Two classes of sequences derived from single cycle T-functions

Wei You, Wen-Feng Qi, Hong Xu

Department of Applied Mathematics, Zhengzhou Information Science and Technology Institute, P.O. Box 1001-745, 450002, Zhengzhou, PR China

Abstract

Based on single cycle T-functions over \(\mathbb{Z}/(2^n)\), two classes of pseudorandom sequences are proposed in this paper. The periods of all their coordinate sequences can reach the maximal value \(2^n\), and the distribution properties and linear complexities of the sequences are also studied. For the first class of sequences, it is shown that the less significant half of the coordinate sequences are uniformly distributed over \(\mathbb{F}_2\) and the exact linear complexities are also derived. For the second class of sequences, lower bounds on the linear complexities of their coordinate sequences are given.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

T-functions are a class of cryptographic primitives introduced by Klimov and Shamir [1–5], which are well suited for the design of stream ciphers. TSC [6,7], ABC [8] and Mir [9], the eSTREAM candidates, all use T-functions as driving blocks. They are efficient because of using operations available in modern processors, including logical operations (XOR, AND, OR, NOT) and algebraic operations.

MSC:
11T71
94A60
68P25

Keywords:
Single cycle T-functions
Coordinate sequences
Period
Distribution property
Linear complexity

This work was supported by the NSF of China under Grant Nos. 61070178 and 61100200.

* Corresponding author.

E-mail addresses: youwei1102@163.com (W. You), wenfeng.qi@263.net (W.-F. Qi), xuhong0504@163.com (H. Xu).

1071-5797/$ – see front matter © 2012 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ffa.2012.05.003
(addition, multiplication, subtraction, negation) modulo 2^n, and their security mainly relies on the mixture of logical and algebraic operations.

The research performed so far focuses on single cycle T-functions, which can generate sequences of period 2^n (see Definition 2.2). However, the period of the jth coordinate sequence is equal to 2^{j+1}, which is far from 2^n except for the $(n-1)$th coordinate sequence. Therefore, these less significant bits should be discarded or masked in applications. In [10], Mitra and Sarkar suggested to use conjugate permutations to improve the intermixing of the most and least significant bits, and in [11], Kolokotronis presented a class of linear permutations, by which the periods of all the coordinate sequences generated by the conjugate of single cycle T-functions can reach the maximal value.

In this paper, by rearranging the coordinate sequences generated by two single cycle T-functions, we propose another two classes of sequences such that the periods of all the coordinate sequences can reach the maximal value 2^n. For an n-bit integer $x = (x_{n-1}, x_{n-2}, \ldots, x_0)$, let $\sigma(x) = (x_2, \ldots, x_{n-1}, x_0, x_2, \ldots, x_{n-2})$ and $\tau(x) = (x_{n-1}, \ldots, x_0, x_2, \ldots, x_{n-2})$ be two bit-permutations of x. Let $x = (x_0, x_1, \ldots)$ and $y = (y_0, y_1, \ldots)$ be two sequences over $\mathbb{Z}/(2^n)$ generated by single cycle \bar{T}-functions $f(x)$ with initial state x_0 and $g(y)$ with initial state y_0, respectively. The first class of sequences is defined by $z = (z_0, z_1, \ldots)$, where $z_i = \sigma(x_i) + \tau(y_i) \pmod{2^n}$, $i \geq 0$. We also show that the less significant half of the coordinate sequences of z are uniformly distributed over \mathbb{F}_2, and derive their exact linear complexities. To obtain sequences with good pseudorandom properties, we further propose the second class of sequences defined by $u = (u_0, u_1, \ldots)$, where $u_i = (\sigma(x_i) + \tau(y_i)) \pmod{2^n} + (\lfloor \sigma(x_i) + \tau(y_i) \rfloor)/2^j$, $i \geq 0$. Lower bounds on the linear complexities of their coordinate sequences are given. Although we focus on single word T-functions in this paper, similar conclusions can also be drawn for multiword T-functions.

2. Preliminaries

Let $\mathbb{F}_2 = \{0, 1\}$ be the finite field of two elements. A word $x \in \mathbb{F}_2^n$ is a vector $x = (x_{n-1}, x_{n-2}, \ldots, x_0)$ of length n, where x_j denotes its jth bit and x_{n-1} is the most significant bit of x. Every word x can also be associated with an integer $x = \sum_{j=0}^{n-1} x_j 2^j$ in the residue class ring $\mathbb{Z}/(2^n)$ of integers modulo 2^n.

In the following, we always use the binary form $(x_{n-1}, x_{n-2}, \ldots, x_0)$ to represent an n-bit integer $x = \sum_{j=0}^{n-1} x_j 2^j$ over $\mathbb{Z}/(2^n)$. To avoid confusion with the usual sum, we denote the sum over \mathbb{F}_2 by \oplus.

Definition 2.1. (See [1].) A function $f: \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n$ with $f(x) = y$, is said to be a triangular function (or T-function in short) if the jth bit of the output y_j only depends on the lower input bits x_0, x_1, \ldots, x_j, for $0 \leq j \leq n - 1$.

Remark 2.1. Since an n-bit integer $x = \sum_{j=0}^{n-1} x_j 2^j$ over $\mathbb{Z}/(2^n)$ can also be written as $(x_{n-1}, x_{n-2}, \ldots, x_0)$ in its binary form, $f(x)$ can also be taken as a T-function from $\mathbb{Z}/(2^n)$ to $\mathbb{Z}/(2^n)$.

Definition 2.2. (See [1].) Let $f: \mathbb{Z}/(2^n) \rightarrow \mathbb{Z}/(2^n)$ be a T-function. Given initial state $x_0 = (x_{0,n-1}, x_{0,n-2}, \ldots, x_0, 0) \in \mathbb{Z}/(2^n)$, the transition from a state x_i to a state $x_{i+1} = f(x_i)$ for all $i \geq 0$. We denote by $x = (x_0, x_1, \ldots)$ the state sequence. If x has period $\text{per}(x) = 2^n$, then $f(x)$ is called a single cycle T-function and the sequence x is said to be generated by $f(x)$ and initial state x_0.

Remark 2.2. It is clear that such single cycle T-function $f(x)$ actually defines a special kind of permutation over $\mathbb{Z}/(2^n)$.

Definition 2.3. (See [2].) Let $x = (x_0, x_1, \ldots)$ be a sequence over $\mathbb{Z}/(2^n)$, where $x_i = (x_{i,n-1}, x_{i,n-2}, \ldots, x_{i,0})$ for all $i \geq 0$. Then for $0 \leq j \leq n - 1$, the sequence $x_j = (x_0, j, x_1, j, \ldots)$ is called the jth coordinate sequence of x.

Lemma 2.1. (See [2].) Let $x = (x_0, x_1, \ldots)$ be a sequence generated by a single cycle T-function $f(x)$ and an initial state x_0. Then for $0 \leq j \leq n - 1$, the jth coordinate sequence of x has period $\text{per}(x_j) = 2^{j+1}$. Moreover,
for \(0 \leq j \leq n - 1\), the second half of one period of the sequence \(x_j\) is the bitwise complement of the first half, i.e., \(x_{i+2^j} = x_i \oplus 1\) for \(i \geq 0\).

From Lemma 2.1, we can easily derive the following result.

Property 2.1. Let \(x = (x_0, x_1, \ldots)\) be a sequence generated by a single cycle T-function \(f(x)\) and an initial state \(x_0\). Then for any fixed integer \(k, 0 \leq k \leq n\), we have

\[
x_{i,j} \oplus x_{i+2^n-j} = \begin{cases} 0, & \text{if } 0 \leq j < n - k, \\ 1, & \text{if } j = n - k, \\ * & \text{if } n - k < j < n,
\end{cases}
\]

where \(*\) denotes an arbitrary value depending on \(i\) for each \(n - k < j < n\).

Lemma 2.2. (See [11]) Let \(x = (x_0, x_1, \ldots)\) be a sequence generated by a single cycle T-function \(f(x)\) and an initial state \(x_0\). Then for \(0 \leq j \leq n - 1\), the \(j\)th coordinate sequence of \(x\) has linear complexity \(LC(x_j) = 2^j + 1\), and the minimal polynomial of the sequence \(x_j\) is

\[
h_j(x) = (1 \oplus x)^{2^j+1}.
\]

Let \(a = (a_{n-1}, a_{n-2}, \ldots, a_0)\) and \(b = (b_{n-1}, b_{n-2}, \ldots, b_0)\) be two \(n\)-bit integers. Then the sum \(a + b\) is an \((n + 1)\)-bit integer whose binary form is given in the following lemma.

