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Abstract 

Many learning systems search through a space of possible performance elements, seeking an 
element whose expected utility, over the distribution of problems, is high. As the task of finding 
the globally optimal element is often intractable, many practical learning systems instead hill- 
climb to a local optimum. Unfortunately, even this is problematic as the learner typically does not 
know the underlying distribution of problems, which it needs to determine an element’s expected 
utility. This paper addresses the task of approximating this hill-climbing search when the utility 
function can only be estimated by sampling. We present a general algorithm, PALO, that returns an 
element that is, with provably high probability, essentially a local optimum. We then demonstrate 
the generality of this algorithm by presenting three distinct applications that respectively find 
an element whose efficiency, accuracy or completeness is nearly optimal. These results suggest 
approaches to solving the utility problem from explanation-based learning, the multiple extension 
problem from nonmonotonic reasoning and the tractability/completeness tradeoff problem from 
knowledge representation. 

Keywords: Computational learning theory; Hill-climbing; Speed-up learning; Utility problem; Knowledge 
compilation; Theory revision; Prioritized default theories 

1. Introduction 

Many learning tasks can be viewed as a search through a space of possible perfor- 
mance elements seeking an element that is optimal, based on some utility measure. As 
examples, inductive systems seek classifiers whose classifications are optimally accurate, 

* This paper expands the short article, “Probabilistic hill-climbing: theory and applications” that was awarded 
the “Artificial Intelligence Journal Best Paper Award” at the Ninth Canadian Conference on Artificial 
Intelligence (CSCSI-92), in Vancouver, in May 1992. 
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and many explanation-based learning [ 17,601 and chunking 1551 systems seek problem 
solvers that are optimally efficient [ 30,591. In each of these cases, the utility function 
used to compare the different elements (e.g., classifiers or problem solvers) is defined 
as the expected value of a particular scoring function, averaged over the distribution of 
samples (or goals, queries, problems, .) that will be seen [38,42]. 

There are at least two problems with implementing such a learning system: First, we 
need to know the distribution of samples to determine which element is optimal; unfor- 
tunately, this information is usually unknown. There are, of course, standard statistical 

techniques that use the set of observed samples to estimate the needed information; and 
several classes of learning systems have incorporated these techniques. For example, 

many “PAC-learning” systems [78] use these estimates to identify an element that is, 
with high probability, approximately a global optimum. 

This leads to the second problem: unfortunately, the task of identifying the glob- 
ally optimal element, even given the correct distribution information, is intractable for 

many spaces of elements [30,42]. A common response is to build a system that hill- 
climbs towards a lncuf optimum. Many well-known inductive learning systems, including 

BACKPROP 1441, genetic algorithms [ 6) and ~4.5 [ 681, use this approach, as do many 
speedup learning methods; see especially 1281. Unfortunately, few existing systems 

guarantee that each hill-climbing step is even an improvement, meaning the final ele- 
ment is not always even superior to the initial one, much less an optimum in the space 

of elements. Moreover, fewer systems include a stopping criterion to determine when 
the learning has reached a point of diminishing returns. 

The work presented here draws ideas from both of these themes: in particular, it 

describes a general learning algorithm, PALO, that hill-climbs to a local optimum, 
using a utility measure that is estimated by sampling. Given any parameters E,C? > 

0, PALO efficiently produces an element whose expected utility is, with probability 
at least I - 6, &-local optimal. ’ As PALO processes one sample at a time, it is an 

incremental (as opposed to “batched”) learner, which uses statistical tests to mollify 
the effects of the sample order. Moreover. this system can often work unobtrusively 
[ 621, passively gathering the statistics it needs by simply watching a performance 
element solve problems relevant to a user’s applications. Here, the incremental cost of 
PALO’s hill-climbing, over the cost of simply solving performance problems, can be 
very minor. 

Section 2 first compares and contrasts our approach with others from the literature. 
Section 3 motivates the use of “expected utility” as a quality measure for comparing 
performance elements. Section 4 then defines the general PALO algorithm, which deals 

sequentially with a series of performance elements 01,. . , O,, such that, with high 
confidence, each @;+I is an improvement over Oi and the performance of the final 
O,, is a local optimum in the space being searched. It also describes the statistical 
tool used to determine whether the result of a proposed modification is better than the 
original performance element; this tool can be viewed as a mathematically rigorous 
version of Minton’s “utility analysis” [ 591. Section 5 demonstrates the generality of our 

approach by presenting three different applications of the PALO system, each using its 

’ Theorem I below defines both OUT sense of efticiency, and “~-local optimality”. 
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own set of transformations to find a near-optimal element within its particular set of 
performance elements, where optimality is defined in terms of efficiency, accuracy or 
completeness, respectively. It also summarizes an empirical study, to illustrate PALO’S 

behavior in a particular situation. Section 6 discusses several variations, extensions and 

limitations, of our approach. The Appendix contains proofs of the claims made in the 

paper. 

2. Related results 

Finding an element with the best average performance 
There are several other projects that use statistical techniques to find a performance 

element whose average performance is optimal. In general, each such learning system 
must evaluate each of N performance elements for each of k training samples. Maron and 

Moore [ 581 describe a system that works when there is a relatively small, and explicit, 

set of elements, meaning the N x k “element-sample evaluations” can be performed 
explicitly. Their “Hoeffding Race” approach attempts to reduce the total number of 
element-sample evaluations by removing an element as soon as it is statistically clear 
that this element will not be the optimum. 

Fong [ 221 presents a different, more mathematically rigorous, solution to the problem 

of reducing the number of element-sample evaluations, by specifying which single ele- 
ment should deal with each sample. The resulting “Y-W framework extends Kaelbling’s 
tE system [50]. 

Combinatorial space + hill-climbing 
These approaches work when there is an explicit representation of all possible perfor- 

mance elements. In many cases, however, there are an implicitly defined combinatorial 
number of elements. Here, it makes sense to impose a “structure” on the space by con- 
necting each element to the set of its neighbors (which form a small subset of the space), 
and then use a hill-climbing system to climb successively from the “current element” 
to one of its neighbors. There are, of course, a huge number of such hill-climbing sys- 

tems used throughout machine learning, as well as almost every other field of computer 
science. Each such system must evaluate the currently proposed performance element 
against its neighbors. This comparison is trivial if each element’s “quality” is easily 

computed. This is not true in our case, as our quality measure is the expected value of 
the element’s score on an instance, which is not known as it depends on the unknown 
distribution of instances. 

As mentioned above, many learning systems attempt to address this challenge, of find- 
ing an element whose expected behavior is optimal; see for example the learning proce- 
dures used by symbolic classifiers [68], neural nets [44] and genetic algorithms [ 61. 
Each of these systems uses a set of training samples to estimate the distribution, then 

uses this information to determine when one element is superior to another. Most sys- 
tems do this implicitly, and heuristically. By contrast, our PALO system performs an 
explicit statistical test to determine, with prescribed corzjdence, when one element is 
superior to another. 



180 R. Grelner/Art@cicrI lntelli~ence 84 (I 996) 177-208 

As such, it is very similar to the COMPOSER system of Gratch, DeJong and Chien [ 27- 
291. COMPOSER differs from PALO in two significant ways. First, COMPOSER will use 
all available samples when hill-climbing. By contrast, PALO will stop and return the 
currently best performance element 0 if none of O’s neighbors appears significantly bet- 
ter than O-which means PALO will stop on reaching a point of “diminishing returns”. 
The second difference is in the statistical criteria used: While PALO’s test (based on 
Hoeffding’s inequality, Eq. (6)) holds for any bounded stationary distribution of sam- 
ples, COMPOSER’S test (based on Nadas rule) implicitly assumes that the samples are 
drawn from a normal distribution. While the COMPOSER assumption is standard, and 
empirically is often appropriate, it is not guaranteed to be correct; see Section 6.2. 
Moreover, in the interest of producing an empirically effective system, COMPOSER also 

makes other simplifying assumptions; for example, it does not make PALO’s conserva- 
tive (but mathematically necessary) assumption that the errors on successive hill-climbs 

will add. * 

“Rationality ” 

Doyle and Patil [ 19J recently argued against the standard practice of using worst 
case analyses to decide amongst different possible performance elements, and instead 
advocated using an expected case analysis. This raises the obvious questions of how 
to obtain the distribution information required to determine the expected case behavior, 
and then, what to do with such information, once it is available. We view our approach, 

as embodied in the PALO system, as addressing exactly those questions. 

Moreover, our PALO exhibits a type of “Type II rationality” [26], as it seeks an 
element whose expected utility is optimal, subject to the resource constraint of spend- 
ing only a feasible amount of time to find such an element. Many other systems are 
similarly motivated by this issue of computational effectiveness-i.e., what is the best 
performance the system can exhibit, given only limited computational resources; cf. 
the works by Horovitz [46], Etzioni [21] and Russell, Subramanian and Parr [ 701. 

