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Abstract. The subword complexity of a language K is the function which to every positive integer n 
assigns the number of different subwords of length n occurring in words of K. A language K is 
square-free if no word in it contains a subword of the form XX where x is a nonempty word. The 
(best) upper and lower bounds on the subword complexity of infinite square-free DOL languages 
are established. 

1. Introduction 

The problems of repetitions of subwords in wc+rdsI (and in infinite words) were first 
studied by Thue [llP 121. Since then those problems were investigated (and 
rediscovered) by quite a number of authors; with quite difterent motivations. In 
particular results of Tbue were also used in various constructions in formal language 
theory (see, e.g., 133). Recently one notices a revival of interest in Thue problems 
among formal language theorists (see, e.g., [ 1,2,7,8, lo]). In particular [ 1, IO] it was 
discovered that the theory of nonrepetitive sequences of Thue is very srlrongly related 
to the theory of DOL (iequences. F:or example, Thue’s original examples of square- 
free sequences were constructed using DOL systems and indeed, as pointed out in 
[l], most (if not 411) examples of nonrepetitive sequences known in the literature are 
either DOL sequences or codings of DOL sequences. In this way a quite significant 
connection is established between the theory of nonrepetitive sequences and the 
theory of ‘L%L systems, The theory of nonrepetitive sequences originates a new and 
very interesting research area within the theory of DOL systems while the theory of 
DOL systems provides a better insight into the theory of nonwepetitive sequencbes 
(see, e.g., [l, lo]). 
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In this paper we investigate DOL systems which generate nonrepetitive words 
only. In particular we investigate the upper and t e lower bounds on the subword 
complexity of languages generated by such sylstems and we estab’ish that those 

languages are qul cIy ‘*a ‘poor’ as far as number of subwt>rds is concerned. 1 For a language 
K iis subword complexity is a function assigning to each positive integer n the 
number of different subwords of length n occurring in words of K.) In a sense this 
result is quite counter intuitive: one is inclined to think tha to const tuct an infinite 
language consisting of nonrepetitive words one needs a lot of different subwords to 
avoid repetitions. (This aspect of the problem was pointed to us by Berstel who 
suggested to investigate the subword complexity of DOL cystems generating square- 
free words only. Actually Berstel conjectured that the subword complexity of such 
languages is bounded by a linear function; we prove that the number af subwords of 
length n in such languages is of order re log* n). We believe that this paper sheds a 
new light on ,ihe theory of square-free languages (sequences:) and yhat it demon- 
strates how known results and techniques of the theory of DOL systems contribute to 
tile theory of nonrepetitive languages (sequences). 

We assume the reader to be familiar with basic aspects o:f DOL systems (see, 

e.g., [9lh 

2. Preliminaries 

We will use standiard notation and terminology concerning IXL systems (see, e.g., 
[93). Thus a DOL system G is specified in the form G = (2, h, o) where 2 is its 
alphabet, h its homomorphis- iIa and w its axiom; L,(G) denotes the language of G 
while E(G) denotes its sequence. A letter u is ernsiPrg if, for some 1% 3 II, hm (a) = II 
(where n is the empty word), otherwise Q is nonercdsing; maxr G cjenotes 
max{lxl: x = h(a) for some u E 2). Since the problems co&clezed become trivia! 
otherwise, we consider only DOL systems which generate infinite langu;lges. 

It turns out that the notion of the rank of a letter in a DC15 system [S] will ble quite 
useful in our investigation. 

Definition. Let G = (X, h, O) be a DOL system and let, for a letter a ~2, 6;, = 
(X9 h, a). We say that a letter a E C is of rank 0 (in G) if L(C;,) is finite. Let, for i 3 0, 