Lemma 2.3. (See [12]) Let \(a = (a_{n-1}, a_{n-2}, \ldots, a_0)\), \(b = (b_{n-1}, b_{n-2}, \ldots, b_0)\), and \(a + b = (c_n, c_{n-1}, \ldots, c_0)\). Then

\[
c_0 = a_0 \oplus b_0,
\]

\[
c_j = a_j \oplus b_j \oplus \left(\bigoplus_{t=0}^{j-1} a_t b_t \prod_{s=t+1}^{j-1} (a_s \oplus b_s) \right), \quad 1 \leq j \leq n - 1,
\]

\[
c_n = \bigoplus_{t=0}^{n-1} a_t b_t \prod_{s=t+1}^{n-1} (a_s \oplus b_s),
\]

where we define \(\prod_{s=j}^{j+1} (a_s \oplus b_s) = 1\).

In the following, we always suppose that \(n\) is an even integer, \(f(x)\) and \(g(y)\) are T-functions over \(\mathbb{Z}/(2^n)\), and \(\prod_{i \in \varnothing} 1 = 1\) for the empty set \(\varnothing\).

3. The first class of sequences

Let \(x = (x_{n-1}, x_{n-2}, \ldots, x_0)\) be an \(n\)-bit integer, and \(\sigma(x) = (x_{2^n-1}, x_{2^n-2}, \ldots, x_0)\) and \(\tau(x) = (x_{2^n-1}, x_{2^n-2}, \ldots, x_{n-1})\) be two bit-permutations of \(x\). Equivalently, we may write \(x = \sum_{j=0}^{n-1} x_j 2^j\) and

\[
\sigma(x) = \left(\sum_{j=0}^{n-1} x_j 2^{\frac{n}{2}-j-1} \right) + \left(\sum_{j=0}^{n-1} x_j 2^j \right), \quad \tau(x) = \left(\sum_{j=0}^{n-1} x_j 2^n j \right) + \left(\sum_{j=0}^{n-1} x_j 2^n j \right).
\]
Definition 3.1. Let \(x = (x_0, x_1, \ldots) \) be a sequence generated by the single cycle T-function \(f(x) \) and the initial state \(x_0 \), and \(y = (y_0, y_1, \ldots) \) be a sequence generated by the single cycle T-function \(g(y) \) and the initial state \(y_0 \). For all \(i \geq 0 \), set \(z_i = \sigma(x_i) + \tau(y_i) \pmod{2^n} \). Then the sequence \(z = (z_0, z_1, \ldots) \) is said to be generated by 4-tuple \((f(x), g(y), x_0, y_0)\).

It is clear that the sequence \(z \) is obtained by simply mixing the most and least significant coordinate sequences generated by two single cycle T-functions. In order to further study their cryptographic properties, we first present three lemmas.

Lemma 3.1. Let \(z = (z_0, z_1, \ldots) \) be a sequence generated by 4-tuple \((f(x), g(y), x_0, y_0)\). Then for all \(i \geq 0 \), we have

\[
\begin{align*}
z_{i,0} &= x_{i,0} \oplus y_{i,n-1}. \quad (1a) \\
z_{i,j} &= x_{i,j} \oplus y_{i,n-j-1} + \left(\bigoplus_{t=0}^{j-1} x_{i,t} y_{i,n-t-1} \prod_{s=t+1}^{j-1} (x_{i,s} \oplus y_{i,n-s-1}) \right), \quad 1 \leq j \leq \frac{n}{2} - 1. \quad (1b) \\
z_{i,n/2} &= x_{i,n-1} \oplus y_{i,0} + \left(\bigoplus_{t=0}^{n/2-1} x_{i,t} y_{i,n-t-1} \prod_{s=t+1}^{n/2-1} (x_{i,s} \oplus y_{i,n-s-1}) \right). \quad (1c) \\
z_{i,j} &= x_{i,3n/2-j-1} \oplus y_{i,j-3n/2} + \left(\bigoplus_{t=0}^{j-n/2-1} x_{i,t} y_{i,n-t-1} \prod_{s=t+1}^{j-n/2-1} (x_{i,s} \oplus y_{i,n-s-1}) \prod_{s=3n/2-j}^{n-1} (x_{i,s} \oplus y_{i,n-s-1}) \right) \\
&\quad \oplus \left(\bigoplus_{t=0}^{j-n/2-1} x_{i,n-t-1} y_{i,t} \prod_{s=t+1}^{j-n/2-1} (x_{i,n-s-1} \oplus y_{i,s}) \right), \quad \frac{n}{2} + 1 \leq j \leq n - 1. \quad (1d)
\end{align*}
\]

Proof. According to the definition of the sequence \(z \), the result can be obtained easily from Lemma 2.3. \(\square \)

Similarly to (1d), let

\[
\begin{align*}
z_{i,n} &= x_{i,n/2-1} \oplus y_{i,n/2} + \left(\bigoplus_{t=0}^{n/2-1} x_{i,t} y_{i,n-t-1} \prod_{s=t+1}^{n/2-1} (x_{i,s} \oplus y_{i,n-s-1}) \right) \\
&\quad \oplus \left(\bigoplus_{t=0}^{n/2-1} x_{i,n-t-1} y_{i,t} \prod_{s=t+1}^{n/2-1} (x_{i,n-s-1} \oplus y_{i,s}) \right). \quad (1e)
\end{align*}
\]

Then the following lemma holds.

Lemma 3.2. Let \(z_{i,j} \) be defined as above, where \(0 \leq j \leq n \). Then for all \(i \geq 0 \), we have

\[
\begin{align*}
z_{i,0} \oplus z_{i+2^n-1,0} &= 1. \quad (2a) \\
z_{i,j} \oplus z_{i+2^n-1,j} &= x_{i,0} \prod_{s=1}^{j-1} (x_{i,s} \oplus y_{i,n-s-1}), \quad 1 \leq j \leq \frac{n}{2} - 1. \quad (2b)
\end{align*}
\]
\[z_{i, \frac{n}{2}} \oplus z_{i+2^{n-1}, \frac{n}{2}} = 1 \oplus x_{i, 0} \prod_{s=1}^{\frac{n}{2}-1} (x_{i,s} \oplus y_{i,n-s-1}). \]
(2c)

\[z_{i,j} \oplus z_{i+2^{n-1}, j} = \xi_i \cdot \prod_{s=\frac{3n}{2}-j}^{n-2} (x_{i,s} \oplus y_{i,n-s-1}), \quad \frac{n}{2} + 1 \leq j \leq n, \]
(2d)

where

\[\xi_i = x_{i, \frac{n}{2}-1} y_{i, \frac{n}{2}} \oplus y_{i, 0} \oplus (x_{i, \frac{n}{2}-1} \oplus y_{i, \frac{n}{2}}) \cdot \zeta_i, \]

\[\zeta_i = x_{i, 0} (x_{i,n-1} \oplus y_{i,n-1} \oplus y_{i,0} \oplus 1) \prod_{s=1}^{\frac{n}{2}-2} (x_{i,s} \oplus y_{i,n-s-1}) \]

\[\oplus \left(\bigoplus_{t=1}^{\frac{n}{2}-2} x_{i,t} y_{i,n-t-1} \prod_{s=t+1}^{\frac{n}{2}-1} (x_{i,s} \oplus y_{i,n-s-1}) \right). \]

Proof. The proof of Lemma 3.2 is presented in Appendix A for completeness. \(\square \)

Lemma 3.3. Let \(x = (x_0, x_1, \ldots) \) be a sequence generated by the single cycle T-function \(f(x) \) and the initial state \(x_0 \), and \(y = (y_0, y_1, \ldots) \) be a sequence generated by the single cycle T-function \(g(y) \) and the initial state \(y_0 \). Then there exists nonnegative integer \(i^* \) such that the following equalities hold (for the three equalities, \(i^* \) is not necessarily the same).

\[x_{i^*, 0} \prod_{s=1}^{\frac{n}{2}-1} (x_{i^*, s} \oplus y_{i^*, n-s-1}) = 1. \]
(3a)

\[(x_{i^*, \frac{n}{2}-1} \oplus y_{i^*, 0}) (x_{i^*, \frac{n}{2}-1} \oplus y_{i^*, \frac{n}{2}} \oplus 1) (x_{i^*, 0} \oplus y_{i^*, n-1}) \prod_{s=\frac{n}{2}+1}^{n-2} (x_{i^*, s} \oplus y_{i^*, n-s-1}) = 1. \]
(3b)

\[x_{i^*, 0} (y_{i^*, \frac{n}{2}-1} \oplus 1) (x_{i^*, \frac{n}{2}} \oplus 1) (x_{i^*, 0} \oplus y_{i^*, n-1}) \prod_{s=1}^{\frac{n}{2}-2} (x_{i^*, s} \oplus y_{i^*, n-s-1}) = 1. \]
(3c)

Proof. The proof of Lemma 3.3 is presented in Appendix B for completeness. \(\square \)

3.1. The periods of the coordinate sequences of \(z \)

Theorem 3.1. Let \(z = (z_0, z_1, \ldots) \) be a sequence generated by 4-tuple \((f(x), g(y), x_0, y_0)\). Then for all \(0 \leq j \leq n-1 \), the \(j \)th coordinate sequence of \(z \) has period \(\text{per}(z_j) = 2^n \).