These other systems, however, either assume that the utilities of the various elements 
are immediately available, or supply statistical methods for estimating these utilities 
for all of the elements (akin to the Hoeffding Race and y-IE framework mentioned 
above). By contrast, PALO will only estimate the utilities for the elements that can be 
reached in the current phase of the hill-climbing process. As this is a small subset of 
the total space of elements, PALO can reach statistically significant conclusions after 

observing manyfewer samples than are required by the other systems that must estimate 
the utilities of all of the elements; this allows PALO to begin climbing long before 
the other algorithms have finished collecting samples. Moreover, this also means that 

PALO will usually require a smaller total number of samples; see Note N-PALO5 in 
Section 4. 

2 A less major difference is that the COMPOSER system, like the Hoeffding Race and y-IE systems mentioned 
above, qualifies as a “wrapper” learner 1 10,481. as COMPOSER views each performance element as a black 
box, whose behavior can be sampled, but whose internals ate unavailable. By contrast, PALO will sometimes 
examine the internals of the performance elements, and use this structural information to efficiently determine 
the scores of the neighboring elements; see Section 5. I and I36 I. 
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Incremental algorithms 
Many other methods attempt to make effective use of the training samples; cf. re- 

inforcement learning algorithms [50,76] and systems that address the “bandit prob- 
lem” [ 3,641. Each of these systems also makes a sequence of decisions, attempting to 
maximize its total reward. Such systems tend to run continuously, making successive 
decisions; and they are often evaluated in terms of the number of mistakes they make 
over their entire learning + performance lifetimes. By contrast, our PALO is evaluated 
only in terms of the quality of the performance element it returns, provided it returns 
this answer within a reasonable-“polynomial’‘-amount of time. 

Like PALO, each of these other incremental learners climbs through a series of differ- 
ent elements. PALO, however, is probabilistically guaranteed to improve over time: i.e., 
the performance element produced at the jth hill-climbing step is, with high probability, 
strictly better than the previous one, produced on the (j - 1)st iteration. As such, it also 
resembles anytime algorithms [ 4,161, but differs from standard anytime algorithms by 
terminating on reaching a point of diminishing returns. 

“Probabilistic hill-climbing” 
Finally, as the phrase “probabilistic hill-climbing” may suggest “simulated anneal- 

ing” [53] to many readers, it is worth explicitly distinguishing these different ideas: 
The general simulated annealing process assumes that the quality measure used to com- 
pare different elements is accurate; its use of “probabilistic” refers to the stochastic way 
in which a simulated annealing algorithm probabilistically decides whether to climb 
“downhill”, in an attempt to avoid local optima. By contrast, our PALO system does not 
know the quality of each element, and so must estimate these values. Our use of “proba- 
bilistic” refers to the uncertainty of these estimates, due to possible sampling error. One 
could, of course, write a PALO-like algorithm that used an annealing process to climb 
downhill occasionally; however, this system would not satisfy the useful specifications 
presented in Theorem 1. 

3. Framework 

To illustrate the relevant concepts, consider the following example: A pure PROLOG 
program will return a set of answers to each query posed [ 121. We can form new 
programs by rearranging the order of the clauses. While these programs will return 
the same set of answers, they can require differing amounts of time to find the first 
answer to each query. Our goal is to determine the “optimally efficient program”; i.e.. 
the ordering of the clauses that requires the minimal average time to find an answer, 
over the distribution of queries. 

In general, we assume as given a (possibly infinite) set of performance elements Se = 
{ Oi}, where each 0 E Se is a system that returns an answer to each given problem (or 
query or goal) qi E Q, where Q = {ql , q2, . . .} is the set of all possible problems. 3 We 

3 We assume that Q is countable for purely pedagogical reasons. There are obvious ways of extending our 
analysis to handle au uncountably infinite set of problems as well. 
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also use a given utility function c : SC+ x Q t-1 R, where c(O,q) measures how well 
the clement B does at solving the problem 4. In the PROLOG context, each performance 
clement 0 corresponds to an ordering of the clauses, Se is the set of these PROLOG 

programs, each sample problem is a query, and c( O,q) quantifies the time 0 requires 
to solve y. (Section 5 later defines other classes of performance elements, samples and 
utility functions.) We insist that the c( ., ‘) have a bounded range of possible values 
A = A(c, Q. Se,) E LR+: i.e.. 

V’o E So, V9 6 Q: min(O) < c(O,q) < min(O) + A, (1) 

where min(@) = min,EQ{c(O,q)} is the minimal utility value of 0, over all instances 

q E Q. (Section 5.1 specifies this A value for the PROLOG case.) 

This utility function specifies the score of the performance element @ on an individual 
instance 4. Our performance elements, however, will have to solve an entire ensemble of 
problems Q = (4.i). To specify which element is best overall, we must therefore consider 

the distribution of problems that our performance elements will encounter. We model 
this using a stationary probability function, Pr : Q H [0, I], where PV[qj] denotes 
the probability that the problem 4, is selected. We then define the expected utility of a 

performance element in the obvious way: 

C(0) 2’ EqQr(C(O,q)] = CPr[qj x c(O,q). 

4EQ 

(2) 

Our underlying challenge is to find the performance element whose expected utility is 

maximal. As mentioned above, there are two problems: First, the problem distribution, 
needed to determine which element is optimal, is usually unknown. Second, even if we 
knew that distribution information, the task of identifying the optimal element is often 

intractable. 

4. The PALO1 algorithm 

This section presents a Icarning system, “PALOI”,~ that side-steps the above prob- 
lems by using a set of sample queries to estimate the distribution, and by hill-climbing 
efficiently from a given initial 01 to a performance element that is, with high probabil- 
ity, essentially a local optimum. This section first states the fundamental theorem that 
specifies PALOl’s functionality, then summarizes PALOt’s code and finally sketches the 
motivation underlying the theorem. 

As shown in Fig. 1, PALOI takes as arguments an initial performance element 01 E 
S,j, a collection of possible transformations 7 = {r,i}, where each rj : Se H Se maps 

one performance element to another, and parameters E, 6 > 0, that bound the allowed 
error and confidence. In the context of our PROLOG example, each ri rearranges the 
order of a pair of clauses; e.g., r~,i (0) moves O’s third clause to the beginning. 

PALOt uses an oracle that draws samples from & = {qj} at random, according to the 
fixed (but unknown) distribution Pr[ .I. (Here, each sample is a query, which could 

4 “PALO” abbreviates “Probably Approximately Locally Optimal”. Section 6. I explains the “I” subscript. 
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be posed by the user of the performance system; see Note N-PALO~ below.) Under 
specified conditions, PALO~ will climb from the given initial performance element 01 
to one of 01’s neighbors, 02 = Al for some 71 E 7, and then possibly from this 
02 to a different 03 = 72(02), and so on, until (eventually) reaching a O,,,, which is 
returned. 

Theorem 1 specifies PALO1 ‘s behavior. It uses 

I[@] = (7(O) ES@j7E7&7(0)$0} 

to denote the set of O’s neighbors. (The proof for this theorem appears in the Appendix.) 

Theorem 1. The PALO1 (@,ir, E, 6) process incrementally produces a series of per- 

.formance elements @,02,. . . , O,, such that each Oj+l = rj( Oj) using some rj E 7 

and, with probability at least 1 - 6, 
( 1) the expected utility of each performance element is strictly better than its prede- 

cessors , i.e., 

Vl < i <j < m: C(Oj) > C(Oi); 

(2) the$nal pelformance element returned by PALO1 , O,,, is an “e-local optimum”- 

i.e., 

47 E 7: C(7(0,,)) > C(0,) + E. 

Moreover, PALO1 will stay at any @j (before either terminating or climbing to a new 

Oj+l ) for a number of samples that is polynomial in l/c, l/6, A( c, &, Se) and (I[ Oj] (, 
and will terminate with probability 1, provided ISe( is finite. 

The PALO1 code, shown in Fig. 1, uses two additional terms: For any pair of perfor- 
mance elements 0,O’ E Se, 

A( 0, 0’) = nlEax{C(@” q) - c( 0, q)} - tl$ilI{c(O’, q) - c(0, q)} (3) 

bounds the range of possible values for c( O’, q) - c( 0, q) over all samples q E Q; and 

A[@1 = @,~g$“(O,@‘)} (4) 

is the largest such range for a given 0, over all neighbors 0’ E I[ 01. Notice that 
A [ 01 < 2A for any 0, using the A specified in Eq. ( 1) . 

To summarize the code: PALO1 examines a sequence of sample queries, one by one. 
On seeing each query, PALO~ computes the utility of the given 01 performance element, 
summed over all of the queries seen so far, and compares that value with comparable 
values for each of 0, ‘s neighbors (line (L2)). If any neighbor appears to be significantly 
better (line (L3)), it becomes the new performance element 02. PALO~ then compares 
02’s performance with that of 02’s neighbors over the next set of samples; and once 
again, if any of 02’s neighbors appears much better, PALO1 will climb to this apparently 
superior element 03, and so forth. On the other hand, if all of @j’s neighbors appear 
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Algorithm PALO~((~,.~,E,~) 

Forj= I..oodo 

Let 

66 
6,-T. 

.I_“’ 

%o Lj is mux # @samples on jth iterution (LI) 

ForEach H’ E 710, I do 

Let d(@j,R',O) + 0. 

