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Abstract

Patience Sorting is a combinatorial algorithm that can be viewed as an iterated, non-recursive
the Schensted Insertion Algorithm. In recent work the authors extended Patience Sorting to a full b
between the symmetric group and certain pairs of combinatorial objects (calledpile configurations) that
are most naturally defined in terms of generalized permutation patterns and barred pattern avoidan
Extended Patience Sorting Algorithm is very similar to the Robinson–Schensted–Knuth (or RSK) C
pondence, which is itself built from repeated application of the Schensted Insertion Algorithm.

In this work we introduce a geometric form for the Extended Patience Sorting Algorithm that is in
sense a natural dual algorithm to G. Viennot’s celebrated Geometric RSK Algorithm. Unlike Geo
RSK, though, the lattice paths coming from Patience Sorting are allowed to intersect. We thus als
characterization for the intersections of these lattice paths in terms of the pile configurations associa
a given permutation under the Extended Patience Sorting Algorithm.
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1. Introduction

The termPatience Sorting was introduced in 1962 by C.L. Mallows [8,9] as the name
a card sorting algorithm invented by A.S.C. Ross. This algorithm works by first partition
shuffled deck ofn cards (which we take to be a permutationσ ∈ Sn) into sorted subsequenc
r1, r2, . . . , rm calledpiles and then gathering the cards up in order from the tops of these
The procedure used in formingr1, r2, . . . , rm can be viewed as an iterated, non-recursive form
the Schensted Insertion Algorithm for interposing values into the rows of a Young tablea
[1,3]). Givenσ ∈ Sn, we call this resulting collection of piles (given as part of the more gen
Algorithm 1.2 below) thepile configuration corresponding toσ and denote it byR(σ).

Given a pile configurationR, one forms itsreverse patience word RPW(R) by listing the
piles inR “from bottom to top, left to right” (i.e., by reversing the so-called “far-eastern re
ing”) as illustrated in Example 1.1. In recent work [3] the authors used G. Viennot’s (north
shadow diagram construction (defined in [12] and summarized in Section 2.1) to chara
these words in terms of the following pattern avoidance condition: Givenσ ∈ Sn, each instance
of the generalized permutation pattern 2-31 inRPW(R(σ )) must be contained within an instan
of the pattern 3-1-42. We call this restricted form of the generalized permutation pattern
(generalized) barred permutation pattern and denote it by 3-̄1-42. This notational convention
due to J. West et al., and first appeared in the study of two-stack sortable permutations [5
As usual, we denote the set of permutationsσ ∈ Sn that avoid the pattern 3-1̄-42 bySn(3-1̄-42).
(See Bóna [2] for a review of permutation patterns in general.)

Example 1.1.Let σ = 64518723∈ S8. Then, using a simplified form of Algorithm 1.2 below
σ has the pile configurationR(σ) = {{6> 4> 1}, {5> 2}, {8> 7> 3}}, which is visually repre-
sented as the following array of numbers:

R(σ) =
1 3
4 2 7
6 5 8

Furthermore,RPW(R(64518723)) = 64152873∈ S8(3-1̄-42).

In [3] the authors also extended the process of forming piles under Patience Sorting
it essentially becomes a full non-recursive analog of the famous Robinson–Schensted–Kn
RSK) Correspondence. As with RSK, this Extended Patience Sorting Algorithm (Algorithm
below) takes a simple idea (that of placing cards into piles) and uses it to build a bijection be
elements of the symmetric groupSn and certain pairs of combinatorial objects. In the c
of RSK, one uses the Schensted Insertion Algorithm to build a bijection with pairs of sta
Young tableaux having the same shape (a partitionλ of n, denotedλ � n; see [10]). However
in the case of Patience Sorting, one achieves a bijection between permutations and so
more restricted pairs of pile configurations. In particular, these pairs must not only ha
same shape (a compositionγ of n, denotedγ �

n) but their reverse patience words must a
simultaneously avoid containing certain generalized permutation patterns in the same po
(see [3] for more details). This restriction can also be understood geometrically using Vie
(northeast) shadow diagram construction for the permutation implicitly defined by a pair o
configurations (as is discussed in [3]), but a full geometric characterization requires th
southwest shadow diagram construction used to define Geometric Patience Sorting in Se
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Viennot introduced the shadow diagram of a permutation in the context of studyin
Schützenberger Symmetry Property for RSK (first proven using a direct combinatorial arg
in [11]). Specifically, one can use recursively defined shadow diagrams to construct th
Correspondence completely geometrically via a sequence of recursively defined collect
non-intersecting lattice paths (with such collections called “shadow diagrams”). Then, u
particular labeling of the constituent “shadow lines” in each shadow diagram, one recove
cessive rows in the usual RSK insertion and recording tableaux. The Schützenberger Sy
Property for RSK then immediately follows since reflecting these shadow diagrams throu
line “y = x” both inverts the permutation and exactly interchanges the labelings on the s
lines that yield the rows in these tableaux.

We review Viennot’s Geometric RSK Algorithm in Section 2 below. Then, in Section 3
define a natural dual to Viennot’s construction that similarly produces a geometric charac
tion of the Extended Patience Sorting Algorithm. As with RSK, the Schützenberger Sym
Property is then immediate for Extended Patience Sorting. Unlike Geometric RSK, thoug
lattice paths formed under Geometric Patience Sorting are allowed to intersect. Thus,
defined these two algorithms, we classify in Section 4 the types of intersections that c
cur under Geometric Patience Sorting and then characterize when they occur in terms of
configurations associated to a given permutation under Extended Patience Sorting (Algori
below).

We close this introduction by stating the Extending Patience Sorting Algorithm and giv
complete example.

Algorithm 1.2 (Extended Patience Sorting Algorithm). Given a shuffled deck of cardsσ =
c1c2 · · · cn, inductively build insertion piles R = R(σ) = {r1, r2, . . . , rm} and recording piles
S = S(σ ) = {s1, s2, . . . , sm} as follows:

• Place the first cardc1 from the deck into a piler1 by itself, and sets1 = {1}.
• For each remaining cardci (i = 2, . . . , n), consider the cardsd1, d2, . . . , dk atop the piles

r1, r2, . . . , rk that have already been formed.
– If ci > max{d1, d2, . . . , dk}, then putci into a new pilerk+1 by itself and setsk+1 = {i}.
– Otherwise, find the left-most carddj that is larger thanci and put the cardci atop pilerj

while simultaneously puttingi at the bottom of pilesj .

Example 1.3.Let σ = 64518723∈ S8. Then according to Algorithm 1.2 we simultaneou
form the following pile configurations:

insertion
piles

recording
piles

insertion
piles

recording
piles

Form a
new pile
with 6: 6 1

Then
play the
4 on it:

4
6

1
2

Form a
new pile
with 5:

4
6 5

1
2 3

Add the
1 to left
pile:

1
4
6 5

1
2
4 3
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1
4
6 5 8

1
2
4 3 5

Then
play the
7 on it:

1
4 7
6 5 8

1
2 5
4 3 6

Add the2
to middle
pile:

1
4 2 7
6 5 8

1
2 3 5
4 7 6

Add the
3 to right
pile:

1 3
4 2 7
6 5 8

1 5
2 3 6
4 7 8

The idea behind Algorithm 1.2 is that we are using a new pile configurationS(σ ) (called
the “recording piles”) to implicitly label the order in which the elements of the permutatioσ

are added to the usual Patience Sorting pile configurationR(σ) (which we will now by ana-
logy to RSK also call the “insertion piles”). It is clear that this information then allows u
uniquely reconstructσ by reversing the order in which the cards were played. However,
though reversing the Extended Patience Sorting Algorithm is much easier than reversing th
Algorithm through recursive “reverse row bumping,” the trade-off is that the pairs of pile co
urations that result from the Extended Patience Sorting Algorithm are not independent (
for more details), whereas the standard Young tableau pairs generated by RSK are com
independent (up to shape).