Proof. From the definition of the sequence \(z \) we know that \(\text{per}(z) \mid 2^n \), and so it suffices to show that for each \(0 \leq j \leq n-1 \), there exists nonnegative integer \(i^* \) such that \(z_{i^*, j} \oplus z_{i^*+2^{n-1}, j} = 1 \) (\(i^* \) is not necessarily the same for all \(j \), we use it uniformly for convenience).

(i) If \(j = 0 \), by Lemma 3.2(2a) we know there exists integer \(i^* \geq 0 \) such that

\[z_{i^*, 0} \oplus z_{i^*+2^{n-1}, 0} = 1. \]
(ii) If \(1 \leq j \leq \frac{n}{2} - 1 \), by Lemma 3.3(3a) we know there exists integer \(i^* \geq 0 \) such that
\[
\frac{n}{2} - 1
\prod_{s=1}^{j-1} (x_{i^*,s} \oplus y_{i^*,n-s-1}) = 1.
\]

Then from Lemma 3.2(2b) we have
\[
Z_{i^*,j} \oplus Z_{i^*,2^{n-1}+j} = x_{i^*,0} \prod_{s=1}^{j-1} (x_{i^*,s} \oplus y_{i^*,n-s-1}) = 1.
\]

(iii) If \(j = \frac{n}{2} \), since \(\text{per}(x_0) = 2 \), there exists integer \(i^* \geq 0 \) such that \(x_{i^*,0} = 0 \). Thus from Lemma 3.2(2c) we have
\[
Z_{i^*,\frac{n}{2}} \oplus Z_{i^*,2^{n-1}+\frac{n}{2}} = 1 \oplus x_{i^*,0} \prod_{s=1}^{\frac{n}{2}-1} (x_{i^*,s} \oplus y_{i^*,n-s-1}) = 1.
\]

(iv) If \(\frac{n}{2} + 1 \leq j \leq n - 1 \), by Lemma 3.3(3b) we know there exists integer \(i^* \geq 0 \) such that
\[
(x_{i^*,\frac{n}{2}+1} \oplus y_{i^*,0}) (x_{i^*,\frac{n}{2}+1} \oplus y_{i^*,\frac{n}{2}} \oplus 1) (x_{i^*,0} \oplus y_{i^*,n-1}) \prod_{s=\frac{n}{2}+1}^{n-2} (x_{i^*,s} \oplus y_{i^*,n-s-1}) = 1.
\]

That is,
\[
x_{i^*,\frac{n}{2}-1} = y_{i^*,\frac{n}{2}} = y_{i^*,0} \oplus 1 \quad \text{and} \quad \prod_{s=\frac{n}{2}+1}^{n-2} (x_{i^*,s} \oplus y_{i^*,n-s-1}) = 1.
\]

Thus
\[
\prod_{s=\frac{3n}{2}-j}^{n-2} (x_{i^*,s} \oplus y_{i^*,n-s-1}) = 1, \quad \frac{n}{2} + 1 \leq j \leq n - 1.
\]

Therefore, it follows from Lemma 3.2(2d) that
\[
Z_{i^*,j} \oplus Z_{i^*,2^{n-1}+j} = \xi_{i^*} \prod_{s=\frac{3n}{2}-j}^{n-2} (x_{i^*,s} \oplus y_{i^*,n-s-1}) = \xi_{i^*} = x_{i^*,\frac{n}{2}-1} y_{i^*,\frac{n}{2}} \oplus y_{i^*,0}
\]
\[
= x_{i^*,\frac{n}{2}-1} \oplus y_{i^*,0} = 1.
\]

This completes the proof. \(\Box \)
3.2. The distribution properties of the coordinate sequences of \mathbf{z}

Theorem 3.2. Let $\mathbf{z} = (z_0, z_1, \ldots)$ be a sequence generated by 4-tuple $(f(x), g(y), x_0, y_0)$. Then for $0 \leq j \leq \frac{n}{2} - 1$, the number of 0's and the number of 1's occurring in one period of the jth coordinate sequence of \mathbf{z} are equal.

Proof. For an n-bit integer $w = (w_{n-1}, w_{n-2}, \ldots, w_0)$, let

$$h(w) = (w_n, w_{n+1}, \ldots, w_{n-1}) \quad \text{and} \quad l(w) = (w_{n-1}, w_{n-2}, \ldots, w_0).$$

Then from the definition of the sequence \mathbf{z} we have

$$l(z_i) = l(x_i) + h(y_i) \mod 2^2, \quad i \geq 0.$$

On one hand, since the sequence $\mathbf{x} = \{x_i\}_{i \geq 0}$ is generated by the single cycle T-function $f(x)$ and the initial state x_0, by Property 2.1 we know that

$$l(x_i) = l(x_{i+2^n/2}), \quad i \geq 0. \tag{4a}$$

On the other hand, since the sequence $\mathbf{y} = \{y_i\}_{i \geq 0}$ is generated by the single cycle T-function $g(y)$ and the initial state y_0, we can claim that for any integers $i \geq 0$ and $k \in \{1, 2, \ldots, 2^n/2 - 1\}$, we have

$$h(y_i) \neq h(y_{i+k \cdot 2^n/2}). \tag{4b}$$

Otherwise, suppose there exist nonnegative integers i^* and k^*, where $k^* \in \{1, 2, \ldots, 2^n/2 - 1\}$, such that $h(y_{i^*}) = h(y_{i^*+k^* \cdot 2^n/2})$. Then from (4a) we know $l(y_{i^*}) = l(y_{i^*+k^* \cdot 2^n/2})$. Hence $y_{i^*} = y_{i^*+k^* \cdot 2^n/2}$. This is in contradiction with the condition that the period of \mathbf{y} is $\text{per}(\mathbf{y}) = 2^n$.

It follows from (4b) that for any fixed $i \geq 0$,

$$\{h(y_{i+k \cdot 2^n/2}) \mid k = 0, 1, \ldots, 2^n/2 - 1 \} = \{0, 1, \ldots, 2^n/2 - 1 \}.$$

Then by (4a) we know that for any fixed $i \geq 0$,

$$\{l(z_{i+k \cdot 2^n/2}) \mid k = 0, 1, \ldots, 2^n/2 - 1 \} = \{l(x_i) + h(y_{i+k \cdot 2^n/2}) \mod 2^n \mid k = 0, 1, \ldots, 2^n/2 - 1 \} = \{l(x_i) + h(y_{i+k \cdot 2^n/2}) \mod 2^n \mid k = 0, 1, \ldots, 2^n/2 - 1 \} = \{0, 1, \ldots, 2^n/2 - 1 \}.$$

Thus, if i runs through the set $\{0, 1, \ldots, 2^n - 1 \}$, then $l(z_i)$ runs through the set $\{0, 1, \ldots, 2^n/2 - 1 \}$ just $2^n/2$ times. Therefore, for $0 \leq j \leq \frac{n}{2} - 1$, the number of 0's and the number of 1's occurring in one period of the sequence z_j are equal. \qed

3.3. The linear complexities of the coordinate sequences of \mathbf{z}

Theorem 3.3. Let $\mathbf{z} = (z_0, z_1, \ldots)$ be a sequence generated by 4-tuple $(f(x), g(y), x_0, y_0)$. Then for $0 \leq j \leq \frac{n}{2} - 1$, the linear complexity of the jth coordinate sequence of \mathbf{z} is as follows:

$$LC(z_j) = \begin{cases} 1 + 2^{n-1}, & \text{if } j = 0, \\ 2 + \sum_{i=1}^{j} 2^{n-i}, & \text{if } 0 < j < \frac{n}{2}. \end{cases}$$
Proof. From Theorem 3.1 we know that

\[\text{per}(z_j) = 2^n, \quad 0 \leq j \leq \frac{n}{2} - 1. \]