For i = l..L, do 8 Get und process ith query 

Get sample y, (from oracle ) 

ForEach C+’ E 7\(z), ) do 

Let d((l)l,@‘,i) - d(t+,,N’.i- I) + [C(W’,y,) -c(@j,qi)] 

If i < L, 

‘If 39 E II@, I 

Then 

Else 

Then 

Let @,+l - C-1’ 

Exit For (inner loop) 

Else If WI E 7[Hjl: 

!J(@,.@‘.i) < E - A(@,,@‘) 

/ ( 

&I” 
~(LJ - l)l7T[@jll 

i 6, 1 

Then Return 0, (Exiting both inner and outer For loops) 

Then 

Let Hj+l - 0’ 

Exit For (inner loop) 

Else Return 0, (Exiting both inner and outer For loops) 

(L2) 

(L3) 

(L4) 

End For (inner loop) 

End For (outer loop) 

End PALO~ 

Fig. I. Code for PALO] algorithm. 
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comparable to or worse than the current Oj (line (IA)), PALO1 will terminate, returning 
Oj. If neither of these conditions holds, PALO~ will, in general, simply process the next 
query, then use this query, in addition to the previous ones, when comparing the current 
Oj to its neighbors. However, if PALO1 has dealt with this current Oj for a sufficiently 
large number of queries (Lj, from line (Ll)), PALOI will use easier to satisfy thresholds 
to decide whether to climb to some @,+I or terminate (line (L5)), and will necessarily 
perform one of those actions. 

Notice PALOI climbs from 0 to a new 0’ = T( 0) if 0’ is likely to be better than 0; 
i.e., if we are highly confident that C(@‘) > C(O), or equivalently, if 

P Ef C(0’) - C(0) > 0. (5) 

Unfortunately, as this C( 0’) - C(0) quantity depends on the unknown distribution, we 
cannot immediately determine if Eq. (5) holds. We can, however, obtain an approxima- 
tion that usually is good enough. To do this, define the random variable 

di zf C(O’,qi) -C(O,qi) 

to be the difference in utility between using @’ to deal with the query qi, versus using 
0. As each query qi is selected randomly according to the fixed distribution, these di are 
independent, identically distributed random variables whose common mean is Eq. (5)‘s 

P* 
Now let 

def 1 ’ 
Yn = - di 

n c 
j=l 

be the sample mean over n samples. (Notice the A( 0, O’, n) quantity computed on 
line (L2), corresponds to n x Y,.) From the Law of Large Numbers, we know that 
this average will tend to the true population mean p as n 4 00; i.e., @ = lim,,, Y,. 
Hoeffding’s inequality [ 11,451 bounds the probable rate of convergence: the probability 
that “Y” is more than p + y” goes to 0 exponentially fast as n increases; and, for a fixed 
n, exponentially as y increases. Formall~,~ 

Pr[ Y, > p + y] < e-2n(y/A)2, Pr[ Y, < p - y] < e-2n(ylA)2, (6) 

where n = A(@, 0’) is the range of possible values of c(O’, 4i) - ~(0, qi) defined in 

Es. (3). 
The PALOI algorithm uses these equations and the values of A( Oj, O’, i) to determine 

both how confident we should be that C(0’) > C( Oj) (lines (L3) and (L5)) and 
whether any “7-neighbor” of Oj (i.e., any Tk(Oj)) is more than E better than @j 
(lines (L4) and (L5)); see the proof in the Appendix. 

’ See [ 5, p. 121. N.b., these inequalities do not require that the underlying distributions be normal; instead. 
they hold for any arbitrary bounded distribution. 
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We close this section with five general comments on the PALO1 framework and 

algorithm. 6 

Note N-PALO~. The samples that PALO~ uses may be produced by a user of the 
performance system, who is simply asking questions relevant to her current applications; 
here, PALO] is unobtrusively gathering statistics as the user is solving her own problems 
[ 621. This means that the total cost of the overall system, that both solves performance 

problems and learns by hill-climbing to successive performance elements, can be only 
marginally more than the cost of only running the performance element to simply solve 

the performance problems. 
PALO uses these user provided samples as its objective is to approximate the average 

utility values of the elements, over the distribution of problems that the performance 
element will actually address. This “average case analysis” differs from several other 
approaches as, for example, we are not assuming that this distribution of problems will 
be uniform [25], nor that it will necessarily correspond to any particular collection of 

“benchmark challenge problems” 1521. 

Note N-PALO~. A “O-local optimum” corresponds exactly to the standard notion of 

local optimum; hence our “s-local optimum” (condition (2) of Theorem I ) generalizes 
local optimality. This means that PALOl’s output O,, will (with high probability) be a 
real local optimum if the difference in utility between every two distinct performance 

elements, 0 and r(O), is always larger than c. Thus, for sufficiently small values of E. 
PALO] will produce a bana fide local optimum. 

Note N-PALO% As I[ O] is the set of distinct, non-degenerate r( 0) elements, it can 
be much smaller than l7j. as there can be many r E I that map 0 to itself, and many 

other disjoint pairs (7,~‘) such that r(8) = r’(O). 

Note N-P&04. Our PALO! will (probably) process more samples using later per- 
formance elements than using the earlier ones, as its tests (directly associated with 
lines (L3) and (L4), and indirectly with line (Ll)) are increasingly more difficult to 
pass. This behavior is desirable, as it means that the overall system is dealing with larger 
numbers of samples using later, and therefore better, elements. 

Note N-PALOS. The PALO~ system uses different sets of samples on each climb. 
An alternative approach, which we call PALO,tt, will instead obtain a single set of 
samples at the start, and use them to (simultaneously) estimate the utilities of all of the 
performance elements-in the manner suggested by some of the systems discussed in 
Section 2. In particular, it will use these estimates when comparing different elements 
during the hill-climbing process. If the total space contains N different elements, PALO,11 

will have to simultaneously estimate all N elements to within &e/2, with probability at 
least I ~- 6; this requires 

‘We will end many sections with such comments. In each case, the casual reader may skip them, and suffer 
no loss of continuity. 
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1 Amax ’ 
Ma,, = - - 

( ) 2 E/2 
(7) 

samples, where nrnax = maxj A[@j] is the largest range of values, over all performance 

elements Oj. 
In most situations, PALO1 will require fewer samples than PALOall. To see this, note 

that PALO1 requires at most Lj samples to deal with the jth element, meaning it can 
perform k - 1 climbs, and terminate, using at most 

m,,,=~L, = $2(~)21n2’7~~1’ 
j=l 

A ( > 
2 k 

<2 J!!S 
c 

ln 2j*~*l~[@jll 

63 
j=l 

=2(“’ > ( T ‘2 

j=l 

lIl\T[Oj]/ +lIl’z) (8) 

samples. In practice, PALO1 will usually require far fewer samples than this to deal 
with its k elements as (1) A[ Oj] is often far under Amax, and also (2) PALO1 will 

usually use far fewer than Lj samples on its jth element, thanks to its line (L3) and 
line (L4) branches. Moreover, even this maI1 overbound is usually far under PALO,ll’s 

Mall. To motivate this empirical observation, assume each neighborhood has b = IT[ Oj] 1 
elements and that different neighborhoods are effectively disjoint; hence, the total space 
has something like INI = bK elements, where K is the real “depth” of the space. Now 

observe that PALOl’s k will be under K. In fact, as PALO1 may begin with a non- 

pessimal element, and also may stop at a non-global optimum, we expect k << K in 
general. Ignoring Eq. (8)‘s “ln(j27r2)/(36)” terms and Eq. (7)‘s “ln2/6”, notice that 

mall = 2 (%)*$h/l[@j]/ =2 (*)*klnb 
j=l 

Kln b xs Mall. 

Given these assumptions, Mall > mall whenever 

lny > (kin%). (9) 

Eq. (9) also exposes the infrequent situations where PALO] can require more samples 
than PALO~. This can happen when PALOI starts with an exceptionally bad element, 
and so is forced to explore essentially the entire space; meaning the “ln (r* k*) / (36)” 
terms will compensate for the difference between k and K. It can also happen if the 
neighborhoods have a large overlap, forcing PALOI to estimate the utilities of the 
overlapped elements several times, which “costs” PALO1 extra samples. By contrast, 
PALOall will estimate the expected utility of each element exactly once. 
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Rule Set 

NJ: bt#l(K) Nh: bt#2(K) 

‘~5: (Attempt. hr#I(r)) - q C Attempt ht# 2( K) ) - 
Fact Set b NS b N7 

Fig. 7. “Inference graph” GA, used by &J and @I 

Hence. it is possible that either rn,ll < Mall or mall > M,,,, depending on circum- 

stances. However, our experimental data shows that, in practice, PALO1 typically requires 
mungfc~~r samples than PALO,II, for the basic reasons mentioned above: PALO, almost 
always uses well under Lj samples when dealing with the jth element, and PALO~ rarely 
requires lnh INI iterations before termination. 

