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Abstract. The subword complexity of a language K is the function which to every positive integer n
assigns the number of different subwords of length # occurring in words of K. A language K is
square-free if no word in it contains a subword of the form xx where x is a nonempty word. The
(best) upper and lower bounds on the subworc complexity of infinite square-free DOL languages
are established.

1. Introduction

The problems of repetitions of subwords in words (and in infinite words) were first
studied by Thue [11, 12]. Since then those pioblems were investigated (and
rediscovered) by quite a number of authors with quite different motivations. In
particular results of Thue were also used in various constructions in formal language
iheory (see, e.g., [3]). Recently one notices a revival of interest in Thue proolems
among formal language theorists (see, e.g.,[1, 2,7, §, 10]). In particular[1, 10] it was
discovered that the theory of nonrersetitive sequences of Thue is very suiongly related
to the theory of DOL sequences. For example, Thue’s original examples of square-
free sequences were constructed using DOL systems and indeed, as pointed out in
[1], most (if not all) examples of nonrepetitive sequences known in the literature are
either DOL sequences or codings of DOL sequences. In this way a quite significant
connectlon is established between the theory of nonrepetitive sequences and the
theory of DOL systems The theory of nonrepetitive sequences originates a new and
very mterestmg research area within the theory of IDOL systems while the theory of
DOL systems provides a better insight into the the“ory of nonrepetitive sequences
(see, e.g., [1, 10]).
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In this paper we investigate DOL systems which generate nonrepetitive words
only. In particular we investigate the upper and the lower bounds on the subword
complexity of languages generated by such systems and we estab'ish that those
languages are quite ‘poor’ as far as number of subwerds is concerned. ( For alanguage
K iis subword complexity is a function assigning to each positive integer n the
number of differeat subwords of length n occurring in words of K.) In a sense this
result is quite counter intuitive: one is inclined to think that to construct an infinite
languagse consisting of nonrepetitive words one needs a lot of different subwords to
avoid repetitions. (This aspect of the problem was pointed to us by Berstel who
suggested to investigate the subword complexity of DOL <ystems generating square-
free words only. Actually Berstel conjectured that the subword complexity of such
languages is bounded by a linear function; we prove that the number of subwords of
length # in such languages is of order n log, n). We believe that this paper sheds a
new light on the theory of square-free languages (sequences) and that it demon-
strates how known results and techniques of the theory of DOL systems contribute to
thie theory of nonrepetitive languages (sequences;. :

We assume the reader to be familiar with basic aspects of DOL systems (see,
e.g., [9)]).

2. Preliminaries

We will use standard notation and terminology concerning D'0L systems (see, e.g.,
{9]). Thus a DOL system G is specified in the form G = (2, h, w) where ¥ is its
alphabet, 4 its homomorphisi: and w its axiom; L(G) denotes the language of G
while £(G) denotes its sequence. A letter a is erasiag if, forsome m =1, h"(a)=A
(where A is the empty word), otherwise a is nonerasing; maxr G denotes
max{|x|: x = h(a) for some a € 3}. Since the problems considered become trivia:
otherwise, we consider only DOL systerns which generate infinite languages.

It turns out that the notion of the rank of a letter in a DOL system [5] will be quite
useful in our investigation.

Definition. Let G =(2, h, ) be a DOL svstem and let, for a letter a3, G, =
(Z, h, a). We say that a letter a € X is of rank 0 (in G) if L(G,) is finite. Let, for i =0,
2, denote the set of all letters of rank i and let, for j =1, G;,= (X)), h(), @(j) Where

i~1
2pH=2\ _L_.ézf, w(j)= gj(w)

and, for b € 2;), h(;(b) = g()h(b) where g, is the homomorphism on X* defined by
gpnla)=aforael ,andg;la)=Aforae U,:(l, 2. Ifalettera e 3 isof rank Qin
G ), then we sz thatitis of rank j (in G). If a € ¥ is of rank j for some j =0, then we
say that a has sank in G; otherwise we say that a is without a rank.
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For a word x, |x| denotes its length while (if x is nonempty) firstx denotes the first
letter of x. For a finite set A, # A denotes its cardinality. For a lznguage K and a
positive integer n, sub,K denotes the set of sui-words of length n of K while subK
denotes the set of all subwords of K. Given an alphiabet 3 and 4 < 3, pres, denotes
the homomorpbkism on I* defined by presaie) = if a € 3\A and press(a)=a if
aed.

We need the following notions concerning repetitions of subwords in a word.

Definition. A word is called square-free if it does not contain a subword of the form
x? where x is a nonempty word. A word is called strongly cube-free if it does not
contain a subword of the form x? firstx where x is 2 nonempty word. A language is
called square-free (resp. strongly cube-fres , if it does not contain a square-free (resp.
strongly cube-free) word.

Clearly, every square-free word (languzge) is also strongly cube-free. Actually
strongly cube-free words (languages) can be viewed also differently.

Definition. A word y is said to have an overlap if there exist words y;y, yz, X1, X2, X3
and x such that y = y x;1x2x3¥2, X = X1 X2 = xX3 Where x;, X2, X3 2re nonempty words.
Otherwise we say that y is overlap-free. A language is calied overlap-free if each word
in it is overlap-free.

