ON THE SUBWORD COMPLEXITY OF SQUARE-FREE DOL LANGUAGES

A. EHRENFEUCHT
Department of Computer Science, University of Colorado, Boulder, CO, U.S.A.

G. ROZENBERG
Institute of Applied Mathematics and Computer Science, University of Leiden, Leiden, The Netherlands

Communicated by A. Salomaa
Received April 1980

Abstract

The subword complexity of a language K is the function which to every positive integer n assigns the number of different subwords of length n occurring in words of K. A language K is square-free if no word in it contains a subword of the form $x x$ where x is a nonempty word. The (best) upper and lower bounds on the subword complexity of infinite square-free DOL languages are established.

1. Introduction

The problems of repetitions of subwords in words (and in infinite words) were first studied by Thue [11, 12]. Since then those pioblems were investigated (and rediscovered) by quite a number of authors with quite different motivations. In particular results of Thue were also used in various constructions in formal language iheory (see, e.g., [3]). Recently one notices al revival of interest in Thue problems among formal language theorists (see, e.g., $[1,2,7,8,10]$). In particular $[1,10]$ it was discovered that the theory of nonrepetitive sequences of Thue is very stiongly related to the theory of DOL sequences. For example, Thue's original examples of squarefree sequences were constructed using D0L systems and indeed, as pointed out in [1], most (if not all) exsmples of nonrepetitive sequences known in the literature are either DOL sequences or codings of DOL sequences. In this way a quite significant connection is established between the theory of nonrepetitive sequences and the theory of DOL systems. The theory of nonrepetitive sequences originates a new and very interesting research area within the theory of DOL systems while the theory of DOL systems provides a better insight into the theory of nonrepetitive sequences (see, e.g., [1, 10]).

In this paper we investigate DOL systems which generate nonrepetitive words only. In particular we investigate the upper and the lower bounds on the subword complexity of languages generated by such systems, and we estab'ish that those languages are quite 'poor' as far as number of subwords is concerned. I For a language K is subword complexity is a function assigning to each positive integer n the number of different subwords of length n occurring in words of K.) In a sense this result is quite counter intuitive: one is inclined to think that to construct an infinite language consisting of nonrepetitive words one needs a lot of different subwords to avoid repetitions. (This aspect of the problem was poinied to us by Berstel who suggested to investigate the subword complexity of DOL systems generating squarefree words only. Actually Berstel conjectured that the subword complexity of such languages is bounded by a linear function; we prove that the number of subwords of length n in such languages is of order $n \log _{2} n$). We believe that this paper sheds a new light on the sheory of square-free languages (sequences) and that it demonstrates how known results and techniques of the theory of DOL systems contribute to the theory of nonrepetitive languages (sequences).

We assume the reader to be familiar with basic aspects of DOL systems (see, e.g., [9]).

2. Preliminaries

We will use standard notation and terminology concerning DOi systems (see, e.g., [9]). Thus a D0L system G is specified in the form $G=(\Sigma, h, \omega)$ where Σ is its alphabet, h its homomorphisin and ω its axiom; $L(G)$ denotes the language of G while $E(G)$ denotes its sequence. A letter a is erasing if, for some $m \geqslant 1, h^{m}(a)=\Lambda$ (where Λ is the empty word), otherwise a is nonerasing; maxr G denotes $\max \{|x|: x=h(a)$ for some $a \in \Sigma\}$. Since the problems considered become trivia! otherwise, we consider only DOL systerns which generate infinite languages.

It turns out that the notion of the rank of a letter in a $\mathrm{D} \cap \pm$ system [5] will be quite useful in our investigation.