Then we have

\[2^{n-1} + 1 \leq LC(z_j) \leq 2^n, \quad 0 \leq j \leq \frac{n}{2} - 1. \] (5)

(i) If \(j = 0 \), then by Lemma 3.1(1a) we have \(z_0 = x_0 \oplus y_{n-1} \). On the other hand, from Lemma 2.2 we have

\[(1 \oplus x)^2 x_0 = 0 \quad \text{and} \quad (1 \oplus x)^{2^{n-1}+1} y_{n-1} = 0. \]

Thus

\[(1 \oplus x)^{2^{n-1}+1} z_0 = 0. \]

It follows from (5) that

\[LC(z_0) = 2^{n-1} + 1. \]

(ii) If \(j = 1 \), then by Lemma 3.1(1b) we have \(z_1 = x_1 \oplus y_{n-2} \oplus x_0 y_{n-1} \). On the other hand, from Lemma 2.2 we have

\[(1 \oplus x)^3 x_1 = 0, \quad (1 \oplus x)^{2^{n-2}+1} y_{n-2} = 0, \quad \text{and} \quad (1 \oplus x)^{2^{n-1}+1} y_{n-1} = 0. \]

Next we shall show that

\[(1 \oplus x)^{2^{n-1}+2} (x_0 y_{n-1}) = 0 \quad \text{and} \quad (1 \oplus x)^{2^{n-1}+1} (x_0 y_{n-1}) \neq 0. \]

In fact, combining with Property 2.1 we know that for all \(i \geq 0 \),

\[x_{i,0} y_{i,n-1} \oplus x_{i+2,0} y_{i+2,n-1} \oplus x_{i+2^{n-1},0} y_{i+2^{n-1},n-1} \oplus x_{i+2^{n-1}+2,0} y_{i+2^{n-1}+2,n-1} \]

\[= x_{i,0} (y_{i,n-1} \oplus y_{i+2,n-1} \oplus y_{i+2^{n-1},n-1} \oplus y_{i+2^{n-1}+2,n-1}) = 0 \]

and

\[x_{i,0} y_{i,n-1} \oplus x_{i+1,0} y_{i+1,n-1} \oplus x_{i+2^{n-1},0} y_{i+2^{n-1},n-1} \oplus x_{i+2^{n-1}+1,0} y_{i+2^{n-1}+1,n-1} \]

\[= x_{i,0} (y_{i,n-1} \oplus y_{i+2^{n-1},n-1}) \oplus x_{i+1,0} (y_{i+1,n-1} \oplus y_{i+2^{n-1}+1,n-1}) = x_{i,0} \oplus x_{i+1,0} = 1. \]

That is,

\[(1 \oplus x)^{2^{n-1}+2} (x_0 y_{n-1}) = 0 \quad \text{and} \quad (1 \oplus x)^{2^{n-1}+1} (x_0 y_{n-1}) = 1. \]

Thus

\[(1 \oplus x)^{2^{n-1}+2} z_1 = 0 \quad \text{and} \quad (1 \oplus x)^{2^{n-1}+1} z_1 = 1. \]
Hence

\[LC(z_1) = 2^{n-1} + 2. \]

(iii) If \(2 \leq j \leq \frac{n}{2} - 1 \), then by Lemma 3.1(1b) we know that

\[z_j = x_j \oplus y_{n-j-1} \oplus \left(\bigoplus_{t=0}^{j-1} x_t y_{n-t-1} \prod_{s=t+1}^{j-1} (x_s \oplus y_{n-s-1}) \right). \]

Hence, we have

\[z_j = x_{j-1} \oplus x_j \oplus y_{n-j-1} \oplus z_{j-1} (x_{j-1} \oplus y_{n-j}) \oplus x_{j-1} y_{n-j}. \]

On the other hand, from Lemmas 2.1 and 2.2 we know that

\[(1 \oplus x)^{2^{n-1}} (x_{j-1} \oplus x_j \oplus y_{n-j-1} \oplus y_{n-j} \oplus x_{j-1} y_{n-j}) = 0. \]

Therefore, it follows from (5) that

\[LC(z_j) = LC(z_{j-1} (x_{j-1} \oplus y_{n-j})), \quad j \geq 2. \]

(6a)

Next we shall show the following equation holds by induction on \(j \).

\[LC(z_{j-1} (x_{j-1} \oplus y_{n-j})) = LC(z_{j-1}) + 2^{n-j}. \]

(6b)

1) When \(j = 2 \), since the minimal polynomial of the sequence \(z_1 \) is \(h(x) = (1 \oplus x)^{2^{n-1}+2} \), by Property 2.1 we know that for all \(i \geq 0 \),

\[
\begin{align*}
Z_i+2^{n-1}+2^{n-2}+2 &= 1, y_{i+2^{n-1}+2^{n-2}+2, n-2} \oplus Z_i+2^{n-1}+2^{n-2}+2, n-2 \oplus Z_i+2^{n-1}+2^{n-2}+2, n-2 \oplus Z_i+2^{n-1}+2^{n-2}+2, n-2 \oplus Z_i+2^{n-1}+2^{n-2}+2, n-2 \\
&\oplus Z_i+2^{n-1}+2^{n-2}+2, n-2 \oplus Z_i+2^{n-1}+2^{n-2}+2, n-2 \oplus Z_i+2^{n-1}+2^{n-2}+2, n-2 \oplus Z_i+2^{n-1}+2^{n-2}+2, n-2 \\
&= y_{i+2, n-2} (Z_i+2^{n-1}+2^{n-2}+2, 1) \oplus Z_i+2^{n-1}+2^{n-2}+2, 1 \oplus Z_i+2^{n-1}+2^{n-2}+2, 1 \oplus Z_i+2^{n-1}+2^{n-2}+2, 1 \\
&\oplus y_{i, n-2} (Z_i+2^{n-1}+2^{n-2}+2, 1) \oplus Z_i+2^{n-1}+2^{n-2}+2, 1 \oplus Z_i+2^{n-1}+2^{n-2}+2, 1 \oplus Z_i+2^{n-1}+2^{n-2}+2, 1 \\
&= 0.
\end{align*}
\]

That is,

\[(1 \oplus x)^{2^{n-1}+2^{n-2}+2} (z_1 y_{n-2}) = 0. \]

Similarly, we can prove

\[(1 \oplus x)^{2^{n-1}+2^{n-2}+2} (z_1 (x_1 \oplus y_{n-2})) = 0 \quad \text{and} \quad (1 \oplus x)^{2^{n-1}+2^{n-2}+1} (z_1 (x_1 \oplus y_{n-2})) = 1. \]
Then we have
\[LC(z_1(x_1 \oplus y_{n-2})) = 2^{n-1} + 2^{n-2} + 2 = LC(z_1) + 2^{n-2}. \]

Thus, (6b) holds for \(j = 2 \).

2) Suppose (6b) holds for all \(j \leq k < \frac{n}{2} - 1 \). Then by (6a) we have
\[LC(z_j) = LC(z_{j-1}(x_{j-1} \oplus y_{n-j})) = LC(z_{j-1}) + 2^{n-j}, \quad 2 \leq j \leq k. \]

Hence,
\[LC(z_k) = 2 + \sum_{t=1}^{k} 2^{n-t}. \]

Similarly to 1) we can show that
\[LC(z_k(x_k \oplus y_{n-k-1})) = 2 + \sum_{t=1}^{k+1} 2^{n-t} = LC(z_k) + 2^{n-k-1}. \]

Thus, (6b) holds for \(j = k + 1 \).

Therefore, Eq. (6b) holds for all integers \(j \geq 2 \). Combining with (6a) and (6b), we have
\[LC(z_j) = 2 + \sum_{t=1}^{j} 2^{n-t}. \]

This completes the proof. \(\square \)

4. The second class of sequences

Let \(x = (x_0, x_1, \ldots) \) be a sequence generated by the single cycle T-function \(f(x) \) and the initial state \(x_0 \), and \(y = (y_0, y_1, \ldots) \) be a sequence generated by the single cycle T-function \(g(y) \) and the initial state \(y_0 \). For all \(i \geq 0 \), set
\[u_i = (\sigma(x_i) + \tau(y_i) \mod 2^n) + \left\lfloor (\sigma(x_i) + \tau(y_i))/2^n \right\rfloor, \quad (7a) \]

where \(\lfloor x \rfloor \) denotes the largest integer less than or equal to \(x \).