5. Instantiations of the PALO1 algorithm 

This section demonstrates the generality of the PALO~ algorithm by presenting three 
different instantiations of this framework. For each instantiation, we specify ( 1) the set 
of possible performance elements Se = {Oj}, (2) the set of transformations 7 = {ok} 

used in the hill-climbing process, and (3) the utility function c( ., .) used to specify the 
expected utility. We also present the derived values of A( O’, 0). (The instantiations of 
these parameters are summarized in Table 2.) For pedagogical reasons, each subsection 
begins with a quick simplistic description of its application, and then provides notes that 
describe how to build a more comprehensive system. 

5. I. Improving ejicienq 

Many derivation processes can be viewed as a satisficing search [ 741 through a given 
graph structure. As an example, notice that using the information shown in Fig. 2 to find 
an answer to the hep(rc) query, for some ground individual K, corresponds naturally to 
a search through the inference graph GA (formed from the given set of rules) seeking 
a successful database retrieval.’ A strategy specifies the order in which to perform the 

7 Here, hep (x) means x has hepatitis, j sun(x) means x is jaundiced, badB (x) means x has “bad blood”, 

and bt#i (x) means ,y tests positive for blood test #i. This graph traversal situation corresponds immediately 

to Section 3’s PROLOG situation. 
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various rule-based reductions (e.g., the al arc reduces the “NO: hep(K)” goal to the 
“Nl: jaun(K)” subgoal, based on the rule RI) and the database retrievals (e.g., the ~22 
arc from N1 to N2 corresponds to the attempted database retrieval “j aun( K) “). We can 
express each strategy as a sequence of GA’S arcs; e.g., the strategy 

0 0 = (~1,~2,~3,~4,uS,u6,u7) 

corresponds to the obvious depth-first left-to-right traversal, with the understanding that 
the performance element using this strategy will stop whenever it has exhausted all of 
its reductions, or it reaches a “success node”-e.g., if the u2 retrieval succeeds, then 
00 reaches the success node N2 and so stops with success. (Fig. 2 doubly boxes GA’S 
success nodes, N2, NS and NT.) There are many other possible strategies, including 

various alternative depth-first strategies, such as 

0 1 = (~1,~2,~3.~6,~7,~4,~5), 

0 2 = (u3,~4,u5,u6,~7,ul,u2), 

0 3 = (~3,~6,~7,~4,~5,~1,~2), 

as well as many non-depth-first strategies. 
Each strategy will find an answer, if one exists. As this is a satisficing search, 

all answers are equally acceptable [74], which means that all strategies are equally 

accurate. We therefore consider the costs of the strategies, preferring the one whose 
expected cost is minimal. 

We use fi E IV, the nonnegative cost of traversing the ai, to compute cs (0, q) , the 
cost of using strategy 0 to find an answer to the query q. For example, given the atomic 
propositions in Fig. 2’s “Fact Set”, 

c,(Oo,hepW)) = fl + f2, 

c,(@o,hep(bl)) = f~ + f2 + f3 + f4 + f5, 

c,(f&,hep(bl)) = f3 + f4 + f5. 

(These different strategies have different costs for a given query as each strategy stops 
as soon as it has found an answer.) The expected cost, of course, depends on the 

distribution of queries; i.e., on how often the query posed will be hep(bl), versus 
hep(b2), etc. Moreover, the task of finding the glob&y optimal strategy is NP-hard 

[301. 
This looks like a job for PALO~. ’ We first define the set of reordering transformations 

‘TRo = {Tij}, where each Tij maps one strategy to another by moving the “subgraph” 
under the ui arc to be before Uj and its subgraph. For example, 

76,4(@0) = (al, a2, a3,[=[, a4, Q5) = 01 

73,1(@0) = ( a3ra4ru5,a6,Q7 ,&,a2) = 02. 

* Of course, all of the signs in fig. 1 should be flipped, as we are hem measuring cost rather than utility, and 

so prefer the element with minimal, rather than maximal, cost. Note also that we are viewing each strategy as 
a performance element. 
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PALO, also requires the value of A(@, ~8)): these values are bounded by c(G) = 
C, f;, the sum of the costs of all of the arcs in the inference graph G. 

Note N-EFF~. In general, each class ot’ performance elements is defined with respect 
to the inference graph G = (N, A, S, f) associated with the given set of rules. In the 
situation shown above (in which the antecedent of each rule is but a single literal), N 
is a set of nodes (each corresponding to a proposition; e.g., the node No corresponds 

to “hep(K)” and N2 corresponds to the empty disjunction), and A c N x N is a set of 

arcs, each corresponding either to a rule-based reduction (e.g., the al arc from NO to 
N1 is based on the rule RI ) or to a database retrieval (e.g., the Q arc from NI to N2 
corresponds to the attempted database retrieval jaun(/c>). The set S C N is the subset 
of N’s “success nodes” (here, each is an empty disjunction such as N2 or N5, shown 
in doubled boxes); reaching any of these nodes means the proof is successful. The cost 
function f : A ++ 7Zl maps each arc to a nonnegative value that is the cost required to 
perform this reduction. We earlier let J’, refer to the value of f(a;). 

To deal with more general rules, whose antecedents are conjunctions of more than 

one literal (e.g.. *‘a(X) : - b(X) , c (X1 “1. we must use directed hyper-graphs, where 
each hyper-arc descends from one node to a set of children nodes, where the conjunction 
of these nodes logically imply their common parent. We must also define S to be a set 
of subsets of N, where the query processor would have to reach each member of some 

s E S for the derivation to succeed. This extension leads to additional complications in 
specifying strategies; see also [ 37, Appendix A] and [ 383. 

It is also trivial to extend these definitions to accommodate more complicated f’( .) 
cost functions, which can allow the cost of traversing an arc to depend on other factors- 

e.g., the success or failure of that traversal, which other arcs have already been traversed, 
etc. 

Note N-EFF2. This class of performance elements corresponds to many standard prob- 
lem solvers, including PROLOG [ 121; see also [24]. We can also use these inference 
graphs to describe operators working in state spaces; here each internal arc of the in- 

ference graph corresponds to an operator invocation and each leaf arc to a general 
“probabilistic experiment”. Using GA, for example, a3 encodes the “take some blood” 

operator, and ns encodes the experiment that succeeds if the patient tests positive on 
bt#l, and so forth. 

Note N-EFF3. In 1361, we discuss how this instantiation of the PALO] algorithm fits 
into the framework of “explanation-based learning” systems, and show in particular how 
our framework provides a mathematical basis for Minton’s “utility analysis” [ 591. We 
also present a more efficient PALO{ system that analytically computes upper and lower 
bounds of d( 0, r,,(O), n) based only on information acquired while running 0, and 
then uses this information in lines (L2) and (L3), respectively, of the code. N.b., this 
PALO{ will obtain good estimates of A( 0, T,, (0)) n) without first constructing ~ij( @) 
for each T;, E 7, and executing each such element over all S = {qr} queries. That paper 
also provides a battery of empirical evidence which demonstrate that PALO{ can work 
effectively. JuriSica [49] presents an extensive body of related results. 
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Table 1 

Average number of samples for each PALO 1 climb (using 00, 6 = 0.05 and various E’S) 

E To 02 To O3 To terminate 

2.0 22.1 56.5 

I.0 25.1 198.6 38.3 

0.5 26.7 218.6 82.2 

0.1 34.7 276.1 219.7 

Note N-EFF4. To illustrate PALOI’S effectiveness, consider again the graph shown 
in Fig. 2, and assume each arc has unit cost-i.e., fi = f(ai) = 1. We can define the 
distribution of queries in terms of the (independent) probabilities of the various database 
retrievals; here, suppose the real-world distribution is 

Pr[ jaun(K) is in Fact Set 1 query hep( K) is posed] = 0.01, 

Pr[bt#l( K) is in Fact Set 1 query hep( K) is posed] = 0.60, 

Pr[ bt#2( K) is in Fact Set 1 query hep( K) is posed] = 0.95. 

(Notice these events are not disjoint.) Given the fact set shown, this would happen if 

hep (bl) (respectively, hep(b21, hep (b6), hep (b7) ) was asked 4% (respectively, 1%, 

39%, 56%) of the time. 
We can use these values to compute the expected costs of the various strategies [ 751: 

C(Oc) = 5.792, C(Ot) = 5.069, C(O2) = 3.840 and C(O3) = 3.140. Of course, as the 
learner does not initially know these probability values, it will not know that the optimal 

strategy is 03. 

We then ran PALO~ with 00 as the starting element, 6 = 0.05, and various settings for 
E. Using E = 2.0, PALO1 climbed to 02, and usually terminated-which is appropriate, 
as this 02 is a 2.0-local optimum (even though it is not the global optimum). Over 100 
trials, PALO] required an average of 22.1 samples for the first climb, then about 56.5 
additional sample queries to realize this strategy was good enough and terminate; hence, 
this total learning process required on average about 78.6 total queries. 9 For the smaller 

values of E, PALO1 always went from 00 to 02 as before, but then used a second hill- 
climbing step to reach the globally optimal 03. As expected, the number of steps required 
for each transition were about the same for all values of E = 1.0,0.5,0.1, requiring on 

average 25.1, 26.7, 34.7 samples (respectively) to reach 02, then an additional 198.6, 
218.6,276.1 samples to reach 03, and finally 38.3,82.2,219.7 more samples to decided 
that this 03 was in fact an e-local optimum; see Table 1. (Notice the time required to 
deal with this final set of samples is not wasted: the overall “03 performance element 
& PALO1 learning element” system is still solving relevant, user-supplied, problems, 
and doing so at a cost that is only slightly more expensive than simply running the 03 
performance element alone, which we know is the optimal element.) Fig. 3 graphs the 
E = 1 .O case; the other cases look very similar, of course. 