Definition. Let $G=(\Sigma, h, \omega)$ be a D 0 L svstem and let, for a letter $a \in \Sigma, G_{a}=$ ($\Sigma, h, a)$. We say that a letter $a \in \Sigma$ is of $\operatorname{rank} 0($ in $G)$ if $L\left(G_{a}\right)$ is finite. Let, for $i \geqslant 0$, Σ_{i} denote the set of all letters of rank i and let, for $j \geqslant 1, G_{(j)}=\left(\Sigma_{(j)}, h_{(j)}, \omega_{(j)}\right)$ where

$$
\Sigma_{(j)}=\Sigma \backslash \bigcup_{i=0}^{j-1} \Sigma_{i}, \quad \omega_{(j)}=g_{i}(\omega)
$$

and, for $b \in \Sigma_{(j)}, h_{(j)}(b)=g_{(j)} h(b)$ where $g_{(j)}$ is the homomorphism on Σ^{*} defined by $g_{(j)}(a)=a$ for $a \in \Sigma_{(j)}$, and $g_{(j)}(a)=\Lambda$ for $a \in \bigcup_{i=0}^{i-1} \Sigma_{i}$. If a letter $a \in \Sigma_{(j)}$ is of rank 0 in $G_{(j)}$, then we sa: that it is of rank j (in G). If $a \in \mathbb{\Sigma}$ is of rank j for some $j \geqslant 0$, then we say that a has ank in G; otherwise we say that a is without a rank.

For a word $x,|x|$ denotes its length while (if x is nonempty) first x denotes the first letter of x. For a finite set $A, \# A$ derotes its cardinality. For a language K and a positive integer $n, \operatorname{sub}_{n} K$ denotes the set of sui,words of length n of K while sub K denotes the set of all subwords of K. Given an alphabet Σ and $\Delta \subseteq \Sigma$, pres ${ }_{\Delta}$ denotes the homomorphism on Σ^{*} defined by $\operatorname{pres}_{\Delta}(a)=\Lambda$ if $a \in \Sigma \backslash \Delta$ and $\operatorname{pres}_{\Delta}(a)=a$ if $a \in \Delta$.

We need the following notions concerning repetitions of subwords in a word.

Definition. A word is called square-free if it does not contain a subword of the form x^{2} where x is a nonempty word. A word is called strongly cube-free if it does not contain a subword of the form x^{2} first x where x is a nonempty word. A language is called square-free (resp. strongly cube-fre?, if it does not contain a square-free (resp. strongly cube-free) word.

Clearly, every square-free word (languege) is also strongly cube-free. Actually strongiy cube-free words (languages) can te viewed also differently.

Definition. A word y is said to have an overlap if there ϵ xist words $y_{1}, y_{2}, x_{1}, x_{2}, x_{3}$ and x such that $y=y_{1} x_{1} x_{2} x_{3} y_{2}, x=x_{1} x_{2}=x_{2} x_{3}$ where x_{1}, x_{2}, x_{3} are nonempty words. Otherwise we say that y is overlap-free. A language is called overlap-free if each word in it is overlap-free.

Theorem 1. A word is overlap-free if and only if it is strongly cube-free.

Proof. (i). Let u be a word containing two overlapping occurrences of the same word. Hence $u=u_{1} x_{1} x_{2} x_{3} u_{2}$ where for some word $x, x_{1} x_{2}=x_{2} x_{3}=x$ where x_{1}, x_{2}, x_{1} are all nonempty words; thus u has two different occurrences of x 'overlapping on' x_{2}. But then $x_{1} x_{1}$ first x_{1} is a subword of u and so u is not strongly cube-free.
(ii). Let u be a word which can be written in the form $u=u_{1} x x$ (firs $\left.x\right) u_{2}$ where x is a nonempty word; hence u is not strongly cube-free. Then $u=u_{1} u($ first $x) y$ (first x) v_{2} where $x:=$ (first x) y. But then u can be written in the form $u=u_{1} z_{1} z_{2} z_{3} u_{2}$ where $z_{1}=x, z_{2}=$ first x and $z_{3}=y$ first x. Consequently u has two different occurrences of $z=z_{1} z_{2}=z_{2} z_{3}$ 'overlapping on' z_{2}. But then u is not overlap-free.

3. Results

In this section the subword complexity oi square-free D0L languages is investigated. We begin by establishing an upper bound for this complexity.

