi + λ̄i hi+1)− λi φ̄i hi−2hi+1
, (31)

ωi :=
λi (φi hi−2 + ρi hi−1 + σi hi + φ̄i hi+1)(ψi hi−1 + hi )

(φi hi−2 + ρi hi−1 + σi hi )(σi hi−1 + ρi hi + λ̄i hi+1)− λi φ̄i hi−2hi+1
. (32)
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Fig. 5. C4 tensioned quintic parametric B-spline with the corresponding polygon P(k) (top) and its fourth derivative (bottom). Knot sequence:
[0 1 2.5 4 4.5 6 7]. Left: γi = 1, ∀ i. Right: γi = .75, ∀ i.

The previous construction, borrowed from [2], produces in general FC4 curves. In our case, since γi , δi , εi , ρi , σi , τi

satisfy (6) and (22), the curves C
(k)

are GC4 continuous. Thus, whenever the parameters γi , δi , εi , ρi , σi , τi and the

auxiliary ones in (23)–(32) are non-negative,2 the curves C
(k)

allow us to define, according to (3), functions, B
(k)

, of
class C4. In particular, if γi = 1, the previous construction reduces to classical geometric construction of C4 quintic
B-splines, hence the choice (21) produces, as for the GC3 construction, X i (t) = t, t ∈ [ti , ti+1].

As for the C3 case, due to the properties of the points D(k)i , these functions form a non-negative partition of unity
and are supported in the intervals [x̄k−3, x̄k+3] (see also Proposition 1), where

x̄−3 := X−3(t−3;Γ ), x̄N+3 := X N+2(tN+3;Γ ),

x̄i := X i (ti ;Γ ) = X i−1(ti ;Γ ), i = −2, . . . , N + 2.
(33)

Thus the functions B
(k)

possess all the classical properties of quintic B-splines and we will refer to them as C4

tensioned quintic parametric B-splines, with knots (33), associated to the set of shape parameters Γ . Also in this case
the free parameters γi act as local tension parameters. Indeed, if they tend to zero the same occurs for δi , εi , ρi , σi , τi ,

2 This is clearly the case at least for γi close to 1 or γi close to 0 (from a simple asymptotic analysis we have that all the above coefficients
approach 0+ as γi tend to 0). We refer to [2], Section 3.2, for more details on this point.
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see (6) and (22), and for the auxiliary parameters in (23)–(32) as well. Thus the function B
(k)
(.;Γ ) approaches the

polygonal line, P(k), with vertices D(k)j , j = −5, . . . , N + 5, see Fig. 5.

5. Numerical examples

Before presenting a graphical example some remarks concerning the knot sequences (19) and (33) are in order.
For the sake of brevity, let us discuss the case of C4 basis functions, similar arguments apply to the C3 case.

The knot sequence (33) is determined by the sequence of “parametric knots” {ti }, by the “abscissas of the de Boor
control points”, (7), and by the set of shape parameters, Γ , in a highly non-linear way. Of course, when the shape
parameters are all equal to 1 (setting ξi as in (21)) the knots x i agree with the ti ’s, while they approach the ξi ’s as the
shape parameters tend to zero (see end of Section 4), but in the general case it is almost impossible to derive precise a
priori information on their location more stringently than from those arising from the convex combination. In practical
application, provided that no extreme reduction of the shape parameters is necessary, we can proceed as follows. First,
independently select both the sequences {ti }, and {xk} according to a given suitable parameterization (usually the two
sequences coincide). Then, determine the sequence (7) so that, for the current values of the shape parameters, the
relations (33) hold. Denoting by b(k,y)i,0 the y component of b(k)i,0 , this is equivalent to solving the linear system, with a

pentadiagonal matrix3∑
k

ξkb(k,y)i,0 = x i . (34)

Now, we briefly illustrate the performances of the spaces of functions spanned by the B-spline-like bases introduced
in Sections 3 and 4 by means of a classical test in constrained spatial curve approximation: the so-called perturbed
“bean data”, [4]. Considering the chord length parameterization for the data, we assume that a sequence of 9 knots,
T , is provided in the input, [4]. We want to construct a C3 (C4) curve approximating the data and reproducing their
shape, that is reproducing the behavior of the piecewise linear, L∗, with knots T , which is the best least squares
approximation to the data, see the left side of Fig. 6. In particular, the sign of the torsion of the approximating curve
is required to be consistent with the sign of the discrete torsion of L∗ [4,5].

The required curve can be obtained as a proper C3 reparameterization of a GC3 piecewise quintic curve considering
a combination of the basis functions (20) associated to the knots T (the sequence (7) has been constructed according to
the procedure outlined above). Determining the coefficients via best least squares approximation, if λk = γk = 1, ∀ k,
we obtain a C3 piecewise quintic curve (thicker line in Fig. 6, top left) whose torsion does not satisfy the required
constraints in the fourth and in the last interval (see the thicker line in Fig. 6, top center). The six interval supported
C3 tensioned quintic parametric B-spline curve obtained with λk = .4, γk = .9,∀ k, (thicker line in Fig. 6, middle
left) fulfills the requirement on the sign of its torsion still retaining the C3 continuity (thicker line in Fig. 6, middle
center). The thinner lines in Fig. 6, top and middle, refer to the four interval supported C3 tensioned quintic parametric
B-spline curve, obtained with the same procedure and the same shape parameters by the construction presented in [9]
whose torsion always vanishes at the knots. The results obtained by the same procedure considering a C4 curve
constructed according to Section 4 are depicted in Fig. 6 bottom. The thinner lines refer to the case γk = 1, ∀k, while
the thicker ones to the choice γk = .8, ∀k. The right column in Fig. 6 depicts the various porcupine plots of the
torsion, [4].

We have described the construction and salient properties of C3 and C4 B-spline-like functions with shape
parameters. The construction is based on two main mathematical tools: the parametric techniques and the
characterization of smoothness conditions between two segments through control points.

Both the C3 and the C4 B-spline-like functions are described in terms of a geometric construction, they have a
similar structure and a similar behavior. The C4 functions depend only on a single shape parameter (which is usually
considered a positive fact because the related algorithms are simpler). On the other hand, in the construction of the

3 The sequence (7) has to be increasing. This is surely the case if the shape parameters are not too far from 1 but, for extremely odd choices of
the shape parameters and of the sequence {ti }, (34) can produce non-increasing sequences. In such a case some heuristic modification of the initial
choice of {xk } has to be applied.
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Fig. 6. Spatial curve approximation. Top and center: C3. Bottom: C4. The horizontal segments in the middle column indicate the sign of the
discrete torsion of L∗.

knot sequence (33) as described at the beginning of this Section, the difficulties discussed in the footnote 3 can (rarely)
occur, while this was not the case in all the (numerous) numerical experiments that we performed for the C3 case.

Due to page limitation, we cannot discuss in detail the practical choice of the shape parameters, but we emphasize
that the geometric construction and the Bézier representation greatly simplify this task. In fact constraints on the shape
of the obtained functions or curves can be easily translated into (sufficient) constraints on the (possibly subdivided)
related Bézier control polygon, which can be manipulated in a much easier way, see also [9] for further comments.
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