9 In one of these 100 trials, PALO1 continued to climb and reached 83; here it required 16 additional samples 
to terminate. 
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Fig. 3. r’ALoI ‘S climbs: initial element 80, E = I .O. 6 = 0.05. 

As a final note, the 6 = 0.05 setting means that we would allow PALO1 to make 1 
mistake in 20 trials. However, in the 400 trials summarized here (involving 100 tri- 
als for each for the the 4 values of E), PALO] never made a mistake-i.e., it never 
climbed to an element that was inferior, and it never terminated when there was 
an E-better neighbor. This, coupled with similar results over several thousand other 

trials over different inference graphs, and with diverse initial performance elements 

and values for I and 8, illustrate how overly conservative PALOl’s statistical tests 

are. 

5.2. Improving accuracy 

A default theory can be ambiguous, as it can produce many individually plausible 
but collectively incompatible solutions to certain queries [ 691. Unfortunately, only (at 
most) one of these solutions is correct; we would, of course, like to return only that 
one solution. This is the essence of the “multiple extension” problem in knowledge 
representation [ 4 1,63,69], and corresponds to the “bias” and “multiple explanation” 
problems in machine learning [ 42,6 1,7 1,771 and “reference class” problem in statistics 
[ 54,571. This subsection addresses this problem by seeking a credulous system, related 
to the given initial default theory, that is “optimally correct”; i.e., which produces the 
correct answer most often. 

In more detail, we assume there is a correct answer to each query q, denoted U(q); 
hence c3( 2 + 2 = X) = Yes [ X H 41. Each correct answer is either “Yes” (possibly with 
a binding list, as shown here) or “No”. Using O(q) to represent the answer returned by 
the credulous performance element 0, we can define the utility function 
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+l, if O(q) = O(q), 

c,(O,q) Ef 0, if O(q) = IDK, (10) 

- 1, otherwise, 

where IDK represents “I don’t know”. 
We focus on stratified THEORIST-Style performance elements [9,66,67,79], where 

each element 0 = (.F, ‘H, r) is a triple, composed of a (consistent) set of facts F’, a set 

of allowed hypotheses ‘H (each a simple type of default [ 691) and a specific priority 

ordering of the hypotheses. As a specific example, consider @A = (&, 3-10, TA), where lo 

& = 

{ 

s(X, gray) :- e(X), IQ(X). 

s(X, white) : - a(X), n,(X) . (11) 

a(zelda) , e(zelda), . . . 

is the fact set; 

is the hypothesis set, and !P, = (hi, IQ.) is the hypothesis ordering. 
To explain how OA would process a query, imagine we want to know the color of 

Zelda-i.e., we want to find a binding for C such that (T =“s(zelda, Cl” holds. @A 
would first try to prove s (zelda, C> from the factual information Fa alone. This would 
fail, as we cannot prove that Zelda is either a normal elephant or that she is a normal 

albino (i.e., neither nE(zelda) nor nA (zelda) holds, respectively). @A then considers 
using some hypothesis-i.e., it is allowed to assert an instantiation of some element of 
‘Flc if that proposition is both consistent with the known facts .Fc and if this addition 

enables us to reach a conclusion .to the query posed. Here, @A could consider asserting 
either nE(zelda) (meaning that Zelda is a “normal” elephant and hence is colored 
gray) or nA (zelda) (meaning that Zelda is a “normal” albino and hence is colored 
white). Notice that either of these options, individually, is consistent with everything we 
know, as encoded by 30. Unfortunately, we cannot assume both options, as the resulting 

theory &j U {nE(zelda) , nA (zelda)} is itICOIISiSteIIt. 

We must, therefore, decide between these options. @A’s hypothesis ordering TA spec- 
ifies the priority of the hypotheses. Here r. = (hi, h2) means that hi: nE( x) takes 
priority over hi: nA(X), which means that @A will return the conclusion associated 
with nE(zelda)-i.e., Gray, encoded by Yes[C I-+ gray], as & U {nE(zelda)} /== 
s(zelda, gray). *’ 

Now consider the OB = (250, H 0 , 2’ ) s e ement, which differs from @A only by using a 1 
different priority ordering TB = (hz, hi). As rs considers the hypotheses in the opposite 

lo Here zelda refers to Zelda, a(X) means ,y is an albino, e(,y) means ,y is an elephant, and a(~, 4) 
means ,y’s color is q5. The first two clauses in E?q. ( 11) state that normal elephants are gray, and that normal 

albinos are white. We leave implicit the statements that a (., .) is a function and gray j white. 

” This uses the instantiation a(zelda, gray) = sczelda, C)/Yea[C H gray]. To simplify our notation, 

we will view “q/No” as “yq”. 



order, it will return the answer Yes]C + white] to this query; i.e., it would claim that 
Zelda is white. 

Which of these two elements is better? If we are only concerned with this single Zelda 
query, then the better (read “more accurate”) Oi is the one with the larger value for 

c,(O;,s(zelda, C)); i.e.. the 0; for which O,(s(zelda, C)) = Q(s(zelda, C)). 
In general, however, we will have to consider a less trivial distribution of queries. To 
illustrate this, imagine Eq. ( 1 1 )‘s *‘. .” corresponds to {a(zt > , e (~1) , , , a(ztoc> , 
e(ziau)}, stating that each z; is an albino elephant; and that the queries are of the form 
“s(z;, C)“, for various z;. The best Oi now depends on the distribution of queries (i.e., 

how often each “s (z, , C)” query is posed) and also on the correct answers (i.e., for 

which z, does 0( s (z, , C> ) return Yes(C ++ white] as opposed to Yes[C H gray], 

or some other answer). Hence, the expected accuracy of each system C, (Oi), is defined 
by plugging Eq. ( 10)‘s c,,( . . .) function into Eq. (2); we would then select the 0; 
system with the larger C,,(. 1 value. 

In general, B = (3,X. ?) can include a much larger set of hypotheses 3-t = {ht , . . , 
h,,}. As before, each ordering r = (/z,,,I ). . i~,.~,j) is a sequence of 7-I’s elements, 

based on the permutation r : [ I ..N] H 1 I.. N]. 0 uses this information when answering 
queries: Let i be the smallest index such that 3~i{h,.,,,} is consistent and 3U{hr(;)} /= 
y,lp, for some answer fl,; here 0 returns this p,. ” If there is no such i, then 0 returns 

IDK. 
Our goal is to identify the priority ordering that is accurate most often. As before, this 

depends on the distribution of queries, which unfortunately is not known a priori; and 
moreover, the task of identifying this optimal ordering of the hypotheses is NP-complete 

(and worse, not even approximatable [ I] 1, even if we knew the distribution, even in 
the simplistic situation that we have been considering, where every derivation involves 

exactly one hypothesis, etc. [ 321. 
Once again, PALO1 is designed to deal with this situation. We first define the set of 

transformations IA = {r,,};,,, where each r,i moves the jth term in the ordering to just 
before the ust before the.ith tern-i.e., given any ordering /r = (ht , h2,. . , h,), 

T;,(T) = (h I,..., h ,__l, Il,,k I,..., /I ,__I. /l,,+I ,..., IIn). - 

We can compute the value of d( rk, 7,, ( Tk), II) for each ri; transformation and each set 

of queries {qN,}z,=, based on whether 3 U {hi} b” q,,/c3(q,,) for each hypothesis hg. 

Observe finally that A(@,T(@)) < 2 for all 0 E S@ and all 7 E IA. 

Note N-Acc~. The motivation underlying this work is similar to the research of Shas- 
tri [73] and others, who also use probabilistic information to find an ordering of the 
given default rules. Our work differs by providing a way of obtaining the relevant statis- 
tics, rather than assuming that they are known a priori, or can be computed purely from 
static analysis of ground facts in the database. 

I2 Technically, our performance element considers adding in some instunfiation of /I,-,;, (i.e., h,,(;,/q?~ for 

some binding list 4). and so we are seeking the smallest index i such that F u {hrci,/~} is consistent and 

F’ U {h,.,il/@} b q/p, for some binding lists q5 and pi. 
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Note N-Acc2. In many situations, we may want to consider each hypothesis to be 
the conjunction of a set of subhypotheses, which must all collectively be asserted to 

reach a conclusion. Here, we can view 31 = P[H] as the power set of some set of 
subhypotheses H. 

Note N-Acc~. The description so far assumes that every ordering of hypotheses is 
meaningful. In some contexts, there may already be a meaningful partial ordering of the 
hypotheses, perhaps based on specificity or some other criteria [ 401. Here, we can still 

use PALOI to complete the partial ordering, by determining the relative priorities of the 
initially incomparable elements. 