Theorem 2. If K is a square-free D0L laizguage theñ, for every positive integer n, \# $\operatorname{sub}_{n} K \leqslant C n \log _{2} n$ for some positive integer constant C.

Proof. Let $G=(\Sigma, h, \omega)$ be a D0L system generating K.
(i). If $a \in \Sigma$, then either a is of rank 0 or a does not have a rank.

This is established as follows. If a has a rank greater than 0 , then G must contain a letter b of rank 1 such that, for some $m \geqslant 1, h^{m}(b)=u b v$ where $u, v \in \Sigma^{*}, u v \div \Lambda$ and u and v consist of letters of rank 0 only. Since both $u, h^{m}(u), h^{2 r}(u)_{s} \ldots$ and v, $h^{m}(v), h^{2 m}(v), \ldots$ are infinite ultimately periodic sequences, $\left.L, G\right)$ cannot be square-free; a contradiction.
(ii). There exists a positive integer constant q such that, if u is : subword of K consisting of letters of rank 0 only, then $|u|<q$.

This is proved by contradiction as follows. Let u be 'an arbitrarily long' subword of K consisting of letters of rank 0 only. Since it is well known (see, e.g., [9]) that subwords consisting of erasing letters only are shorter than certain constant, u must contain 'arbitrarily many' nonerasing letters. Let $E(G)=\omega_{0}, \omega_{1}, \omega$., . . whe re for some $i \geqslant 1, \omega_{i}=x u y$. Notice that in words $\omega_{0}, \omega_{1}, \ldots, \omega_{i-,}$ we can distinguish (occurrences of) subwords $u_{0}, u_{1}, \ldots, u_{i-1}$ respectively which are the shortest subwords which are ancestors of u. Let j be the minimal integer such that $\left|u_{i}\right| \geqslant 2$. So let $u_{j}=a v_{j} b$ where $a, b \in \Sigma, v_{j} \in \Sigma^{*}$. Clearly $\left|u_{i}\right| \leqslant \max \{|\omega|$, maxr $G\}$ and v_{i}, if nonempty, consisis of letters of rank 0 only (because its centribution to ω_{i} is either empty or it consists of letters oí rank 0 only). Let $u=c v d$ where $c, d \in \Sigma$ and $v \in \Sigma^{*}$. The situation can be best illustrated as in Fig. 1.

Fig. 1.

Since the length of v_{j} is limited and u is arbitrarily long either on the path from a to c or on the path from b to d there must be a symbol, say e, repeating f least twice which contributes to v a subword which contains a nonerasing letter; since both cases are symmetric assume that e occurs on the path from a to c. Hence for some $m \geqslant 1$ $h^{m}(e)=z_{1} e z_{2}$ where z_{2} is nonempty and consists of: type 0 ietters only with at least one of them being nonerasing. Since, clearly, $z_{2}, h^{m}\left(z_{2}\right), h^{2 m}\left(z_{2}\right), \ldots$ is an infinite ultimately periodic sequence of nunempty words, $L(G)$ must contain a word which is not square-free; a contradiction. Hence there exists a positive integer constant q such that each subword of $L(G)$ consisting of letters of rank 0 only must be shorter than q_{1}.
(iii). Now let $\bar{G}=(\bar{\Sigma}, \bar{h}, \bar{\omega})$ be the DOL system defined as follows:

$$
\begin{aligned}
& \bar{\Sigma}=\left\{[u, a, v]: u, v \in \Sigma_{0}^{*},|u|<q,|v|<q \text { and } a \in \Sigma \backslash \Sigma_{0}\right\}, \\
& \bar{\omega}=\left[u_{1}, a_{1}, \Lambda\right]\left[u_{2}, a_{2}, \Lambda\right] \cdots\left[u_{l}, a_{l}, u_{l+1}\right]
\end{aligned}
$$

where

$$
u_{1}, u_{2}, u_{3}, \ldots, u_{l+1} \in \Sigma_{0}^{*}, \quad a_{1}, \ldots, a_{l} \in \Sigma \backslash \Sigma_{0}, \quad l \geqslant 1
$$