& denote the set of all letters of rank i and let, for j 3 1, G(j) = (.X(j), h(j), ti(j,)i where 

c (j) = Cl jd Xi, O(j) = gi(@) 
i=U 

and, for 6 E Z(i), h(j)(b) = gtj,h(b) where g(i) is the homomorphism on C* defined by 
gtj,(a) = a for a E C[j), and g&a) = A for a E I,_$:; Zi. If a letter a E 2Tcj> ir; of rank 0 in 
G(j), then we SC that it is of rank j (in: G). If a E X is of rank j for some j 2 0, then we 

say thiat a has KU& in 6; otherwise we say that a is without a rank. 
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For a word x, 1x1 denotes its length while (if x is nonempty) firstx denotes the first 
letter of x. For a finite set A, #A denotes its cardinality. For a language K and a 
positive integer n, sub,K denotes the set of sui#words of length n of K while subK 
denotes the set of all subwords of K. Given an alphrlbet 2 and A G Z, PresA denotes 
the homomorphism on c* defined by prcsA(a I = 11 if a E C\A and presA(a) = a if 
aEA. 

We need the following notions concerning repetitions of subwords in a word. 

efinition. A word is called square-free if it does not contain a subword of the form 
x2 where x is a nonempty word. A word is called strongZt cube-free if it does not: 
contain a subword of the form x2 firstx where x is tj. nonempty word. A language is 
called square-free (resp. strongly cube-freq, iE it does not contain a square-free (rcsp. 
strongly cube-free) word. 

Clearly, every square-free word (language) is also strongly cube-free. Actually 
strongly cube-free words (languages) can be viewed also differently. 

Definition. A word y is said to have an oul?rlap if there c.uist words y 1, ~2% x1, x2, x3 
and x such that y = ylxix2x3y2, x = ~1x2 = ~2x3 where xllb x2, x3 are nonempty words. 
Otherwise we say that y is ouerlap-free. A hlnguage iz; cailled overlap-free if each words 
in it is overlap-free. 

Theorem 1. A word is overlap-free if and only if it is strongly cube-free. 

Proof. (i). Let u be a word containing two overla:pping occurrences of the same 
word. Hence u = ~1~1~2~3~2 where for some word x, ~1x2 = ~2x3 = x where x1, x2, J: 3 
are all nonempty words; thus u has two different occurrences of .K ‘overlapping OI? 
x2. But then x1x1 firstxl is a subword of z< and so u is not strongly cube-free. 

(ii). Let u be a word which can be written in the form u = ulxx(first x)u2 where x ik 
a nonempty word; hence u is not strongly cube-free. Then u = ul~c(~rstx)~l(firstx)tul;! 
where x = (firstx)y. But then u can be written in the form u = ult 1~2~3~2 where 

21 = x, 22 = firstx and z3 = yfirstx. Consequently u has two different occurrences of 
z = ZlZZ - ~2~3 ‘overlapping on’ 1.2. But then u is not overlap-free+ 

3. Results 

In this section the subword complexity c.iE squalre-free DOL languages is investi- 
gated. We begin by establishing an upper bound for this complexity. 

If K is a square+ee DOL lai~gu~g~* then, for every positive integer PL 
# sub,& s Cn log2 n for some positive integer constant C. 



28 A. Ehrenfeucht, G. Rozenbcrg 

Proof, Let G = (C, h, 0) be a DOL system generating K. 
(i). If a E X, then either Q is of rank 0 or 12 does not have a rank. 
This is established as follows. If a has a rank greater than 0, then G must contain a 

letter b of rank 3t such that, for some nt 2 1, h”(b) = ubv where u, v E 2*, uv -.+A and 
u and v consist of letters .of rank 0 only. Since both u, h”(u), h*‘-‘fU), n = . and 0, 

h”(v), h*“(v), . . . are infinite ultimately periodic sequences, 6, ,G) cannot be 
square-free; a contradiction. 

(ii). There exists a positive integer constant 4 such that, if u is : subword of ,K 
consisting of letters of rank 0 only, then [U I< q. 