2. Northeast shadow diagrams and Viennot’s geometric RSK

In this section we briefly develop Viennot’s geometric form for RSK in order to motivate
geometric form for the Extended Patience Sorting that is introduced in Section 3 below.

2.1. The northeast shadow diagram of a permutation

We begin with the following fundamental definition:

Definition 2.1.Given a lattice point(m,n) ∈ Z2, we define thenortheast shadow of (m,n) to be
the quarter spaceSNE(m,n) = {(x, y) ∈ R2 | x � m, y � n}.

See Figure 2.1(a) for an example of a point’s northeast shadow.
The most important use of these shadows is in building so-called northeast shadowline

Definition 2.2.Given lattice points(m1, n1), (m2, n2), . . . , (mk,nk) ∈ Z2, we define theirnorth-
east shadowline to be the boundary of the union of the northeast shadowsSNE(m1, n1),

SNE(m2, n2), . . . , SNE(mk,nk).

(a) The Shadow (b) Shadowline (c) Shadowline (d) Shadowline
SNE(2,4). L1(64518723). L2(64518723). L3(64518723).

Fig. 2.1. Examples of northeast shadow and shadowline constructions.
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In particular, we wish to associate to each permutation a certain collection of nor
shadowlines (as illustrated in Figure 2.1(b)–(d)):

Definition 2.3. Given a permutationσ = σ1σ2 · · ·σn ∈ Sn, the northeast shadow diagram
D

(0)
NE(σ ) of σ consists of the shadowlinesL1(σ ),L2(σ ), . . . ,Lk(σ ) formed as follows:

• L1(σ ) is the northeast shadowline for the lattice points{(1, σ1), (2, σ2), . . . , (n, σn)}.
• While at least one of the points(1, σ1), (2, σ2), . . . , (n, σn) is not contained in the shadow

linesL1(σ ),L2(σ ), . . . ,Lj (σ ), defineLj+1(σ ) to be the northeast shadowline for the poi

{
(i, σi)

∣∣ (i, σi) /∈
j⋃

k=1

Lk(σ )

}
.

In other words, we define the shadow diagram inductively by first takingL1(σ ) to be the
shadowline for the diagram{(1, σ1), (2, σ2), . . . , (n, σn)} of the permutation. Then we ignore th
lattice points whose shadows were used in buildingL1(σ ) and defineL2(σ ) to be the shadowlin
of the resulting subset of the permutation diagram. We then buildL3(σ ) as the shadowline fo
the points not yet used in constructing eitherL1(σ ) or L2(σ ), and this process continues until
points in the permutation diagram are exhausted.

We can characterize the points whose shadows define the shadowlines at each stage a
they are the smallest collection of unused points whose shadows collectively contain a
remaining unused points (and hence also contain the shadows of those points). As a cons
of this shadow containment property, the shadowlines in a northeast shadow diagram wi
cross. However, as we will see in Section 3.1 below, the dual construction to Definition 2
is introduced will allow for crossing shadowlines, which are then classified and character
Section 4. The most fundamental cause for this distinction is the way that we will rever
above shadow containment property for the points used in defining southwest shadowline

2.2. Viennot’s geometric RSK algorithm

As simple as northeast shadowlines were to define in the previous section, a great de
formation can still be gotten from them. One of the most basic properties of the northeast s
diagramD

(0)
NE(σ ) for a permutationσ ∈ Sn is that it encodes the top row of the RSK insert

tableauP(σ) (respectively recording tableauQ(σ)) as the smallest ordinates (respectively sm
est abscissae) of all points belonging to the constituent shadowlinesL1(σ ),L2(σ ), . . . ,Lk(σ ).
One proves this by comparing the use of Schensted Insertion on the top row of the in
tableau with the intersection of vertical lines having the formx = a. In particular, asa increases
from 0 ton, the linex = a intersects the lattice points in the permutation diagram in the o
that they are inserted into the top row, and so shadowlines connect elements ofσ to those smalle
elements that will eventually bump them. (See Sagan [10] for more details.)