Theorem 1. A word is overlap-free if and only if it is strongly cube-free.

Proof. (i). Let u be a word containing two overlapping occurrences of the same
word. Hence u = ux1x2x3u where for some word x, x;x; = x2x3 = x where xy, x2, 13
are all nonempty words; thus « has two different occurrences of x ‘overlapping on’
x2. But then x;x, firstx; is a subword of i: and so u is not strongly cube-free.

(ii). Let u be a word which can be written in the form u = u;xx (first x)u, where x is
a nonempty word; hence u is not strongly cube-free. Then u = u s (firstx)y (firstx)urz
where x = (firstx)y. But then u can be written in the form u = u,2,2,z3u; where
z1=1x, 7, =firstx and z; = yfirstx. Consequently u has two different occurrences of
2 =2z,2, = 2,23 ‘overlapping on’ z,. But then u is not overlap-free.

3. Results

In this section the subword complexity ¢{ square-free DOL languages is investi-
gated. We begin by establishing an upp:r bound for this complexity.

Theorem 2. If K is a square-free DOL laiiguage theii, for every positive integer n,
#sub,K < Cn log, n for some positive integer constant C.
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Proof. Let G = (2, h, w) be a DOL system generating K.

(i). If a € 3, then either a is of rank 0 or a does not have a rank.

This is established as follows. If a has a rank greater than 0, then G must contain a
letter b of rank 1 such that, forsome m =1, h™ (b) = ubv where u, v € 2*, uv - A and
u and v consist of letters of rank 0 only. Since both u, h™(u), h* (u), ... and v,
h™(v), h*™(v),... are infinite ultimately periodic sequences, L.G) cannot be
square-free; a contradiction.

(ii). There exists a positive integer constant g such that, if u is : subword of K
consisting of letters of rank 0 only, then |u|<gq.

This is proved by contradiction as follows. Let 4 be ‘an arbitrarily long’ subword of
K consisting of letters of rank O only. Since it is well known (see, e.g., [9]) that
subwords consisting of erasing letters only are shorter than certain constant, u must
contain ‘arbitrarily many’ nonerasing letters. Let E(G) = wo, w1, @-, ... Where for
some =1, w; =xuy. Notice that in words wy, wy,...,wi-., we can distinguish
(occurrences of) subwords uo, uy,..., ;-1 respectively which are the shortest
subwords which are ancestors of u. Let j be the minimal integer such that |i;|=2. So
let u;=avh where a,be 3, vieI*. Clearly |u;|<max{lw|, maxrG} and v, if
nonempty, consisis of letters of rank 0 only (because its contribution to w; is either
empty or it consists of letters of rank 0 only). Let u = cvd where ¢, d € 3 and v e 5°*,
The situation can be best illustrated as in Fig. 1.
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Since the length of v; is limited and u is arbatrarily long either on the path from a to
¢ or on the path from b to d there must be a symbol, say e, repeating «.t least twice
which contributes to v a subword which contzins a nonerasing letter; since both cases
are symmetric assume that e occurs on the path from a to c¢. Hence for some m =1
h™(e) = z,ez, where z; is nonempty and consists of type 0 ietters only with at least
one of them being nonerasing. Since, clearly, z,, h™(22), h*™(z2), . . . is an infinite
ultimately periodic sequence of nunempty words, L{G) must contain a word which is
not square-free; a contradiction. Hence there exists a positive integer constant g such
that each subword of L(G) consisting of letters of rank 0 only must be shorter than ¢.

(iii). Now let G = (Z, h, @) be the DOL system dz=fined as follows:

S={lu,a,vl:u,veld, |ul<q,|v]|<qandac3\3Z,},
o =[uy, ay, Alluz, a2, A1+ - - [us ap w1},
where
Lig, U, Uy .. ., W1 €EZE, Ay, ..., me3\E,, =1
and
W =U1Q1U243 * ° - Wi+,
for [u, a, v]e 5,
h([u, a, v]) =[zo0, b1, A1 * [ze—1, i, 2k,
where
k=1, h(a)=xobix1bs* " bixi,  Xo,...,Xc €38, b1,..., b€ Z\3Z0,

29> h(u).‘fo, Z21=X1, 22 X23+4:32k-1= X1 and 2k =xkh(v).

We can clearly assume that G is an everywhere growing DOL system (i.e., for every
a € 3, |h(a)|=2); if G is not such a system, then we can speed it up (see, e.g., [8]) and
then deal with a finite number of DOL systems Gi,..., G,, cach of which is
everywhere growing. From the construction of G it directly follows that L(G) =
g(L(G)) where g is the homomorphism on £* defined by g([u, a, £ = uav. It is
proved in [6] that if H is an everywhere growing DOL system and f is 2 nonerasing
homomorphism, then, for every positive integer n, # sub,f(L(H))<Dn log; n for
some positive intager D.
Thus the theorem holds.

We demonstrate now that the above established upper bound (n log; ) is the best
possible.