Note N-ACCA As this PALO1 process can require general theorem proving (e.g., to 
determine whether 3 U {hi} k=’ q/O(q)), it can be undecidable in general. We of 
course need to insist that this process be decidable to guarantee that PALO1 will terminate 

with probability 1. We can, however, guarantee that each of PALOl’s iterations will be 
polytime if the F U {hi} b’ q k computation is polytime (e.g., if we are dealing with 
propositional Horn theories or propositional 2-CNF, etc. [ 83 ) . 

Note N-AC& Recall that, in general, we need to compute the values of C( rij (rl), q) - 
c( ‘Q, q) for each rij in ‘TA. Above, we obtained this information by determining whether 

FU {hi} k=? q/O(q) holds for each hypothesis hi. In some situations, there can be more 
efficient ways of estimating these values, perhaps by using some Horn approximation 
to F U {hi}; see Section 5.3 below. We can also simplify the computation if the {hj} 
hypotheses are not independent; e.g., if each corresponds to a set of subhypotheses, as 
discussed in Note N-ACC~ above. 

Note N-Acc6. This paper considers only one type of transformation to convert one 

theory into another-viz., by rearranging the set of hypotheses. There are many other 
approaches, e.g., by eliminating some inappropriate sets of hypotheses [ 131, or by 
modifying the antecedents of individual rules [65], etc. Each of these approaches can 
be viewed as using a set of transformations to navigate around a space of interrelated 
theories. We can then consider the same objective described above: to identify the 

element in the implied space that has the highest expected accuracy. 
Here, as above, the expected accuracy score for each element depends on the unknown 

distribution, meaning we will need to use some sampling process. In some simple cases, 
we may be able to identify (an approximation to) the globally optimal element with 
high probability; cf., the PA0 algorithm discussed in [ 381. In almost all cases, however, 
this identification task is intractable, and not even approximable [33]. Here again it 
makes sense to use a hill-climbing system like PALOI to identify an element that is 
close to a local optimum, with high probability. (Of course, this local optimality will 
be based on the classes of transformations used to define the space of theories, etc.) 

Note N-Acc~. There are several obvious extensions to this task: First, our model as- 
sumes that each answer to a query is either completely correct or completely false; in 
general, we can imagine a range of answers to a query, some of which are better than 
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IDK 

N 

Fig. 4. Flow diagram of (S, W) addressing X k’! IT. 

others. (For example, the correct answer to a particular existential query could be a set 

of 10 distinct instantiations. Here, returning 9 of them may be better than returning 0, or 
than returning I wrong answer. As another situation, we may be able to rank responses 

in terms of their precision: e.g., knowing that the cost of watch7 is $2,000 is more 
precise than knowing only that watch7 is expensive.) We have also assumed that all 
queries are equally important; i.e., a wrong answer to any query “costs” us the same - 1, 
whether we are asking for the location of a salt-shaker, or of a stalking tiger. One way 
of addressing all of these points is to permit the user to specify her own general c( 0, q) 

function, which could incorporate these different factors, by differentially weighting the 
different queries, the different possible answers, etc. 

On a related theme, this subsection has completely ignored the computational cost 
of obtaining that answer. Within our framework, however, we can consider yet more 

general c( ., .) functions, that can incorporate the user’s tradeoffs between accuracy and 
efficiency, etc. This would allow the user to prefer, for example, a performance system 

that returns IDK in complex situations, rather than spend a long time returning the 

correct answer; or even allow it to be wrong in some instances [ 341. (See also next 
subsection.) 

5.3. Improving categoricity 

The task of determining whether a query is entailed by a theory is known to be 
intractable if the theory is a general propositional theory (assuming P $ NP) [ 14,231. 
It can, however, be performed efficiently if the theory contains only Horn clauses 
[ 181. I3 Selman and Kautz [ 721 use this observation to define a particular “knowledge 
compilation” method: Given a general propositional theory .Z, their compiler computes 

” A clausal theory is a set (conjunction) of clauses. where each clause is a set (disjunction) of atomic 

literals, each either positive or negative. A theory is Horn if each clause includes at most one positive literal. 

When convenient, we will write each clause as either a disjunction of literals, or as a set of literals; e.g., 

y=a~VnzV~njisequivalenttoy={n~,a~,~cr~}. 
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a pair of “bracketing” Horn theories S and W, with the property S k _Z ‘F W; we call 
each such S a “Strengthening” of the initial theory 2, and each such W a “Weakening”. 
Fig. 4 shows how the resulting “compiled system” 0 = (S, W) uses these bracketing 
theories to determine whether a query (T follows from 2: If W k cr, then 0 terminates 
with “yes”; otherwise, if S p u, then 0 terminates with “no”. (Notice that these are 
the correct answers, in that W b (+ guarantees that 2: /= u, and S p u guarantees 
that 2 b u. Moreover, these tests are linear in the sizes of u and S (respectively, u 
and W), provided 1u is Horn [ 181. l4 ) Otherwise, if W F u and S k u, 0 returns 
IDK. Notice this compiled system is usually tractable, I5 yet can deal with an arbitrary 
propositional theory. However, it may not be completely categoric, as it may return IDK 
for some queries, rather than either Yes or No. Hence, we have sacrificed completeness 
for tractability. 

We of course would like to use an approximation (Si, Wi) that is as categorical as 
possible; i.e., which minimizes the probability that the associated (Si, Wi) system will 
return IDK. To state this more precisely: Given any approximation (S, W) and query u, 
let 

C,((S?W),U) dzf d(Wu) +(l -d(S,u)), 

where for any theory T, 

d(T,u) Ef 1, ifT/=u, 

0, otherwise. 

Hence, cc ( (S, W), a) = 1 if u is “covered” by (S, W), in that either W k u or S F u. 
Using Eq. (2)) we can then define C,( (S, W)) to be the expected value of c,( (S, W), .). 
Our goal is to determine the approximation (S, W) with the largest C,( .) value. As 
before, this task is intractable (see [72 ] ) and depends on the distribution, suggesting 
yet again that we use the PALOI system. 

Observe that the set of queries covered by a strengthening and a weakening are 
disjoint-i.e., for any approximation (S, W), there is no query u such that both W + u 
and S p u. This means an approximation (Si, W;) is, with probability at least 1 - 6, 
within e of a local optimum if Si (respectively, Wj) is within E of a locally op- 
timal strengthening (respectively, weakening) with probability at least 1 - 6/2. We 
can therefore decouple the task of finding a good strengthening from that of finding 
a good weakening, and handle each separately. This paper focuses on how to find a 
good strengthening; Note N-CATI below discusses how to compute a good weaken- 
ing. 

Hence, we are seeking a strengthening Sort whose D(S,,,,) value is minimal, where 
D( &,r) = E[d( S, .) ] is the expected value of d( S, s). (Recall we want S,,, + u to fail 
for as many queries as possible.) It is easy to see that this S,,, should be a weakest 
strengthening; i.e., satisfy OptS( 2, S,,,) where 

I4 We can actually allow the query (T to be a conjunction of “Horn-dual” propositions, where a proposition u 

is a Horn-dual iff its negation 1~ is Horn. Notice this class of Horn-duals strictly includes CNE 

I5 Note N-CATI below explains this caveat. 
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OptS(X,S) M S + 2’ & Horn(S) & 

To compute these Opt%: Define a “Horn-strengthening” of the clause Y = {a,, . . , ak, 
dq.. . ) -br} to be any maximal clause that is a subset of Y and is Horn-i.e., each 

Horn-strengthening is formed by simply discarding all but one of Y’s positive literals. 
Here, there are k Horn-strengthenings of this Y, each of the form y, = {aj, 41,. . , +p} 
for some j = I ..k. For example, the two Horn-strengthenings of the non-Horn clause 
y E al V a2 V 761 V Tb2 are yl E al V d>~ V 7b2 and y2 = a2 V 161 V Tb2. 

Now write ,V = Z‘H U 2~. where ZH is the subset of X’s clauses that are Horn and 
Z’N = {Yi)f$ is its non-Horn subset. Selman and Kautz [72] prove that each optimal 

strengthening is of the form S,, = 2~ U _‘k, where each Y’ E 2; is a Horn-strengthening 

of some Y E .Z,v. By identifying each Horn-strengthened theory with the “index” of the 
positive literal used (i.e., using y,; of the form shown above, yfi = {LZ;, Tb{, . _ . , -bi,}), 

we can consider any Horn-strengthened theory to be a set of the form Scic 1 ),j(*),__,,,(m)) = 

2-U “{Y.)(,,,Y~,2,..“lY:;,,,, }. For example. given the theory 2 = 2~ U 2~ with non- 
Horn clauses 1,v = {yl, yz} where y1 = al V a:, V -bj V lb2 and y2 = cl V cz V CJ V 41, 

the (1.3) strengthening would be 

WC can navigate about this space ol‘ Horn-strengthened theories by changing the index 
associated with individual non-Horn clauses: That is, define the set of transformations 

F’ = {~L.J},<~Q,,;~<~Q where each 7k.i is a function that maps one strengthening to 
another by changing the “index” of the kth clause to be !; e.g., 7k,~(S(3,9,....~~,.,_,~j) = 
S;?,g,. .,1,...,5). (Of course, m is the number of non-Horn clauses in _Z and II is the total 
number of propositional variables in the theory.) Continuing with the earlier example, 

?,I (S(1.3)) = S(1.1) = X‘H u 
a I V lb, v Tb2 

Cl V ldl 

and 

71.2(S(l.3)) = S(2.3) = z‘“U 
a2 v --b, v Tb2 

ci V ldl 1. 