Remarkably, one can then use the northeast corners (called thesalient points) of D
(0)
NE(σ ) to

form a new shadow diagramD(1)
NE(σ ) that similarly gives the second rows ofP(σ) andQ(σ).

Then, inductively, the salient points ofD(1)
NE(σ ) can be used to give the third rows ofP(σ)

andQ(σ), and so on. As such, one can view this recursive formation of shadow diagra
a geometric form for the RSK correspondence. We illustrate this process in Fig. 2.2 f
following permutation from Example 1.3:
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(a) Salient points for (b) Shadow Diagram (c) Salient points for (d) Shadow Diagram

D
(0)
NE(64518723). D

(1)
NE(64518723). D

(1)
NE(64518723). D

(2)
NE(64518723).

Fig. 2.2. The northeast shadow diagrams for the permutation 64518723∈ S8.

σ = 64518723
RSK←→




1 2 3

4 5 7

6 8 ,

1 3 5

2 6 8

4 7


 .

3. Southwest shadow diagrams and geometric patience sorting

In this section we introduce a very natural dual algorithm to Viennot’s geometric form
RSK as given in Section 2.2.

3.1. The southwest shadow diagram of a permutation

As in Section 2.1, we begin with the following fundamental definition:

Definition 3.1.Given a lattice point(m,n) ∈ Z2, we define thesouthwest shadow of (m,n) to be
the quarter spaceSSW (m,n) = {(x, y) ∈ R2 | x � m, y � n}.

See Fig. 3.1(a) for an example of a point’s southwest shadow.
As with their northeast counterparts, the most important use of these shadows is in b

southwest shadowlines:

Definition 3.2.Given lattice points(m1, n1), (m2, n2), . . . , (mk,nk) ∈ Z2, we define theirsouth-
west shadowline to be the boundary of the union of the shadowsSSW (m1, n1), SSW (m2, n2), . . . ,

SSW (mk,nk).

(a) The Shadow (b) Shadowline (c) Shadowline (d) Shadowline

SSW (6,7). L
(0)
1 (64518723). L

(0)
2 (64518723). L

(0)
3 (64518723).

Fig. 3.1. Examples of southwest shadow and shadowline constructions.
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(a) Salient points for (b) Shadow Diagram (c) Salient points for (d) Shadow Diagram

D
(0)
SW

(64518723). D
(1)
SW

(64518723). D
(1)
SW

(64518723). D
(2)
SW

(64518723).

Fig. 3.2. The southwest shadow diagrams for the permutation 64518723∈ S8.

In particular, we wish to associate to each permutation a certain collection of sou
shadowlines. However, unlike the northeast case, these shadowlines sometimes cross
trated in Figs. 3.1(b)–(d) and Fig. 3.2(a)).

Definition 3.3. Given a permutationσ = σ1σ2 · · ·σn ∈ Sn, the southwest shadow diagram
D

(0)
SW (σ ) of σ consists of the southwest shadowlinesL

(0)
1 (σ ),L

(0)
2 (σ ), . . . ,L

(0)
k (σ ) formed as

follows:

• L
(0)
1 (σ ) is the shadowline for those lattice points(x, y) ∈ {(1, σ1), (2, σ2), . . . , (n, σn)} such

thatSSW (x, y) does not contain any other lattice point.
• While at least one of the points(1, σ1), (2, σ2), . . . , (n, σn) is not contained in the shadow

linesL
(0)
1 (σ ),L

(0)
2 (σ ), . . . ,L

(0)
j (σ ), defineL

(0)
j+1(σ ) to be the shadowline for the points

(x, y) ∈
{

(i, σi)
∣∣ (i, σi) /∈

j⋃
k=1

L
(0)
k (σ )

}

such thatSSW (x, y) does not contain any other lattice point in the same set.