Theorem 3. There exist a square-free DOL language K and a positive constant D suck:
that for every n =1, #sub,K = Dn log; n.
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Procf. Consider the DOL system G = (2, h, w) with 3. ={0, 1, 2}, 1(0) =012, h(1) =
02, #2)=1 and w = 0 from [8]. It is shown in (8] (see also [1]) that L(G) is
square-free. Let G)= (2, h(), 0) where for a € X, h;)(a) = h3(a); thus G, results
from G by starting with the axiom 0 and then taking only each th:rd word of G.
Clearly also L(G@)) is square-free. Notice that, if fg and fg,, denote the growth
functions of G and G 3, respectively, then

fo(n)<3" and fg,(n)>4" forn=0. (1).

Now let H = (6, g, 0,00) be the DOL system where @ =3 U uS$ with $=
{ag:acX}and £ ={d: ae 3}, gla)=haa), g(@)=h(a) and g(d)=kaja)foraec I
{(where for aword « € 27, d results from a by replacing every letter a initby d and &
results from & by replacing every letter a in it by a).

Clearly also L(H) is square-free. Let n =1 and let us estimate a lower bound for
#subs,L(H). To this aim consider the word z = g'"(Oﬁﬁ) where m = [logs 2n].
Then z =2,z,23 where ;€ 3%, 2, 5% and 23 £, Notice that it follows from (1)
that |z3|=2n. Let y be the prefix of z3 of length 2a. Since L(H) is square-free (and so
by Theorem 1 also overlap-free} all subwords of y or length n are different. Let u be
one fixed subword out of these n subwords. Note that E(G) has the strong prefix
property (thatis h"*'(w) = h" (w)a, for each n =0 where a, € 3*) hence we can talk
about the ‘fixed occurrence of u’ in z3 and in all suffixes of all consect.tive words; of
L(H) where we consider the longest suffixes which are over the alphabet 3. Now let
us estimate the lower bound for the number of all those subwords of L(H) that end
on this fixed occurrence of u and are of length 3n.

Note that, if ¢ and ¢ are such two different subwords where |presst|<n and
Ipresst'| <n, then t # ¢’ (because f is a monotonically growing function). Hence, let
us estimate a bound on a positive integer p having the property that, if x =
g™ *?(0G0), then |pressx| < n. First of all, as long as 3™ *? < n, then (by (1)) p has the
desired property. Thus (m +p) logs 3<logs n and consequently p < C logs n 0.5,
where C = (1-log, 3)/logs 3. Since we have n possible choices for u we get that

#subs,L(H)=n(C logs n—0.5).
Consequently there exists a positive ¢constant C; such that for all n =4
#subs,L(H)= Cn log, n

(any C; such that C, < C —0.5 will do).

Then it is rather easy to see that there exists a positive constant D such that
#sub,L(H)=Dn log, n for everyn=1,

Hence the theorem holds.

We turn now to the lower beund on the subword complexity of square-free DOL
languages.
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Theorem 4. If K is an infinite square-free language, ihen #sub,K =n for every
positive integer n.

Proof. Let n be a positive integer. If n = 1, then clearly #sub,K =n.Solet n=2
andlet z in K be such that|z| =2n —1.Let zy, z3,. . . , 2,1 be words resulting from z
by erasing from it the first, the two first, . . ., and the (n — 1) first letters respectively.
Now let y, y1, ..., y.—1 be prefixes of length n of words z, z4, ..., z,-; respectively.
Note that all those words y, y1, . . ., y.—1 appear as subwords of z in such a way that
any two of them overlap in ~. Since K is square-free, Theorem 1 implies that K is
overlap-free and consequently y, yi, ..., y.- are all different subwords of z. Thus
#sub,K =n. '

Finally we demonstrate that the linear bound on the subword complexity of
square-free DOL languages is the best possible.

Theorem 5. There exist a square-free DOL language K and a positive integer constant
C such that for every positive integer n, # sub,K < Cn.

Proof. It is well known (see, e.g., [1]) that there exists a square-free DOL language
defined by a uniformly growing DOL system. (A DOL system G = (2, h, w) is called
uniformly growing if there exists a positive integer constant ¢ such that, for every
a€ZX, |h(a) =t.) However, if G is a uniformly growing £)0L system, then [4] there
exists a positive integer constant C such that, for all n =0, #sub,L(G)=<Ch.

We conclude this paper with the following two remarks:

(1). In this paper we have established lower and upper bounds on the subwor:i
complexity of square-free DOL languages. Thue’s original interest (as well as the
interest of the rost of his followers) was in square-free infinite words. For this reason
[1] aad [9] consider DOL systems (X, h, w) with the property that w is a prefix of
h(w); each DOL system of this kind defines a unique infinite word. It is e¢asy to see
that all results we have presented in this paper are also valid for DOL systems of this
particular kind.

(2). Analogously to the notion of a square-free word (language), for every k =2
we can consider the notion of a k -repetitions-free word (language); Thue considered
3-repetitions-free words which he called cube-free. It is easy to see that our lower and
upper bounds for the subword complexity remain valid also in the general case of
k -repetitions-free DOL. languages.
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