This instantiation of the PALO1 process starts with the given Horn-strengthened theory 

(perhaps S(l,l, ,,,,) ) and hill-climbs in the space of Horn-strengthened theories, using 
this set of 7’ transformations. As d(S,, S’,n) depends only on whether S’ b c and 
S; k LT, it can be answered efficiently, as each S, and S’ are Horn. (In fact, this process 
can also use the support of u from S; to further improve its efficiency.) Notice finally 
that /2(S;, S’) < I for all strengthenings Si and S’. 

Note N-CATS. Selman and Kautz I721 prove that there is a unique optimal weakening, 
ws, which corresponds to the set of all Horn implicates of the initial theory. Unfortu- 
nately, this w, can be exponentially larger than the original theory [ 5 I]. This means the 
cost of using (S, w,,) to answer queries can be exponential, as the complexity of w, /= g 
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is linear in Iw,[ = 0(214), where the size (T( of a theory T is the number of clauses in 
T. (This was not an issue with strengthenings, as each strengthening Si is “small”, in 

fact, l&l < )-Xl.) 
We avoid this potential blow-up by considering only weakenings of size at most K = 

K( (Zl), where K( .) is a user-supplied (polynomial) function, designed to implement 

the user’s tradeoffs between efficiency and categoricity. Our goal, therefore, is to find 
the weakening of this size that is maximally categorical, over the distribution of queries. 
Once again, this best K-sized weakening depends on the distribution, and moreover, the 
task of determining which is best, even given the distribution, is again intractable; see 
Theorem A.2 in the Appendix. 

This motivates us to use PALO1 for this subtask as well. The space of transformations 
is more complicated to describe, however. Selman and Kautz [72] provide an (expo- 
nential time) algorithm LUB for computing the optimal weakening w,. In essence, this 
algorithm iteratively attempts to resolve each Horn clause with each non-Horn clause, 

and adds in each successful resolvent, after removing all subsumed clauses. Each of our 
transformations 7k E Iw performs one such step. There is, of course, the additional 

challenge of keeping the total number of clauses bounded; this may force the trans- 
formations to remove a clause from the current approximation, to make room for each 
proposed addition. 

We discuss these transformations in detail in [39], and also present a PALO,-ish 

algorithm, called ADCOMP, that hill-climbs in both spaces, to find both a near-optimal 
strengthening and a near-optimal weakening. This algorithm is tractable in two senses: 
The (S;, Wj) approximation it produces admits efficient computation, as both Si and 
W,j are Horn and of bounded size; and also each of ADCOMP’S steps is guaranteed to 

be tractable, basically because ADCOMP never computes 2 j= (T. Instead, ADCOMP 
approximates this computation using only the current theories Si and Wj, together with 

the neighbors 7( Si) and T( Wj). As there are only a polynomial number of neighbors, and 
each theory is both Horn and of bounded size, the overall computation that approximates 
2 F (T is efficient. 

Note N-CAT2 The user-specified K( -) function, used to bound the size of the weaken- 
ing, implicitly quantifies how much time the user will allow the system to spend trying 
to answer a query before insisting that it stop and return IDK. We can generalize this 
idea by allowing the user to specify her own general utility measure ci( ., e), where 

ci( (S, W), a) quantifies how well the approximation (S, W) does at solving (7, which 
can specify an arbitrary combination of various factors, including accuracy, categoricity 

and efficiency. (See also the discussion in Note N-Acc7 above.) 
On a related theme:, our current (Si, Wj) system returns IDK if W F u and S k (+. 

There are many other options for this situation-e.g., perhaps 0 should “guess” at an 

answer here, or alternatively spend as long as necessary to compute whether 2 k=? (+, 
etc. Of course, this depends on the user’s objectives, which can be incorporated within 
her ci( (S, W), g) utility function; we could then use a PALO-like system to climb in 
the space of such performance elements (which differ in their way of handling the 
“W F CT and S + CT” situation), in parallel with its search for good weakenings and 
strengthenings; see [ 391. 
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Note N-CAT% This compilation work is obviously related to the work on “vividization” 
and “approximation” [ 7, 15,20,47,56], which also try to transform a given intractable 
theory into a representation that admits more efficient, if less categorical, reasoning. Our 
work extends those results by ( I ) quantifying the goal of producing a system that is 
maximally categorical over the anticipated distribution of queries; and (2) by providing 

an efficient, autonomous way of computing such an efficient approximation. 

6. Conclusion 

6.1. Other vuriants of PALO systems 

As suggested by the “1” subscript of “PALOI", there is a family of algorithms that 

each satisfy the properties specified in Theorem 1. The technical note [ 311 presents 

various other PALOi algorithms, which differ from PALO] in small, but significant, 
ways. While PALO~ considers climbing or terminating after each sample, the simpler 
“on-line but batched” PALO0 system instead examines an entire collection of L: samples 
at a time. (Unlike the PALOMAR of Note N-PALO& this PALO~ uses a different batch of 
samples for each climb.) Another alternative is the PALO2 system, which is guaranteed 
to climb only a bounded number of times, where the bound can be precisely specified. 
Finally, the PALOIN system makes stronger assumptions about the world; viz., that the 
distribution from which the samples are drawn is normal. This allows it to use lower 
“barriers” before deciding to climb, or to terminate. Of course, the PALOIN system is 

more likely to make mistakes if the data is not really drawn from a normal distribution. 
(There are also PALOON and PALOZN algorithms, which differ from PALO0 and PAL02 
only by making normality assumptions, Notice also that these splits, of PALO0 versus 
PALO1 versus PAL02, and PALOX versus PALOX~, are orthogonal to one another, and 
also orthogonal to the set of the applications discussed in Section 5 above. In particular, 
any of these PALO, systems can be used to address any of these applications.) 

We [ 3 I] empirically tested these different PALO; systems in several different contexts, 
and found that the PALO] system discussed here was usually the best, in terms of the 
utility of its final performance element, as a function of the empirical sample complexity. 
More recently, however, we found that PALOIN worked effectively in one particular 
context; see [35]. 

6.2. Limitations 

The examples discussed in Section 5 illustrate the versatility and generality of the 
PALO objective, of identifying a performance element whose expected utility, over an 
arbitrary (but stationary) distribution of problems, is optimal. Our particular PALO 
system is designed to handle the situations when ( 1) the distribution of samples, which 
is required to determine the expected values, is not known a priori, and (2) the task of 
computing the optimal element based on this quality measure, once given the distribution 
information, is intractable. The situations presented above illustrate that this is a very 
common situation. 
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It is worth discussing PALO’s limitations as well, to understand when it should not 
be applied. PALO is best used when the goal is to find a performance element whose 
expected utility is maximal. Notice first that this implies that the distribution is sta- 
tionary; if not, then even defining this expected utility can be problematic. Second, 
PALO is not useful if the task is inherently mini-mar: seeking the element whose 
worst case performance is as good as possible. For example, imagine we need a sys- 
tem that will always return an answer within say 1 second; i.e., there is no additional 
benefit for taking under 1 second, but an extreme penalty for taking any longer than 
1 second. Here, it is critical to know the worst possible time a performance element 
can require. To illustrate this, imagine 01 requires 0.5 seconds for all samples, while 
02 requires only 0.001 seconds for all but one extremely rare query C&d, which ap- 

pears only 0.001% of the time, but 02 requires 2 seconds for this C&ad. Here, even 
though 02 clearly has a better expected efficiency than 01, its worst case efficiency is 
worse; which means, by the above criterion, that 01 should is prefered. (Of course, 

we could model this situation by defining ~(0, q) = 0 iff 0 takes under 1 second 

for q, and -cc otherwise. Here, however, the value of Eq. (1)‘s A = h(c, &,&) 
would be infinite, which would prevent PALO from ever either climbing or terminat- 
ing.) 

Another limitation is that PALO may not reach the global optimum, as it is only hill- 
climbing. Worse, it may not even find a local optimum, as it is only (probabilistically) 
guaranteed to find an e-local optimum, which means it will stop on reaching a “gentle 

slope”-i.e., when O’s neighbors are, at best, only slightly (read “under e”) better than 
0. As mentioned earlier, we could build a PALO-like system that attempts to avoids 

such non-global c-local optima by stochastically descending, a la simulated annealing. 
This approach, however, sacrifices the guarantees proven above. 