and

$$
\omega=u_{1} a_{1} u_{2} a_{2} \cdots u_{l} a_{l} u_{l+1}
$$

for $[u, a, v] \in \bar{\Sigma}$,

$$
\bar{h}([u, a, v])=\left[z_{0}, b_{1}, \Lambda\right] \cdots\left[z_{k-1}, b_{k}, z_{k}\right]
$$

where

$$
\begin{aligned}
& k \geqslant 1, \quad h(a)=x_{0} b_{1} x_{1} b_{2} \cdots b_{k} x_{k}, \quad x_{0}, \ldots, x_{k} \in \Sigma_{0}^{*}, \quad b_{1}, \ldots, b_{k} \in \Sigma \backslash \Sigma_{0} \\
& z_{0}=h(u) i_{0}, \quad z_{1}=x_{1}, \quad z_{2}=x_{2}, \ldots, z_{k-1}=x_{k-1} \quad \text { and } z_{k}=x_{k} h(v) .
\end{aligned}
$$

We can clearly assume that \bar{G} is an everywhere growing DOL system (i.e., for every $a \in \Sigma,|h(a)| \geqslant 2)$; if \bar{G} is not such a system, then we can speed it up (see, e.g., [8]) and then deal with a finite number of DOL systems $\bar{G}_{1}, \ldots, \bar{G}_{n}$ each of which is everywhere growing. From the construction of \bar{G} it directly follows that $\mathcal{L}(\vec{G})=$ $g(L(\bar{G}))$ where g is the homomorphism on $\bar{\Sigma}^{*}$ defined by $g([u, a, r])=u a v$. It is proved in [6] that: if H is an everywhere growing DOL, system and f is a nonerasing homomorphism, then, for every positive integer n, \# $\operatorname{sub}_{n} f(L(H)) \leqslant D n \log _{2} n$ for some positive integer D.

Thus the theorcm holds.

We demonstrate now that the above established upper bound ($n \log _{2} n$) is the best possible.

Theorem 3. There exist a square free DOL language K and a positive constant D such: that for every $n \geqslant 1, \# \operatorname{sub}_{n} K \geqslant D n \log _{2} n$.

Proct. Consider the I)0L system $G=(\Sigma, h, \omega)$ with $\Sigma=\{0,1,2\}, h(0)=012, h(1)=$ 02, $h(2)=1$ and $\omega=0$ from [8]. It is shown in [8] (see also [1]) that $L(G)$ is square-free. Let $G_{(3)}=\left(\Sigma, h_{(3)}, 0\right)$ where for $a \in \Sigma, h_{(3)}(a)=h^{3}(a)$; thius $G_{(3)}$ results from G by starting with the axiom 0 and then taking only each th rd word of G. Clearly also $L\left(G_{(3)}\right)$ is square-free. Notice that, if f_{G} and $f_{G_{(3)}}$ denste the growth functions of G and $G_{(3)}$ respectively, then

$$
\begin{equation*}
f_{G}(n) \leqslant 3^{n} \text { and } f_{G_{(3)}}(n)>4^{n} \text { for } n \geqslant 0 \tag{1}
\end{equation*}
$$

Now let $H=\left(\mathcal{O}_{2}, \underline{0}, \overline{0} \overline{0}\right)$ be the $D 0 L$ system where $\Theta=\Sigma \cup \bar{\Sigma} \cup \bar{\Sigma}$ with $\bar{\Sigma}=$ $\{\bar{a}: a \in \Sigma\}$ and $\bar{\Sigma}=\{\overline{\bar{a}}: a \in \Sigma\}, g_{(a)}=h_{(3)}(a), g(\bar{a})=\overline{h(a)}$ and $g(\overline{\bar{a}})=\overline{h_{(3)}(a)}$ for $a \in \Sigma$ (where for a word $\boldsymbol{\alpha} \in \Sigma^{+}, \bar{a}$ results from α by replacing every letter a in it by \bar{a} and $\overline{\bar{\alpha}}$ results from α by replacing every letter a in it by $\overline{\bar{a}}$).