This is proved by contradiction as follows. Let u be ‘an arbitrarily long’ subword of 
K consisting of letters of rank 0 only. Since it is well known (see, e.g., [9]) that 
subwords consisting of erasing lfetters only are shorter than certain constant, u must 
contain ‘arbitrarily many’nonerasing letters. Let E(G) = oo, 01, w:., . . . where for 
some ial, oi= xuy. Notice that in words ~0, ~1,. . . , mi-, we can dkstinguish 
{occurrences of) subwords uol ~1, . . . , iii-1 respectively which are the shortest 
subwords which ‘are ancestors of u. Let j be the minimal integer such that luila 2. So 
tet uj = avib where U, b E E, vi EC*. Clearly luii smax(lol, maxrG} and v,, if 
nonempty, consistis of letters of rank 0 only (because its contrrbution to oi is either 
empty or it consists of letters of rank 0 only). Let u = cod where c, d E C and v E $*, 
The situati&Bn can be best illustrated as in Fig. 1. 

Fig. I!. 
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Since she leng?h of t)j is limited and u is arbitrarily long either on the path frolm a to 
c or on the path from b to d there must be a symbol, say e, repeating PA least twice 
which contributes to v a subword which coDtc?ins a nonerasing letter ,; since both cases 
are symmetric assume that e occurs on the path from a to c. Hence for some m 3 1 
h “(e) = z lez2 where 22 is nonempty and consists elf type 0 iietters only with at least 
one of them being nonerasing, Since, clearly, 22, h m(~2), h2”’ (4, . . . is an infinite 
ultimately periodic sequence of nonempty words, U G) must contaiin a word which is 
not square-free; a contradiction. Hence there exists a positive integer constant 4 such 
that each subword of L(G) consisting of letters of rank 0 only must be shorter than 4’. 

(iii). Mow let e = (2, k, 6) be the DOL system defined as follo,ws: 

= ([u, a, v]: u, v E A,“, lul c q, Iv1 <q amd a E X\&}, 

where 

and 

w = mama2 9 l * um41+l, 

for [u, a, v] E S, 

where 

20 = h(lt):r(), z1 = xl, 22 =xz9 . . . , tk-1 = xl:-1 and zk =X&(8). 

We can clearly assume that G is an everywhere growing DOL syst(:m (i.e., for every 
a E C, Ih(a)I B 2); if c is not such a system, then we can speed it up l{see, e.g., [8]) and 
then deal with I.L finite number of DOL system:3 &, . . i ,6,, each of which is 
everywhere growing. From the construction of (? it (directly follows that L(G) = 
g&(G)) where g is the homomorphism on 2” definc:d by g([u, a, ~19 = WV. It is 
proved in [6] that if H is an everywhere growing DOL, system and I: is a non.erasing 
homomorphism, then, for every positive integer rz2, # sub,f(L(H)) G Dn log2 n for 
some positive integer D. 

Thus the theorem holds. 

We demonstrali:e now that the above established upper bound (I-Z log2 n) is the best 
possible. 

Theorem 3. l’%er e exist a square-free DQL hguage EC mad a pmitive constan a D suck+ 
that for every n zs 1, # sub,& 2 Dn log2 n, 
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Consider the J’IOL system G = (Z; h, o) with L; = (0, 1,2}, h(0) = 012, h( 1) =: 
02, k(2) = 1 and tir) = 0 from [Sj. It is shown in [8] (see also [I]) that L(G) is 
square-free. Let Go, = (2, h(3), 0) where for a E ZZ, h&a) = h3(a); tl us Gt3) results 
from G by starting with the axiom 0 and then taking only each thrd word of G. 
Clearly also L(G&) is square-free. Notice that, if fc and & denote the growth 
functions of G and G(3) respectively, then 

fG(nH3’ and fG,,,(n) > 4” for n a 0, (1). 

NOW let H = (@, g, O,fib) be the DOL system where 0 = C us v 2 with 2 = _- -_I__ 
(,ra’: aEX}andf=.[a’: a&E},g<a)=tz&a),g(a’)=h(a)andg(a”)=h&a)foraEX 
cwhere for a word Q E X’, a’ results from a! by replacing every letter a fn it by a’ and 6 
results from CY by replacing every letter a in it by a’). 