In other words, we again define a shadow diagram by recursively eliminating certain
in the permutation diagram until every point has been used to define a shadowline. Ho
we are here reversing both the direction of the shadows and the shadow containment p
from the northeast case. It is in this sense that the geometric form for the Extended P
Sorting Algorithm given in the next section can be viewed as “dual” to Viennot’s geometric
for RSK.

3.2. The geometric patience sorting algorithm

As in Section 2.2, one can produce a sequenceDSW(σ) = (D
(0)
SW (σ ),D

(1)
SW (σ ),D

(2)
SW (σ ), . . .)

of shadow diagrams for a given permutationσ ∈ Sn by recursively applying Definition 3.3 t
salient points, with the restriction that new shadowlines can only connect points that w
the same shadowline in the previous iteration. (The reason for this important distinction
Geometric RSK is discussed further in Section 4.1.) The salient points in this case ar
naturally defined to be the southwest corner points of a given set of shadowlines. See Fig
an example of how this works for the permutation from Example 1.3.
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Definition 3.4. We callD(k)
SW (σ ) thekth iterate of theexhaustive shadow diagram DSW(σ) for

σ ∈ Sn.

Moreover, the resulting sequence of shadow diagrams can then be used to reconstruct
of pile configurations given by the Extended Patience Sorting Algorithm (Algorithm 1.2
accomplish this, index the cards in a pile configuration using the French convention for ta
so that the row index increases from bottom to top and the column index from left to
(In other words, we are labeling boxes as we would lattice points in the first quadrant oR2.)
Then, for a given permutationσ ∈ Sn, the elements of theith row of the insertion pilesR(σ)

(respectively recording pilesS(σ )) are given by the largest ordinates (respectively abscissa
the shadowlines that composeD

(i)
SW .

The main difference between this process and Viennot’s Geometric RSK is that care
be taken to assemble each row in its proper order. Unlike the entries of a Young table
elements in the rows of a pile configuration do not necessarily increase from left to righ
they do not have to be contiguous. As such, the components of each row should be reco
the order that the shadowlines are formed. The rows can then uniquely be assembled into
pile configuration since the elements in the columns of a pile configuration must both de
(when read from bottom to top) and appear in the leftmost pile possible.

The proof of this is along the same lines as that of Viennot’s Geometric RSK in tha
shadowlines produced by Definition 3.3 are a visual record for how cards are played ato
other under Algorithm 1.2. In particular, it should be clear that, given a permutationσ ∈ Sn, the
shadowlines in both of the shadow diagramsD

(0)
SW (σ ) andD

(0)
NE(σ ) are defined by the same lattic

points from the permutation diagram forσ . In [3] the points along a given northeast shadowl
are shown to correspond exactly to the elements in some column ofR(σ) (as both correspon
to one of the left-to-right minima subsequences ofσ ). Thus, by reading the lattice points in th
permutation diagram in increasing order of their abscissae, one can uniquely reconstru
the piles inR(σ) and the exact order in which cards are added to these piles (which imp
yieldsS(σ )). In this sense, bothD(0)

SW (σ ) andD
(0)
NE(σ ) encode the bottom rows ofR(σ) andS(σ )

as given by Algorithm 1.2.
It is then easy to see by induction that the salient points ofD

(k−1)
SW (σ ) yield thekth rows of

R(σ) andS(σ ), and so this gives the following

Theorem 3.5.The process described above for creating a pair of pile configurations (R′(σ ),

S′(σ )) from the Geometric Patience Sorting construction yields the same pair of pile configura-
tions (R(σ ), S(σ )) as the Extended Patience Sorting Algorithm (Algorithm 1.2).