Clearly also $L(H)$ is square-free. Let $n \geqslant 1$ and let us estimate a lower bound for $\# \operatorname{sub}_{3 n} L(H)$. To this aim consider the word $z=g^{\prime n}(0 \overline{0} \overline{0})$ where $m=\left\lceil\log _{4} 2 n\right\rceil$. Then $z=z_{1} z_{2} z_{3}$ where $z_{1} \in \Sigma^{+}, z_{2} \in \bar{\Sigma}^{+}$and $z_{3} \in \Sigma^{+}$. Notice that it follows from (1) that $\left|z_{3}\right| \geqslant 2 n$. Let y be the prefix of z_{3} of length $2 n$. Since $L(H)$ is square-free (and so by Theorem 1 also overlap-free; all subwords of y or length n are different. Let u be one fixed subword out of these n subwords. Note that $E(G)$ has the strong prefix property (that is $h^{n+1}(\omega)=h^{n}(\omega) \alpha_{n}$ for each $n \geqslant 0$ where $\alpha_{n} \in \Sigma^{+}$) hence we can talk about the 'fixed occurrence of u ' in z_{3} and in all suffixes of all consect,tive words of $L(H)$ where we consider the longest suffixes which are over the alphabet $\bar{\Sigma}$. Now let us estimate the lower bound for the number of all those subwords of $L(H)$ that end on this fixed occurrence of u and are of length $3 n$.

Note that, if t and t^{\prime} are such two different subwords where \mid pres $_{\bar{\Sigma}} t \mid \leqslant n$ and \mid pres $_{\bar{\Sigma}} t^{\prime} \mid \leqslant n$, then $t \neq t^{\prime}$ (because f_{G} is a monotonically growing function). Hence, let us estimate a bound on a positive integer p having the property that, if $x=$ $g^{m+p}(0 \overline{0} \overline{0})$, then $\left|p_{\text {res }}^{\bar{\Sigma}} x\right| \leqslant n$. First of all, as long as $3^{m+p} \leqslant n$, then (by (1)) p has the desired property. Thus $(m+p) \log _{4} 3 \leqslant \log _{4} n$ and consequently $p \leqslant C \log _{4} n-0.5$, where $C=\left(1-\log _{4} 3\right) / \log _{4} 3$. Since we have n possible choices for u we get that

$$
\# \operatorname{sub}_{3 n} L(H) \geqslant n\left(C \log _{4} n-0.5\right)
$$

Consequently there exists a positive c nstant C_{1} such that for all $n \geqslant 4$

$$
\# \operatorname{sub}_{3 n} L(H) \geqslant C_{1} n \log _{4} n
$$

(any C_{1} such that $C_{1} \leqslant C-0.5$ will do).
Then it is rather easy to see that there exists a positive constant D such that \# $\operatorname{sub}_{n} L(H) \geqslant D n \log _{2} n$ for every $n \geqslant 1$.
Hence the theorem holds.

We turn now to the lower bc und on the subword complexity of square-free D0L languages.

Theorem 4. If K is an infinite square-free language, then \# sub ${ }_{n} K \geqslant n$ for every positive integer n.

Proof. Let n be a positive integer. If $n=1$, then cle:arly \# $\operatorname{sub}_{n} K \geqslant n$. So let $n \geqslant 2$ and let z in K be such that $|z| \geqslant 2 n-1$. Let $z_{1}, z_{2}, \ldots, z_{n-1}$ be words resulting from z by erasing from it the first, the two first, . . . , and the ($n-1$) first letters respectively. Now let $y, y_{1}, \ldots, y_{n-1}$ be prefixes of !ength n of words $z, z_{1}, \ldots, z_{n-1}$ respectively. Note that all those words $y, y_{1}, \ldots, y_{n-1}$ appear as subwords of z in such a way that any two of them overlap in \because. Since K is square-free, Theorem 1 implies that K is overlap-free and consequently $y, y_{1}, \ldots, y_{n-1}$ are all different subwords of z. Thus $\# \operatorname{sub}_{n} K \geqslant n$.