The conditions above specify situations where PALO will not work effectively. There 

are also situations where PALO shouZd not be used. For example, there is no need to 
use the weak hill-climbing method if there is a known efficient technique for com- 
puting the global optimum; cf., [ 2,781. Here, it is often sufficient to simply estimate 
the distribution, then let the efficient algorithm use that estimate. PALO can also be 
inappropriate if the distribution is known initially; here, it is probably better to simply 
run a standard hill-climbing algorithm, using as the quality measure for each element 
the actual expected utility, computed directly rather than estimated. Similarly, there are 
obvious variants of PALO that can be used when the distribution of the samples is 
constrained, perhaps by being known to be Gaussian, etc.; these variants may be more 
sample efficient. (See the PALOIN system mentioned above.) 

6.3. Contributions 

This paper first poses two of the problems that can arise in learning systems that 
seek a performance element whose expected utility is optimal [43,80] : that the distri- 
bution information (which is required to determine which element is optimal) is usually 

unknown, and that finding a globally optimal performance element can be intractable. 
It then presents an algorithm, PALOI, that side-steps these shortcomings by using a 
statistical technique to approximate the distribution, and by hill-climbing to produce a 
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Summary of applications 

Efficiency Accuracy Categoricity 

Performance elements &J 

Utility function c( ., ) 
Transformations ‘T 

Range .I I R, T( f9) I 

satisficing strategies 

computation time 

reorder arcs 

< L.(G) 

hypothesis orderings 

(I,(q) =? O(q) 

reorder priority 
<? 

Horn-strengthenings 

sl=‘4 ( WF”Y) 
change 1 clause 

61 

locally optimal element. After detining this algorithm and specifying its behavior, we 

demonstrate PALOt’s generality by showing that it can be used to find a near-optimal 
element in three different settings, based on different spaces of performance elements 

and different criteria for optimality: efficiency, accuracy and categoricity. (See Table 2.) 
These results suggest approaches to solving (respectively) the utility problem from 
explanation-based learning, the multiple extension problem from nonmonotonic reason- 

ing and the tractability/completeness tradeoff problem from knowledge representation. 
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Appendix A. Proofs 

Theorem 1. The PALOt (01. I, F, 6) process incrementally produces a series of per- 

formance elements @I,&, , @,,, such that each @j?i+l = 7kj <@] ) for some Tk, E 7 

and, with probability at least 1 - 6, 

(1) 

(2) 

the expected utility of each performance element is strictly better than its prede- 
cessors , i.e., 

VI < i <j 6 m: C(e),) > C(0;); 

the$nal pelformance element returned by PALOt, @,,, is an “e-local optimum”- 

i.e., 

47 E 7: C(7(0,,)) 2 C(f9,) + E. 

Moreover, PALO] will stay at any 0, (before either terminating or climbing to a new 

@,i+l) fora numberof samples that ispolynomial in I/E, l/6, /\(c, Q, Se) and I’;r[Oj] 1, 
and will terminate with probability 1, provided IS,,1 is finite. 
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Proof. To prove parts ( 1) and (2)) consider first a single stage of the PALO~ algorithm, 
when it is dealing with Oj. Notice there are four types of mistakes that PALO] could 
make: 

(A) 

(B) 

(C) 

(D) 

Using 

After seeing i samples (for some i = 1.. Lj - 1) , PALO1 could climb from Oj 
to some 0’ = r( Oj) as 0’ appears to be better than Oj (based on the line (L3) 
test), but in reality, 0’ is not better; or 
after seeing i samples (for some i = 1.. Lj - I), PALO1 could terminate as no 

0’ = r( Oj) appears to be more than E better than Oj (based on the line (L4) 

test), but there is some 0’ that is much better; or 
after seeing all Lj samples, PALO1 could climb from Oj to some 0’ = r(Oj) as 
0’ appears to be better than Oj (based on the line (L5) test), but in reality, 0’ 

is not better; or 
After seeing all Lj samples, PALO] could terminate as no 0’ = r( Oj) appears 
to be more than E better than Oj, but there is some 0’ that is much better. 

ei(@‘) = A(@j,@'> 

i ( &ln 2(Lj - 1)/7[@jll 

si 1 
as the “barrier” used to decide whether to climb to the neighboring 0’ = r(Oj) after 

seeing i samples, the respective probabilities of these events are 

a> =Pr 30’ E 7[Oj]: jd(O,,B’,i) > Ed and C(H) < C(@j) 9 1 
bi = Pr 30’ E ‘T[Oj]: fd(@j,s’,i) < E - &i(O’) and C(0’) > C(Oj) + E 

I 
, 

cj=Pr 30’~7[Oj]: id(O,,O’,Lj) 2; andC(O’) <C(Oj) , 

J I 

dj = Pr 30’ E ‘T[Oj]: iA(S,,@‘,Lj) < z and C(Oj> > C(Oj) +E . 

J 1 
Of course, each existential within a Pr[ .] above is really a finite disjunction, ranging 
over elements of I[ Oj] . Moreover, ai is only considering the subset of O’s for which 
C( 0’) < C( Oj) ; hence using I< = (0’ E I[ Oj] 1 C( 0’) < C( Oj)}, 

a$ = Pr v iA(@j,@,i) bEi(O’) 1 
and using 7> = (0’ E 7[Oj] ( C(@‘) > C(@j> + E}* 

‘A(,, 0’ 
i 

‘, i) 6 E - Ei(@‘) 

1 

and so on. 
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Now observe that 

fd(@,.d.i) 3 (C(0’) -C(Oj)) +&j(d) 1 (A.1) 
> (A.21 

i ( A(@,,@‘) 
6 (7‘ j exp -2i 

1/(2i) In (2tLj - l>l~[@jlllsj) * 
A(@.,, 0’) 

ii 

z-z II’/ 6, 
2(L, - 1 )l7[@., I/ 

line (A.1 ) f‘ollows from the observation that (l/i)d(Oj, O’, i) 3 ei(O’) and 
C(r(0,)) -C(@.,) < 0 implies (I/i)d(@,j,T(Oj),i) 3 (C(T(Oj))-C(Oj))+&i(@‘) 

(using A + B implies Pr[ A] < Pr[ B J, for any events A and B). Line (A.2) uses 

Hoeffding’s inequality (Eq. (6)) based on the realization that ( l/‘i)d(Oj, r(Oj), i) is 
the empirical average of a set of i independent, identically distributed random values 

{c(r(@.,),ql) - c(@;JIL));+ whose (common) mean is C( 0’) - C( Oj), and whose 

range of possible values is at most il( O,, 0’) 
Similarly, 

0; < c Pr Ll(H,;.O’.i) 

/-YE7 
i 

< E-&,(0’) 
I 

< fA(O,.@‘.i) < (C(H) -C(Oj)) -pi 1 

In a similar manner, we can bound 

(A.3) 

4 
= '7"'2i7[@.j] / 

(line (A.3) uses the fact that /l( Oj, 0’) < A[ @j] ); and likewise 
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Hence, the probability of making any type of mistake at the jth stage is bounded by 

L, - I 

i 1 c 
U; + b$ + Cj + dj 

i=l 

sj 

as ‘F and 7’ are disjoint subsets of 7[Oj], and SO lir<l + (7’1 Q Il[Oj]l. 
The probability that PALO] will make a mistake (of any kind) on any step is at most 

as desired. 

To deal with PALOl’s efficiency: Notice it can stay at any Oj performance element for 
at most LJ samples, a quantity that is clearly polynomial in [7[Oj] ( < 171, _4[@j] ,< 

2A(c, Q,So), l/e and l/6. 
To show that PALO1 will terminate with probability 1 when I&J is finite, notice that 

the only way that PALO1 can fail to terminate here is if it cycles infinitely often: each 

time thinking first that some @ is strictly better than Oj and so switching to it, and 
later, thinking that @ is better, switching back. Of course, one of these inequalities is 
necessarily false; and the probability that PALO~ will make such a mistake is bounded 

by max{u:,cj}i,j < Si/2 < 6/2. The probability that PALO] will make this type of 

mistake an infinite number of times is therefore (at most) lim,,,,, flz, 6/2 = 0. 0 

Definition A.1 (The K-WEAK rusk). 
Instance: A propositional theory _E (in CNF), a positive integer K, a sample S = {qi}, 

and an integer f E [ O..K] . 
Question: Is there a Horn-weakening of 2 of size at most K which covers at least 

f of S’s queries? (I.e., is there a conjunction of at most K Horn clauses, W, where 

2 /== W, such that ){q E S 1 W k q}) 2 f?) 

Theorem A.2. The K-WJZAK task is NP-complete. 

Proof. K-W&AK is clearly in NP, as we need only guess a potential weakening, and 
confirm its coverage. To show K-WEAK is NP-hard, we reduce the NP-complete SAT 
task to it [23] : Given any boolean formula for SAT, let 2 be the set of its clauses, 
and let K = 2, f = 1 and the set of samples S = {q&lq} be a single unsatisfiable 
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proposition. If 2 is consistent, then every weakening W is necessarily consistent, and 
hence has coverage 0; i.e., W /& q&lq. Otherwise, if 2 is inconsistent, then it will have 
a size 2 weakening of the form {r, v}, whose categoricity is 1. Hence, any algorithm 

that can solve arbitrary instances of K-WEAK can also solve arbitrary SAT instances. 0 
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