Clearly also L(H) is square-free. Let n 2 1 and let us estimate a lower bound for 
#sub3.L(H). To, this aim consider the word z = g’“(O%) where m = [log4 2nj. 
Then z = z1z2z3 where z1 E X’, z2 E 2’ and z3 E .$?. Notice that it follows from (1) 
that lz31 2 2n. Let y be the prefix of z3 of length 2iz. Since L(H) is square-free (and so 
by Theorem 1 also overlap-free) all subwords of y 07 length n are different. Let u be 
one fixed subword out of these n subwords. Note that E(G) has the strong prefix 
property (that is h “‘+‘(o) = h”(o)a,, f or each n a 0 where cy, E Z’) hence we can talk 
about the ‘fixed occurrence of U’ in 23 and in all suffixes of all consect,tive word:; of 
L(H) where we consider the longest suffixes which are over the alphabet J!!. Now let 
us estimate the lower bound for the number of all those :;ubwords of L(H) that end 
on this fixed occurrence of u and are of length 3n. 

Note that, if t zind t’ are such two different subwords where Ipresstl in and 
Ipres#l s n, then t Z t’ (because fc is a monotonically growing function). Hence, let 
us estimate a bound on a positive integer p having the property that, if x = 
gm*“(Ob6), then Ipreszxl s n. First of all, as long as 3m+p s n, then (by (1)) p has the 
desired property. Thus (m +p) log, 3 g log4 n and consequently p s C log4 n - 0.5, 
where C = (1 - log+4 3)/‘logh 3. Since we have n possible choices for u we get that 

#sub&(H)~n(C log4 n -0.5). 

Consequently there exists a positive constant C1 such that for all n 34 

#sub3,E(H) 2 Cln logen n 

(any Cl such that C1 < C - 0.5 will do). 
Then it is rather easy to see that there exists a positive constant .D such that 

# sub,L(H) 2 Dn log* n for every n 3 1. 
Hence the theorem holds. 

We turn now to the lower bc und on the subword complexity of square-free DOL 
languages. 
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If K is an infinite square=-free lang+age, &en #sub& 3 n fbr every 
positive integer n. 

roof. Let n be a positive integer. If n = 1, th.en &:arly # sub,K 3 n. SO let n 2 2 
andletzinKbesuchthatlzl~2n-1.Let21,z*,...,z,-1bewordsresultingfromz 
.by erasing from it the first, the two first, . . . , and the bz - 1) first letters respectively. 
Now let y, ~1,. . . , yn_l be prefixes of Iength n of words z, 21, e . . , zn- 1 respectively. 
Note that all those words y, yl, . . . , y,_l appear as subwords of z in such a way that 
any two of them overlap in 7. Since K is square-free, Theorem 1 implies that K is 
overlap-free and consequently y, ~1, . . . , JA+.~ are alli different subwords of z. Thus 
#sub,& 3 n. 

Finally we demonstrate that the linear bound on the subword complexity of 
square-free DOL languages is the best possible. 

Theorem 5. There exist a square-free DOL language .K and a positive integer constarz t 
C such that for every positive integer n, # sub,K s Cn. 

Proof. It is well known (see, e.g., [l]) that there exists a square-free DOL language 
defined by a uniformly growing DOL system. (A DOL, system G = (C, h, w) is called 
uniformly growing if there exists a positive integer constant t such that, for every 
a E _Z, Ih (a)] = t.) However, if G is a uniformly growing 0OL system, then [4] there 
exists a positive integer constant C such that, for all 1~ 2 0, # sub,L(G) s Cn. 

We conclude this paper with the fo’:lowing two remarks: 
(1). In this paper we have established lower and upper bounds on the subwor).i 

complexity of square-free DOL languages. Thue’s original interest (as well as the 
interest of the most of his followers) was in square-free infinite words. For this reason 
[l] a,ld [9] consider DOL systems (Z, h, W) with the property that w is a prefix of 
h(o); each DOL system of this kind defines a unique infinite word. It is easy to see 
that all results we have presented in this papr are also valid for DOL systems of this 
particular kind. 

(2). Analogously to the notiorl of 8 square-free word (language), for every k Z= 2 
we can consider the notion of a k-repetitions-free word (language); Thue considered 
3-repetitions-free Iwords which he called cube-free. It is easy to see that our lower and 
upper bounds for the subword complexity remain valid also in the genera:! case of 
k -repetitions-free DOL languages. 
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