Finally we demonstrate that the linear bound on the subword complexity of square-free D 0 L languages is the best possible.

Theorem 5. There exist a square-free D0L language K and a positive integer constant C such that for every positive integer $n, \# \operatorname{sub}_{n} K \leqslant C n$.

Proof. It is well known (see, e.g., [1]) that there exists a square-free D0L language defined by a uniformly growing D0L system. (A D0L, system $G=(\Sigma, h, \omega)$ is called uniformly growing if there exists a positive integer constant t such that, for every $a \in \Sigma,|h(a)|=t$. However, if G is a uniformly growing $\mathcal{D} 0 \mathrm{~L}$ system, then [4] there exists a positive integer constant C such that, for all $n \geqslant 0$, \# $\operatorname{sub}_{n} L(G) \leqslant C n$.

We conclude this paper with the following two remarks:
(1). In this paper we have established lower and upper bounds on the subwori complexity of square-free DOL languages. Thue's original interest (as well as the interest of the riost of his followers) was in square-free infinite words. For this reason [1] and [9] consider DOL systems (Σ, h, ω) with the property that ω is a prefix of $h(\omega)$; each D0L system of this kind defines a unique infinite word. It is easy to see that all results we have presented in this paper are also valid for D0L systems of this particular kind.
(2). Analogously to the notion of a square-free word (language), for every $k \geqslant 2$ we can consider the notion of a k-repetitions-free word (language); Thue considered 3-repetitions-free "words which he called cube-free. It is easy to see that our lower and upper bounds for the subword complexity remain valid also in the general case of k-repetitions-free DOL. languages.

Acknowledgment

The authors gratefully acknowledge the financial support of NSF grant numbeMCS 79-03838. The authors are indebted to J. Berstel for bringing to their attention the topic of the subword complexity of square-free D0L languages.

References

[1] J. Berstel, Sur les mots sans carré définis par un morphisme, Lecture Notes in Computer Science 71 (Springer, Berlin, 1977) 16-25.
[2] J. Berstel, Mots sans c. rré et morphismes iterés, Discrete Math. 29 (3) (1979) 23 ;-2.44.
[3] J.A. Brzozowski, K. Culik II and A. Gabrielian, Classification of noncounting є ents, J. Comput. System Sci. 5 (1971) 41-53.
[4] A. Ehrenfeucht, K.P. Lee and G. Rozciberg, Subword nomplexities of various classes of deterministic developmental languages withc ut interactions, Theoret. Comput. Sci. 1 ('975) 59-70.
[5] A. Ehrenfeucht and G. Rozenberg, On the structure of polynomially bounded DUL systems, Fund. Informaticae 2 (1979) 187-197.
[6] A. Ehrenfeucht and G. Rozenberg, On subword complexities of homomorphic images of languages, Department of Computer Science, University of Colorado at Boulder, Technical Report CU-CS-173-80 (1980).
[7] M. Harrison, Introduction to Formal Language Theory (Addison-Wesley, Readirg, MA 1978).
[8] S. Istrail, On irreducible languages and nonrational numbers, Bull. Soc. Math. Ro imanie 21 (1977) 301-308.
[9] G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems (Academic Press, New York, 1980).
[10] A. Salomaa, Morphisms on free monoids and lenguage theory, in: R. Book, Ed., Fornal Language Theory: Perspectives and Open Problems (Academic Press, New York) to appear.
'11] A. Thue, Über unendliche zeichenreihen, Norske Vid. Selsk. Skr. I Mat.-Nat. Kl. 7 (1906) 1-22.
[12] A. Thue, Über die gegenseitige lage gleicher teile gewisser zeichenreichen, Norsk: rid. Selsk. Skr. I Mat.-Nat. KI. 1 (1912) 1-67.