Denote \(\eta_i = \lfloor (\sigma(x_i) + \tau(y_i))/2^n \rfloor \). It is clear that \(\eta_i \in \{0, 1\} \), and from Lemma 2.3 we know that
\[\eta_i = \left(\bigoplus_{t=0}^{n-1} x_{i,t} \cdot y_{i,n-t-1} \prod_{s=t+1}^{n-1} (x_{i,s} \oplus y_{i,n-s-1}) \right) \oplus \left(\bigoplus_{t=0}^{n-1} x_{i,n-t-1} \cdot y_{i,t} \prod_{s=t+1}^{n-1} (x_{i,n-s-1} \oplus y_{i,s}) \right). \quad (7b) \]

It follows from (1e) that \(\eta_i = z_{i,n} \oplus x_{i,\frac{n}{2}-1} \oplus y_{i,\frac{n}{2}} \). By using Lemma 3.2(2d) and Property 2.1 we can easily get
\[\eta_i \oplus \eta_{i+2^{n-1}} = \xi_i \cdot \prod_{s=\frac{n}{2}}^{n-2} (x_{i,s} \oplus y_{i,n-s-1}). \quad (7c) \]
On the other hand, from the definition of z_i given in Section 3 we know that
\[u_i = z_{i,n-1}2^{n-1} + z_{i,n-2}2^{n-2} + \cdots + z_{i,1}2 + z_{i,0} + \eta_i. \]

Then from Lemma 2.3 we have
\[u_{i,j} = z_{i,j} \oplus \eta_i \cdot \prod_{t=0}^{j-1} z_{i,t}, \quad 0 \leq j \leq n - 1. \quad (7d) \]

4.1. The periods of the coordinate sequences of u

Theorem 4.1. Let the sequence u be defined as in (7a). Then for all $0 \leq j \leq n - 1$, the jth coordinate sequence of u has period $\text{per}(u_j) = 2^n$.

Proof. From the definition of the sequence u we know that $\text{per}(u) \mid 2^n$, and so it suffices to show that for each $0 \leq j \leq n - 1$, there exists nonnegative integer i^* such that $u_{i^*,j} \oplus u_{i^*+2^n-1,j} = 1$ (i^* is not necessarily the same for all j, we use it uniformly for convenience).

It follows from (7d) that
\[u_{i,j} \oplus u_{i+2^n-1,j} = z_{i,j} \oplus z_{i+2^n-1,j} \oplus \eta_i \cdot \prod_{t=0}^{j-1} z_{i,t} \oplus \eta_i + 2^{n-1} \cdot \prod_{t=0}^{j-1} z_{i+2^n-1,t}. \quad (8) \]

(i) If $j = 0$, then by Lemma 3.2(2a) we know that
\[u_{i,0} \oplus u_{i+2^n-1,0} = 1 \oplus \eta_i \oplus \eta_i + 2^{n-1}. \]

On the other hand, from Property 2.1 we know that there exists integer $i^* \geq 0$ such that $x_{i^*,n-2} \oplus y_{i^*,1} = 0$. Thus, from (7c) we have
\[u_{i^*,0} \oplus u_{i^*+2^n-1,0} = 1 \oplus \eta_{i^*} \oplus \eta_{i^*+2^n-1} = 1 \oplus \xi_{i^*} \cdot \prod_{s=2}^{n-2} (x_{i^*,s} \oplus y_{i^*,n-s-1}) = 1. \]

(ii) If $1 \leq j \leq \frac{n}{2} - 1$, then by Lemma 3.3(3c) we know that there exists integer $i^* \geq 0$ such that
\[x_{i^*,0}(y_{i^*,\frac{n}{2}-1} \oplus 1)(x_{i^*,\frac{n}{2}} \oplus 1)(x_{i^*,0} \oplus y_{i^*,n-1}) \prod_{s=1}^{\frac{n}{2}-2} (x_{i^*,s} \oplus y_{i^*,n-s-1}) = 1. \]

That is,
\[x_{i^*,0} \prod_{s=1}^{\frac{n}{2}-2} (x_{i^*,s} \oplus y_{i^*,n-s-1}) = 1, \quad y_{i^*,\frac{n}{2}-1} = x_{i^*,\frac{n}{2}} = 0, \quad x_{i^*,0} \oplus y_{i^*,n-1} = 1. \]

Then from Lemma 3.2(2b) and (7b) we know that
\[z_{i^*,j} \oplus z_{i^*+2^n-1,j} = x_{i^*,0} \prod_{s=1}^{j-1} (x_{i^*,s} \oplus y_{i^*,n-s-1}) = 1 \quad \text{and} \quad \eta_{i^*} = 0. \]
Hence, since $z_{t^*,0} = x_{t^*,0} \oplus y_{t^*,n-1} = 1$, from Lemma 3.2(2a) we have

$$u_{t^*,j} \oplus u_{t^*+2^{n-1},j} = 1 \oplus 0 \oplus 0 = 1.$$ (iii) If $j = \frac{n}{2}$, then by Lemma 3.2(2c) we know that

$$u_{\frac{n}{2}} \oplus u_{\frac{n}{2}+2^{n-1},\frac{n}{2}} = 1 \oplus x_{0,0} \prod_{s=1}^{n-1} (x_{i,s} \oplus y_{i,n-s-1}) \oplus \eta_i \cdot \prod_{t=0}^{\frac{n}{2}-1} z_{i,t} \oplus \eta_{i+2^{n-1}} \cdot \prod_{t=0}^{\frac{n}{2}-1} z_{i+2^{n-1},t}.$$

On the other hand, from Property 2.1 we know there exists integer $i^* \geq 0$ such that

$$x_{i^*,1} \oplus y_{i^*,n-2} = 0 \quad \text{and} \quad x_{i^*,0} \oplus y_{i^*,n-1} = 1.$$

Then from Lemma 3.1(1a), (1b) we have

$$z_{i^*,0} = x_{i^*,0} \oplus y_{i^*,n-1} = 1$$

and

$$z_{i^*,1} = x_{i^*,1} \oplus y_{i^*,n-2} \oplus x_{i^*,0} y_{i^*,n-1} = 0.$$

Thus from Lemma 3.2(2a) we have

$$u_{i^*,\frac{n}{2}} \oplus u_{i^*+2^{n-1},\frac{n}{2}} = 1 \oplus 0 \oplus 0 \oplus 0 = 1.$$ (iv) If $\frac{n}{2} + 1 \leq j \leq n - 1$, then by Lemma 3.3(3b) we know that there exists integer $i^* \geq 0$ such that

$$(x_{i^*,n-1,0} \oplus y_{i^*,0}) (x_{i^*,n-1,\frac{n}{2}+1} \oplus y_{i^*,n-1,0}) \cdot \prod_{s=1}^{n-2} (x_{i^*,s} \oplus y_{i^*,n-s-1}) = 1.$$

Similarly to (iv) in the proof of Theorem 3.1 we have $z_{i^*,j} \oplus z_{i^*+2^{n-1},j} = 1$. In addition, if

$$\prod_{s=1}^{n-2} (x_{i^*,s} \oplus y_{i^*,n-s-1}) = 1,$$

then from Lemma 3.1(1b) we have

$$z_{i^*,\frac{n}{2}-1} = x_{i^*,\frac{n}{2}-1} \oplus y_{i^*,\frac{n}{2}} \left(\bigoplus_{t=0}^{n-2} x_{t,0} y_{t,n-t-1} \prod_{s=t+1}^{n-2} (x_{s,0} \oplus y_{s,n-s-1}) \right) = 0 \oplus 0 = 0.$$

Otherwise, let t_0 be the smallest integer $t \in \{1, 2, \ldots, \frac{n}{2} - 2\}$ such that $x_{i^*,t} \oplus y_{i^*,n-t-1} = 0$. Then from Lemma 3.1(1b) we have

$$z_{i^*,t} = x_{i^*,t} \oplus y_{i^*,n-t-1} \left(\bigoplus_{t=0}^{t_0-1} x_{t,0} y_{t,n-t-1} \prod_{s=t+1}^{t_0-1} (x_{s,0} \oplus y_{s,n-s-1}) \right) = 0 \oplus 0 = 0.$$

Hence, since $z_{i^*,0} = x_{i^*,0} \oplus y_{i^*,n-1} = 1$, from Lemma 3.2(2a) we have

$$u_{i^*,j} \oplus u_{i^*+2^{n-1},j} = 1 \oplus 0 \oplus 0 = 1.$$

This completes the proof. □
4.2. The linear complexities of the coordinate sequences of \mathbf{u}

Theorem 4.2. Let the sequence \mathbf{u} be defined as in (7a). Then we have

$$\text{LC}(\mathbf{u}_j) > \begin{cases} 2^{n-1}, & \text{if } j \in \{0, 1, \frac{n}{2}, \frac{n}{2} + 1\}, \\ \sum_{t=1}^{\frac{n}{2}} 2^{n-t}, & \text{if } 1 < j < \frac{n}{2}, \\ \sum_{t=1}^{j-n/2} 2^{n-t}, & \text{if } \frac{n}{2} + 1 < j < n. \end{cases}$$

Proof. From Theorem 4.1 we know that $\text{per}(\mathbf{u}_j) = 2^n$, $0 \leq j \leq n - 1$.