Having given the above Geometric form for Algorithm 1.2, it is worth pointing out that—
with RSK—there are various natural generalizations of Extended Patience Sorting for mo
eral combinatorial objects including words and lexicographic arrays. (See [7] for a descrip
such extensions of RSK.) Moreover, many of these generalizations can still similarly be re
as non-recursive analogs for the forms of RSK that can be applied to such objects. In par
the authors in [4] explore several such generalizations and develop geometric forms fo
much like the one given in this section.

In the case of words, Aldous and Diaconis [1] have given two different generalization
Patience Sorting based upon whether cards with equal value are played on top of each
not. These are called the “ties allowed” and “ties forbidden” cases, respectively, and the
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RSK and dual RSK algorithms can be modeled in order to develop bijective versions of
The geometric forms for the resulting algorithms as given in [4] can then be compared t
ton’s “Matrix-Ball” Geometric RSK algorithm (defined in [7]) just as we compare the Geom
Patience Sorting given in this section to Viennot’s Geometric RSK in Section 4.

4. Geometric patience sorting and intersecting lattice paths

Extended Patience Sorting (Algorithm 1.2) can be viewed as a “non-bumping” version
RSK algorithm for permutations in that cards are permanently placed into piles and are c
by other cards rather being displaced by them. It is in this sense that one of the main diffe
between their geometric algorithms lies in how and in what order (when read from left to
the salient points of their respective shadow diagrams are determined. In particular, as
a card atop a pre-existing pile under Patience Sorting is essentially like non-recursive Sc
Insertion, certain particularly egregious “multiple bumps” that occur under the Schensted
tion Algorithm prove to be too complicated to be properly modeled by the “static insertion
Patience Sorting.

At the same time, it is also easy to see that for a givenσ ∈ Sn, the cards atop the piles
the pile configurationsR(σ) andS(σ ) (as given by Algorithm 1.2) are exactly the cards in
top rows of the RSK insertion tableauP(σ) and recording tableauQ(σ), respectively. Thus, thi
raises the question of when the remaining rows ofP(σ) andQ(σ) can likewise be recovere
from R(σ) and S(σ ). While this appears to be directly related to the order in which sa
points are read (as illustrated in Example 4.1 below), one would ultimately hope to chara
the answer in terms of generalized pattern avoidance similar to the description of reverse p
words for pile configurations (as given in [3]).

Example 4.1.Consider the northeast and southwest shadow diagrams forσ = 2431:

D
(0)
NE(2431) = vs. D

(0)
SW (2431) =

In particular, note that the order in which the salient points are formed (when read from
right) is reversed. Such reversals serve to illustrate one of the inherent philosophical diffe
between RSK and the Extended Patience Sorting Algorithm.

As mentioned in Section 3.2, another fundamental difference between Geometric RS
Geometric Patience Sorting is that the latter allows certain crossings to occur in the lattic
formed during the same iteration of the algorithm. We classify these crossings in Secti
and then characterize those permutations that yield entirely non-intersecting lattice paths
tion 4.2.

4.1. Types of crossings in geometric patience sorting

Givenσ ∈ Sn, we can classify the basic types of crossings inD
(0)
SW (σ ) as follows: First note

that each southwest shadowline inD
(0)
SW (σ ) corresponds to a pair of decreasing sequences o

same length, namely a column from the insertion pilesR(σ) and its corresponding column fro
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the recording pilesS(σ ). Then, given two different pairs of such columns inR(σ) andS(σ ), the
shadowline corresponding to the rightmost (respectively leftmost) pair—under the conv
that new columns are always added to the right of all other columns in Algorithm 1.2)—is c
theupper (respectivelylower) shadowline. More formally:

Definition 4.2.Given two shadowlines,L(m)
i (σ ),L

(m)
j (σ ) ∈ D

(m)
SW (σ ) with i < j , we callL(m)

i (σ )

the lower shadowline andL(m)
j (σ ), the upper shadowline. Moreover, ifL(m)

i (σ ) andL
(m)
j (σ )

intersect, then we call this avertical crossing (respectivelyhorizontal crossing) if it involves a
vertical (respectively horizontal) segment ofL

(m)
j (σ ).