Then we have

$$2^{n-1} + 1 \leq \text{LC}(\mathbf{u}_j) \leq 2^n, \quad 0 \leq j \leq n - 1.$$

(i) If $1 < j < \frac{n}{2}$, then by Lemma 3.2(2b) and (8) we have

$$\bigoplus_{(k_2, \ldots, k_j) \in \mathbb{F}_2^{j-1}} (u_{i+k_22^{n-2} + \ldots + k_j2^{n-j}, j} \oplus u_{i+k_22^{n-2} + \ldots + k_j2^{n-j} + 2^{n-1}, j})$$

$$= \bigoplus_{(k_2, \ldots, k_j) \in \mathbb{F}_2^{j-1}} \left(x_{i+k_22^{n-2} + \ldots + k_j2^{n-j}, 0} \prod_{t=1}^{j-1} (x_{i+k_22^{n-2} + \ldots + k_j2^{n-j}, t} \oplus y_{i+k_22^{n-2} + \ldots + k_j2^{n-j}, n-s-1}) \right)$$

$$\oplus \eta_{i+k_22^{n-2} + \ldots + k_j2^{n-j}} \cdot \prod_{t=0}^{j-1} z_{i+k_22^{n-2} + \ldots + k_j2^{n-j}, t}$$

$$\oplus \eta_{i+k_22^{n-2} + \ldots + k_j2^{n-j} + 2^{n-1}} \cdot \prod_{t=0}^{j-1} z_{i+k_22^{n-2} + \ldots + k_j2^{n-j} + 2^{n-1}, t}.$$

On the other hand, from Lemma 3.3(3c) we know there exists integer $i^* \geq 0$ such that

$$x_{i^*, 0} (y_{i^*, \frac{n}{2} - 1} \oplus 1) (x_{i^*, \frac{n}{2} + 1} \oplus 1) (x_{i^*, 0} \oplus y_{i^*, n-s-1}) \prod_{s=1}^{\frac{n}{2} - 2} (x_{i^*, s} \oplus y_{i^*, n-s-1}) = 1.$$

Thus

$$x_{i^*, 0} \prod_{s=1}^{\frac{n}{2} - 2} (x_{i^*, s} \oplus y_{i^*, n-s-1}) = 1 \quad \text{and} \quad y_{i^*, \frac{n}{2} - 1} = x_{i^*, \frac{n}{2}} = 0.$$

• If $(k_2, \ldots, k_j) = (0, \ldots, 0)$, then we have

$$x_{i^*, 0} \prod_{s=1}^{j-1} (x_{i^*, s} \oplus y_{i^*, n-s-1}) = 1.$$
• If \((k_2, \ldots, k_j) \neq (0, \ldots, 0)\), let \(l\) be the largest index such that \(k_l = 1\). Then from Property 2.1 we have

\[
\begin{align*}
X_{i^* + k_2 2^n - 2 + \cdots + k_j 2^n - j} & = \left(\prod_{s=1}^{j-1} (X_{i^* + s} \oplus y_{i^* + k_2 2^n - 2 + \cdots + k_{l-1} 2^n - l + 1 + 2^n - l, n - s - 1}) \right) \\
&= X_{i^* 0} \prod_{s=1}^{j-1} (X_{i^* + s} \oplus y_{i^* + k_2 2^n - 2 + \cdots + k_{l-1} 2^n - l + 1 + 2^n - l, n - s - 1}) \\
&= X_{i^* 0} (X_{i^* l-1} \oplus y_{i^* n-l-1}) \prod_{s=1}^{j-1} (X_{i^* + s} \oplus y_{i^* + k_2 2^n - 2 + \cdots + k_{l-1} 2^n - l + 1 + 2^n - l, n - s - 1}) = 0.
\end{align*}
\]

In addition, by Property 2.1 we know that for any \((k_2, \ldots, k_j) \in \mathbb{F}_2^{j-1}\),

\[
y_{i^* + k_2 2^n - 2 + \cdots + k_j 2^n - j, \frac{n}{2} - 1} = X_{i^* + k_2 2^n - 2 + \cdots + k_j 2^n - j, \frac{n}{2}} = 0
\]

and

\[
y_{i^* + k_2 2^n - 2 + \cdots + k_j 2^n - j, \frac{n}{2} - 1} = X_{i^* + k_2 2^n - 2 + \cdots + k_j 2^n - j + 2^n - 1, \frac{n}{2}} = 0.
\]

Therefore, from (7b) we know that for any \((k_2, \ldots, k_j) \in \mathbb{F}_2^{j-1}\),

\[
\eta_{i^* + k_2 2^n - 2 + \cdots + k_j 2^n - j} = \eta_{i^* + k_2 2^n - 2 + \cdots + k_j 2^n - j + 2^n - 1} = 0.
\]

Hence, we have

\[
\bigoplus_{(k_2, \ldots, k_j) \in \mathbb{F}_2^{j-1}} (u_{i^* + k_2 2^n - 2 + \cdots + k_j 2^n - j} \oplus u_{i^* + k_2 2^n - 2 + \cdots + k_j 2^n - j + 2^n - 1}) = 1.
\]

(ii) If \(\frac{n}{2} + 1 < j < n\), then by Lemma 3.2(2d) and (8) we have

\[
\bigoplus_{(k_2, \ldots, k_{j-n/2}) \in \mathbb{F}_2^{j-n/2-1}} (u_{i^* + k_2 2^n - 2 + \cdots + k_{j-n/2} 2^{3n/2-j}} \oplus u_{i^* + k_2 2^n - 2 + \cdots + k_{j-n/2} 2^{3n/2-j} + 2^{n-1}})
\]

\[
= \bigoplus_{(k_2, \ldots, k_{j-n/2}) \in \mathbb{F}_2^{j-n/2-1}} \left(\sum_{t=0}^{n-2} (x_{i^* + k_2 2^n - 2 + \cdots + k_{j-n/2} 2^{3n/2-j}} \cdot \prod_{s=\frac{3n}{2} - j}^{n-2} (x_{i^* + k_2 2^n - 2 + \cdots + k_{j-n/2} 2^{3n/2-j}}) \oplus y_{i^* + k_2 2^n - 2 + \cdots + k_{j-n/2} 2^{3n/2-j} + k_{j-n/2} 2^{3n/2-j} + 2^n - 1, n - s - 1}) \right.
\]

\[
\oplus \eta_{i^* + k_2 2^n - 2 + \cdots + k_{j-n/2} 2^{3n/2-j}} \cdot \prod_{t=0}^{j-1} (z_{i^* + k_2 2^n - 2 + \cdots + k_{j-n/2} 2^{3n/2-j}} + 2^n - 1, t)
\]

\[
\oplus \eta_{i^* + k_2 2^n - 2 + \cdots + k_{j-n/2} 2^{3n/2-j} + 2^n - 1} \cdot \prod_{t=0}^{j-1} (z_{i^* + k_2 2^n - 2 + \cdots + k_{j-n/2} 2^{3n/2-j} + 2^n - 1, t})
\).
On the other hand, from Lemma 3.3(3b) we know there exists integer $i^* \geq 0$ such that

$$(x^*_{i^*, \frac{n}{2} - 1} \oplus y^*_{i^*, 0})(x^*_{i^*, \frac{n}{2} - 1} \oplus y^*_{i^*, \frac{n}{2}} \oplus 1)(x^*_{i^*, 0} \oplus y^*_{i^*, n-1}) \prod_{s=\frac{n}{2}+1}^{n-2} (x^*_{i^*, s} \oplus y^*_{i^*, n-s-1}) = 1.$$

• If $(k_2, \ldots, k_{j-n/2}) = (0, \ldots, 0)$, similarly to (iv) in the proof of Theorem 3.1 we have

$$\xi^*_{i^*+k_2 2^{n-2}+\ldots+k_{j-n/2} 2^{3n/2-j}} \prod_{s=\frac{3n}{2}-j}^{n-2} (x^*_{i^*+k_2 2^{n-2}+\ldots+k_{j-n/2} 2^{3n/2-j}}, s \oplus y^*_{i^*, n-s-1}) = \xi^*_{i^*} \prod_{s=\frac{3n}{2}-j}^{n-2} (x^*_{i^*, s} \oplus y^*_{i^*, n-s-1}) = 1.$$

• If $(k_2, \ldots, k_{j-n/2}) \neq (0, \ldots, 0)$, let l be the largest index such that $k_l = 1$. Then from Property 2.1 we have

$$\xi^*_{i^*+k_2 2^{n-2}+\ldots+k_{j-n/2} 2^{3n/2-j}} \prod_{s=\frac{3n}{2}-j}^{n-2} (x^*_{i^*+k_2 2^{n-2}+\ldots+k_{j-n/2} 2^{3n/2-j}}, s \oplus y^*_{i^*, n-s-1})$$

$$= \xi^*_{i^*+k_2 2^{n-2}+\ldots+k_{l-1} 2^{-l+1}+2^{-n-l}} \prod_{s=\frac{3n}{2}-j}^{n-2} (x^*_{i^*+k_2 2^{n-2}+\ldots+k_{l-1} 2^{-l+1}+2^{-n-l}}, s \oplus y^*_{i^*, n-s-1})$$

$$= \xi^*_{i^*+k_2 2^{n-2}+\ldots+k_{l-1} 2^{-l+1}+2^{-n-l}} (x^*_{i^*, n-l} \oplus y^*_{i^*, l-1} \oplus 1)$$

$$\prod_{s=\frac{3n}{2}-j}^{n-2} (x^*_{i^*+k_2 2^{n-2}+\ldots+k_{l-1} 2^{-l+1}+2^{-n-l}}, s \oplus y^*_{i^*, n-s-1})$$

$$= 0.$$

In addition, by Property 2.1 we know that for any $(k_2, \ldots, k_{j-n/2}) \in \mathbb{F}_2^{j-n/2-1}$,

$$x^*_{i^*+k_2 2^{n-2}+\ldots+k_{j-n/2} 2^{3n/2-j}}, \frac{n}{2} - 1 \oplus y^*_{i^*+k_2 2^{n-2}+\ldots+k_{j-n/2} 2^{3n/2-j}}, \frac{n}{2} = 0$$

and

$$x^*_{i^*+k_2 2^{n-2}+\ldots+k_{j-n/2} 2^{3n/2-j}}+2^{n-1}, \frac{n}{2} - 1 \oplus y^*_{i^*+k_2 2^{n-2}+\ldots+k_{j-n/2} 2^{3n/2-j}}+2^{n-1}, \frac{n}{2} = 0.$$

Similarly to (iv) in the proof of Theorem 4.1, for any $(k_2, \ldots, k_{j-n/2}) \in \mathbb{F}_2^{j-n/2-1}$,

• If $z^*_{i^*+k_2 2^{n-2}+\ldots+k_{j-n/2} 2^{3n/2-j}} = 0$, then there exists integer $t_0 \in \{1, 2, \ldots, \frac{n}{2} - 1\}$ such that

$$z^*_{i^*+k_2 2^{n-2}+\ldots+k_{j-n/2} 2^{3n/2-j}}, t_0 = 0;$$
• if \(z_i^{*} + k_2 2^{n-2} + \cdots + k_j - n/2 2^{n/2-j} = 0 \), from (2a) we have \(z_i^{*} + k_2 2^{n-2} + \cdots + k_j - n/2 2^{n/2-j} + 2^{n-1} = 1 \), then there exists integer \(t_1 \in \{1, 2, \ldots, n/2 - 1\} \) such that

\[
Z_i^{*} + k_2 2^{n-2} + \cdots + k_j - n/2 2^{n/2-j} + 2^{n-1}, t_1 = 0.
\]

Hence, we know that for any \((k_2, \ldots, k_{j-n/2}) \in \mathbb{F}_2^{j-n/2-1}\),

\[
\prod_{t=0}^{j-1} Z_i^{*} + k_2 2^{n-2} + \cdots + k_{j-n/2} 2^{n/2-j} : t = 0.
\]

Thus

\[
\bigoplus_{(k_2, \ldots, k_{j-n/2}) \in \mathbb{F}_2^{j-n/2-1}} (u_i^{*} + k_2 2^{n-2} + \cdots + k_{j-n/2} 2^{n/2-j}, j \oplus u_i^{*} + k_2 2^{n-2} + \cdots + k_{j-n/2} 2^{n/2-j} + 2^{n-1}, j) = 1.
\]

From (i) and (ii) we have

\[
(1 \oplus x) \sum_{t=1}^{n} 2^{n-t} u_j \neq 0, \quad 1 < j < \frac{n}{2}
\]

and

\[
(1 \oplus x) \sum_{t=1}^{n/2} 2^{n-t} u_j \neq 0, \quad \frac{n}{2} + 1 < j < n.
\]

Hence,

\[
LC(u_j) > \sum_{t=1}^{j} 2^{n-t}, \quad 1 < j < \frac{n}{2}
\]

and

\[
LC(u_j) > \sum_{t=1}^{j-n/2} 2^{n-t}, \quad \frac{n}{2} + 1 < j < n.
\]

This completes the proof. \(\square\)

5. Conclusions

In this paper, we propose two types of pseudorandom sequences based on single cycle T-functions, such that the periods of all their coordinate sequences can reach the maximal value \(2^n\). For the first proposal, the less significant half of the coordinate sequences are not cryptographically strong enough. Therefore, we improve it to obtain the second proposal. Experimental results indicate that all the coordinate sequences derived from the second proposal are almost uniformly distributed over \(\mathbb{F}_2\), and their linear complexities are all close to their periods. How to provide other methods that equalize the periods of the coordinate sequences will be our future work.
Appendix A. Proof of Lemma 3.2

Proof. Since \(\mathbf{x} = (x_0, x_1, \ldots) \) and \(\mathbf{y} = (y_0, y_1, \ldots) \) are two sequences over \(\mathbb{Z}/(2^n) \) generated by single cycle T-functions \(f(x) \) and \(g(y) \), respectively, from Property 2.1 and Lemma 3.1 we know that

(i) If \(j = 0 \), then

\[
Z_{i,0} \oplus Z_{i+2^n-1,0} = x_{i,0} \oplus y_{i,n-1} \oplus x_{i+2^n-1,0} \oplus y_{i+2^n-1,n-1} = 1.
\]

(ii) If \(1 \leq j \leq \frac{n}{2} - 1 \), then

\[
Z_{i,j} \oplus Z_{i+2^n-1,j}
= x_{i,j} \oplus y_{i,n-j-1} \oplus x_{i+2^n-1,j} \oplus y_{i+2^n-1,n-j-1} \oplus \left(\bigoplus_{t=0}^{j-1} x_{i,t} y_{i,n-t-1} \prod_{s=t+1}^{j-1} (x_{i,s} \oplus y_{i,n-s-1}) \right)
\]

\[
\oplus \left(\bigoplus_{t=0}^{j-1} x_{i+2^n-1,t} y_{i+2^n-1,n-t-1} \prod_{s=t+1}^{j-1} (x_{i+2^n-1,s} \oplus y_{i+2^n-1,n-s-1}) \right)
\]

\[
= \left(x_{i,0} y_{i,n-1} \prod_{s=1}^{j-1} (x_{i,s} \oplus y_{i,n-s-1}) \right)
\]

\[
\oplus \left(x_{i+2^n-1,0} y_{i+2^n-1,n-1} \prod_{s=1}^{j-1} (x_{i+2^n-1,s} \oplus y_{i+2^n-1,n-s-1}) \right)
\]

\[
= \left(x_{i,0} y_{i,n-1} \prod_{s=1}^{j-1} (x_{i,s} \oplus y_{i,n-s-1}) \right) \oplus \left(x_{i,0} (y_{i,n-1} \oplus 1) \prod_{s=1}^{j-1} (x_{i,s} \oplus y_{i,n-s-1}) \right)
\]

\[
= x_{i,0} \prod_{s=1}^{j-1} (x_{i,s} \oplus y_{i,n-s-1}).
\]