We illustrate these crossings in the following example. In particular, note that the only p
tationsσ ∈ S3 of length three having intersections in their 0th iterate shadow diagramD

(0)
SW (σ )

are 312,231∈ S3.

Example 4.3.

(1) The smallest permutation for whichD(0)
SW (σ ) contains a horizontal crossing isσ = 312 as

illustrated in Fig. 4.1(a). The upper shadowline involved in this crossing is the one with
two segments.

(2) The smallest permutation for whichD(0)
SW (σ ) contains a vertical crossing isσ = 231 as

illustrated in Fig. 4.1(b). As in part (1), the upper shadowline involved in this crossi
again the one with only two segments.

(3) Considerσ = 4231. From Fig. 4.1(c),D(0)
SW (σ ) contains exactly two southwest shadowlin

and these shadowlines form a horizontal crossing followed by a vertical crossing. We
configuration like this a “polygonal crossing.” Note in particular thatD

(1)
SW (σ ) (trivially) has

no crossings.
(4) Considerσ = 45312. From Fig. 4.1(d),D(0)

SW (σ ) not only has a “polygonal crossing” (th

time as two shadowlines have a vertical crossing followed by a horizontal one) butD
(1)
SW (σ )

does as well.

Polygonal crossings are what make it necessary to read only the salient points alo
same shadowline in the order in which shadowlines are formed (as opposed to construc
subsequent shadowlines using the entire partial permutation of salient points as in Vie
Geometric RSK).

(a) Shadow Diagram (b) Shadow Diagram (c) Shadow Diagrams (d) Shadow Diagrams

D
(0)
SW

(312). D
(0)
SW

(231). D
(0)
SW

,D
(1)
SW

(4231). D
(0)
SW

,D
(1)
SW

(45312).

Fig. 4.1. Shadow diagrams with different types of crossings.



116 A. Burstein, I. Lankham / Advances in Applied Mathematics 36 (2006) 106–117

th
gram

eces-
ations

metric
s
tes

th

s

ccurs

cents

st
c-

-

g

Example 4.4.Consider the shadow diagram ofσ = 45312 as illustrated in Fig. 4.1(d). The 0
iterate shadow diagramD(0)

SW contain a polygonal crossing, and so the 1st iterate shadow dia

D
(1)
SW needs to be formed as indicated in order to properly describe the pile configurationsR(σ)

andS(σ ) since

σ = 45312
XPS←→


 1

3 2
4 5,

1
3 2
4 5


 (1)

under the Extended Patience Sorting Algorithm.

4.2. Non-intersecting shadow diagrams

Unlike the rows of Young tableaux, the values in the rows of a pile configuration do not n
sarily increase when read from left to right. In fact, the descents in the rows of pile configur
are very closely related to the crossings given by Geometric Patience Sorting.

As noted in Section 3.2, Geometric Patience Sorting is ostensibly simpler than Geo
RSK in that one can essentially recover both the insertion pilesR(σ) and the recording pile
S(σ ) from the 0th iterate shadow diagramD(0)

SW . The fundamental use, then, of the itera

D
(i+1)
SW ,D

(i+2)
SW , . . . is in understanding the intersections in theith iterate shadow diagramD(i)

SW .

In particular, each shadowlineL(m)
i (σ ) ∈ D

(m)
SW (σ ) corresponds to the pair of segments of theith

columns ofR(σ) andS(σ ) that are above themth row (or are theith columns ifm = 0), where
rows are numbered from bottom to top.

Theorem 4.5.Each iterate D
(m)
SW (σ ) (m � 0) of σ ∈ Sn is free from crossings if and only if every

row in both R(σ) and S(σ ) is monotone increasing from left to right.

Proof. Since eachL(m)
i = L

(m)
i (σ ) depends only on theith columns ofR = R(σ) andS = S(σ )

above rowm, we may assume without loss of generality thatR andS have the same shape wi
exactly two columns.

Let m + 1 be the highest row where a descent occurs in eitherR or S. If this descent occur
in R, thenL

(m)
2 is the upper shadowline in a horizontal crossing sinceL

(m)
2 hasy-intercept below

that of L(m)
1 , which is the lower shadowline in this crossing (as in 312). If this descent o

in S, thenL
(m)
2 is the upper shadowline in a vertical crossing sinceL

(m)
2 hasx-intercept to the

left of L
(m)
1 , which is the lower shadowline in this crossing (as in 231). Note that both des

may occur simultaneously (as in 4231 or 45312).
Conversely, supposem is the last iterate at which a crossing occurs inDSW(σ) (i.e.,D(�)

SW (σ )

has no crossings for� > m). We will prove thatL(m)
2 may have a crossing only at the fir

or last segment. This, in turn, implies that rowm in R or S is decreasing. A crossing o
curs when there is a vertex ofL(m)

1 not in the shadow of any point ofL(m)
2 . We will prove

that it can only be the first or last vertex. Let{(s1, r1), (s2, r2), . . .} and {(u1, t1), (u2, t2), . . .}
be the vertices that defineL(m)

1 andL
(m)
2 , respectively. Then{ri}i�1 and {ti}i�1 are decreas

ing while {si}i�1 and {ui}i�1 are increasing. Write(a, b) � (c, d) if (a, b) is in the shadow

of (c, d) (i.e. if a � b and c � d), and considerL(m+1) and L
(m+1). They are noncrossin
1 2
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and defined by points{(s1, r2), (s2, r3), . . .} and {(u1, t2), (u2, t3), . . .}, respectively. Then, fo
any i, (si , ri+1) � (uj , tj+1) for somej . Suppose(si , ri+1) � (uj , tj+1) and (si+1, ri+2) �
(uk, tk+1) for somej < k. Each upper shadowline vertex must contain some lower sha
line vertex in its shadow, so for all� ∈ [j, k], (si , ri+1) � (u�, t�+1) or (si+1, ri+2) � (u�, t�+1).
Choose the least� ∈ [j, k] such that(si+1, ri+2) � (u�, t�+1). If (si , ri+1) � (u�, t�+1), then
(si+1, ri+1) � (u�, t�+1) � (u�, t�). If (si , ri+1) � (u�, t�+1), then (si , ri+1) � (u�−1, t�), so
(si+1, ri+1) � (u�, t�). Thus, in both cases,(si+1, ri+1) � (u�, t�), and the desired conclusio
follows.

An immediate corollary of the above proof is that all rowsi � m in bothR(σ) andS(σ ) are
monotone increasing from left to right if and only if every iterateD

(i)
SW (σ ) (i � m) is free from

crossings.
One can equivalently characterize intersecting shadowlines beyond the 0th iterate ofσ ∈ Sn

in terms of sub-pile patterns for the entries inR(σ) andS(σ ). We state the following such resu
only for horizontal crossings, but vertical crossings can then be characterized by invertingσ (i.e.,
by transposing within these pairs of patterns via a Schützenberger-type symmetry result
in [3]). Moreover, it is not difficult to show that avoiding both horizontal and vertical cross
in every iterate is equivalent to avoiding all crossings.

Corollary 4.6. If R(σ) and S(σ ) contain either of the following two simultaneous sub-pile pat-
terns, then the permutation σ ∈ Sn has a horizontal crossing in D

(m)
SW (σ ) (here {xs}s�1 and

{yr}r�1 are monotone increasing; m � k, l; and the numbers in the boxes indicate the number of
elements in respective sub-piles):

i

y1 j

y3 y2

k m

⊂ R,

k − m

x1 0
x2 x3

i + m j + m

⊂ S or

i

y1 j

y3 y2

k l

⊂ R,

k − m l − m

x2 x1
x3 x4

i + m j + m

⊂ S.
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