(iii) If \(j = \frac{n}{2} \), then

\[
Z_{i, \frac{n}{2}} \oplus Z_{i+2^n-1, \frac{n}{2}}
= x_{i,n-1} \oplus y_{i,0} \oplus x_{i+2^n-1,n-1} \oplus y_{i+2^n-1,0} \oplus \left(\bigoplus_{t=0}^{\frac{n}{2}-1} x_{i,t} y_{i,n-t-1} \prod_{s=t+1}^{\frac{n}{2}-1} (x_{i,s} \oplus y_{i,n-s-1}) \right)
\]

\[
\oplus \left(\bigoplus_{t=0}^{\frac{n}{2}-1} x_{i+2^n-1,t} y_{i+2^n-1,n-t-1} \prod_{s=t+1}^{\frac{n}{2}-1} (x_{i+2^n-1,s} \oplus y_{i+2^n-1,n-s-1}) \right)
\]

\[
= 1 \oplus \left(x_{i,0} y_{i,n-1} \prod_{s=1}^{\frac{n}{2}-1} (x_{i,s} \oplus y_{i,n-s-1}) \right)
\]

\[
\oplus \left(x_{i+2^n-1,0} y_{i+2^n-1,n-1} \prod_{s=1}^{\frac{n}{2}-1} (x_{i+2^n-1,s} \oplus y_{i+2^n-1,n-s-1}) \right)
\]
(iv) If $\frac{n}{2} + 1 \leq j \leq n$, then

\[
Z_{i,j} = x_{i,\frac{n}{2} - j - 1} \oplus y_{i,j-\frac{n}{2}} \oplus x_{i+2^{n-1}, \frac{n}{2} - j - 1} \oplus y_{i+2^{n-1}, j-\frac{n}{2}}
\]

\[
\oplus \left(\bigoplus_{t=0}^{\frac{n}{2}-1} x_{i,t} y_{i,n-t-1} \prod_{s=t+1}^{\frac{n}{2}-1} (x_{i,s} \oplus y_{i,n-s-1}) \prod_{s=\frac{3n}{2} - j}^{n-1} (x_{i,s} \oplus y_{i,n-s-1}) \right) \oplus \left(\bigoplus_{t=0}^{\frac{n}{2}-1} x_{i+2^{n-1}, t} y_{i+2^{n-1}, n-t-1} \prod_{s=t+1}^{\frac{n}{2}-1} (x_{i+2^{n-1}, s} \oplus y_{i+2^{n-1}, n-s-1}) \right)
\]

\[
\cdot \prod_{s=\frac{3n}{2} - j}^{n-1} (x_{i+2^{n-1}, s} \oplus y_{i+2^{n-1}, n-s-1}) \oplus \left(\bigoplus_{t=0}^{j-\frac{n}{2}-1} x_{i,n-t-1} y_{i,t} \prod_{s=t+1}^{j-\frac{n}{2}-1} (x_{i,s} \oplus y_{i,n-s-1}) \right)
\]

\[
\oplus \left(\bigoplus_{t=0}^{j-\frac{n}{2}-1} x_{i+2^{n-1}, n-t-1} y_{i+2^{n-1}, t} \prod_{s=t+1}^{j-\frac{n}{2}-1} (x_{i+2^{n-1}, s} \oplus y_{i+2^{n-1}, s}) \right)
\]

\[
= \left\{ \prod_{s=\frac{3n}{2} - j}^{n-2} (x_{i,s} \oplus y_{i,n-s-1}) (x_{i,n-1} \oplus y_{i,0}) \right\}
\]

\[
\left[\left(x_{i,0} y_{i,n-1} \prod_{s=1}^{\frac{n}{2}-1} (x_{i,s} \oplus y_{i,n-s-1}) \right) \oplus \left(\bigoplus_{t=1}^{\frac{n}{2}-1} x_{i,t} y_{i,n-t-1} \prod_{s=t+1}^{\frac{n}{2}-1} (x_{i,s} \oplus y_{i,n-s-1}) \right) \right]
\]

\[
\oplus \left\{ \prod_{s=\frac{3n}{2} - j}^{n-2} (x_{i,s} \oplus y_{i,n-s-1}) (x_{i,n-1} \oplus y_{i,0} \oplus 1) \right\}
\]

\[
\left[\left(x_{i,0} (y_{i,n-1} \oplus 1) \prod_{s=1}^{\frac{n}{2}-1} (x_{i,s} \oplus y_{i,n-s-1}) \right) \oplus \left(\bigoplus_{t=1}^{\frac{n}{2}-1} x_{i,t} y_{i,n-t-1} \prod_{s=t+1}^{\frac{n}{2}-1} (x_{i,s} \oplus y_{i,n-s-1}) \right) \right]
\]

\[
\oplus \left(x_{i,n-1} y_{i,0} \prod_{s=1}^{j-\frac{n}{2}-1} (x_{i,n-s-1} \oplus y_{i,s}) \right) \oplus \left(x_{i,n-1} \oplus 1 \right) y_{i,0} \prod_{s=1}^{j-\frac{n}{2}-1} (x_{i,n-s-1} \oplus y_{i,s})
\]
We first show that the equality (3a) holds, and the other two equalities can be shown in a similar way.

Since \(\text{per}(x_0) = 2 \), there exists \(i_1 \geq 0 \) such that \(x_{i_1,0} = 1 \). Moreover, from Property 2.1 we know that \(x_{i_1+2^j,0} = 1 \) also holds for all \(j \geq 1 \).

If \(\prod_{s=1}^{n-1} (x_{i_1,s} \oplus y_{i_1,n-s-1}) = 1 \), then set \(i^* = i_1 \). Hence, the result holds. Otherwise, let \(s_1 \) be the largest integer \(s \in \{1, 2, \ldots, \frac{n}{2} - 1\} \) such that \(x_{i_1,s} \oplus y_{i_1,n-s-1} = 0 \). Then we have

\[
x_{i_1,s_1} \oplus y_{i_1,n-s_1-1} = 0 \quad \text{and} \quad x_{i_1,s} \oplus y_{i_1,n-s-1} = 1, \quad s_1 < s \leq \frac{n}{2} - 1.
\]

Set \(i_2 = i_1 + 2^{n-s_1-1} \). Then from Property 2.1 we know that

\[
x_{i_2,0} = x_{i_1,0} = 1,
\]

\[
x_{i_2,s_1} \oplus y_{i_2,n-s_1-1} = x_{i_1,s_1} \oplus (y_{i_1,n-s_1-1} \oplus 1) = 1, \quad \text{and}
\]

\[
x_{i_2,s} \oplus y_{i_2,n-s-1} = x_{i_1,s} \oplus y_{i_1,n-s-1} = 1, \quad s_1 < s \leq \frac{n}{2} - 1.
\]

That is,

\[
x_{i_2,0} = 1 \quad \text{and} \quad \prod_{s=s_1}^{\frac{n}{2}-1} (x_{i_2,s} \oplus y_{i_2,n-s-1}) = 1.
\]

If \(\prod_{s=1}^{n-1} (x_{i_2,s} \oplus y_{i_2,n-s-1}) = 1 \), then set \(i^* = i_2 \). Hence, the result holds. Otherwise, let \(s_2 \) be the largest integer \(s \in \{1, 2, \ldots, s_1 - 1 \} \) such that \(x_{i_2,s} \oplus y_{i_2,n-s-1} = 0 \). Set \(i_3 = i_2 + 2^{n-s_2-1} \). Similarly we have

\[
x_{i_3,0} = 1 \quad \text{and} \quad \prod_{s=s_2}^{\frac{n}{2}-1} (x_{i_3,s} \oplus y_{i_3,n-s-1}) = 1.
\]
Therefore, if $\prod_{s=1}^{n-1} (x_{i,s} \oplus y_{i,n-s-1}) = 1$, then set $i^* = i_3$. Hence, the result holds. Otherwise, repeat the above process.

Since $1 \leq s_2 < s_1 \leq \frac{n}{2} - 1$ and the set $\{1, 2, \ldots, \frac{n}{2} - 1\}$ contains finite number of integers, by recursive analysis we know there exists strictly decreasing integer series $\{s_0 = \frac{n}{2}, s_1, s_2, \ldots, s_l\}$ such that

$$x_{i_{k+1},0} = 1, \quad \prod_{s=s_k}^{n-1} (x_{i_{k+1},s} \oplus y_{i_{k+1},n-s-1}) = 1, \quad \text{and} \quad \prod_{s=1}^{s_l-1} (x_{i_{l+1},s} \oplus y_{i_{l+1},n-s-1}) = 1$$

hold for all $1 \leq k \leq l$, where s_k is the largest integer $s \in \{1, 2, \ldots, s_{k-1} - 1\}$ such that $x_{i_k,s} \oplus y_{i_k,n-s-1} = 0$ and $i_{k+1} = i_k + 2^{n-s_k - 1}$. Let $i^* = i_{l+1}$. Then the result holds. \(\square\)

References