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Abstract

Patience Sorting is a combinatorial algorithm that can be viewed as an iterated, non-recursive form of
the Schensted Insertion Algorithm. In recent work the authors extended Patience Sorting to a full bijection
between the symmetric group and certain pairs of combinatorial objects (gékecbnfigurations) that
are most naturally defined in terms of generalized permutation patterns and barred pattern avoidance. This
Extended Patience Sorting Algorithm is very similar to the Robinson—Schensted—Knuth (or RSK) Corres-
pondence, which is itself built from repeated application of the Schensted Insertion Algorithm.

In this work we introduce a geometric form for the Extended Patience Sorting Algorithm that is in some
sense a natural dual algorithm to G. Viennot's celebrated Geometric RSK Algorithm. Unlike Geometric
RSK, though, the lattice paths coming from Patience Sorting are allowed to intersect. We thus also give a
characterization for the intersections of these lattice paths in terms of the pile configurations associated with
a given permutation under the Extended Patience Sorting Algorithm.
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1. Introduction

The termPatience Sorting was introduced in 1962 by C.L. Mallows [8,9] as the name of
a card sorting algorithm invented by A.S.C. Ross. This algorithm works by first partitioning a
shuffled deck of: cards (which we take to be a permutatiore S,) into sorted subsequences
ri,r2, ...,y calledpiles and then gathering the cards up in order from the tops of these piles.
The procedure used in forming, r, ..., r,, can be viewed as an iterated, non-recursive form of
the Schensted Insertion Algorithm for interposing values into the rows of a Young tableau (see
[1,3]). Giveno € &,,, we call this resulting collection of piles (given as part of the more general
Algorithm 1.2 below) thepile configuration corresponding te- and denote it byR (o).

Given a pile configuratiorR, one forms itsreverse patience word RPW(R) by listing the
piles in R “from bottom to top, left to right” (i.e., by reversing the so-called “far-eastern read-
ing”) as illustrated in Example 1.1. In recent work [3] the authors used G. Viennot's (northeast)
shadow diagram construction (defined in [12] and summarized in Section 2.1) to characterize
these words in terms of the following pattern avoidance condition: Givers,,, each instance
of the generalized permutation pattern 2-3RPW(R (o)) must be contained within an instance
of the pattern 3-1-42. We call this restricted form of the generalized permutation pattern 2-31 a
(generalized) barred permutation pattern and denote it by 3-42. This notational convention is
due to J. West et al., and first appeared in the study of two-stack sortable permutations [5,6,13].
As usual, we denote the set of permutatiens &,, that avoid the pattern 3-42 by, (3-1-42).
(See Bona [2] for a review of permutation patterns in general.)

Example 1.1.Let 0 = 64518723 Gg. Then, using a simplified form of Algorithm 1.2 below,

o has the pile configuratioR(¢) = {{6 > 4 > 1}, {5 > 2}, {8 > 7 > 3}}, which is visually repre-
sented as the following array of numbers:

R(o) =

o AR
0~ W

2
5
FurthermoreRPW(R (64518723) = 64152873¢ Sg(3-1-42).

In [3] the authors also extended the process of forming piles under Patience Sorting so that
it essentially becomes a full non-recursive analog of the famous Robinson—-Schensted—Knuth (or
RSK) Correspondence. As with RSK, this Extended Patience Sorting Algorithm (Algorithm 1.2
below) takes a simple idea (that of placing cards into piles) and uses it to build a bijection between
elements of the symmetric group, and certain pairs of combinatorial objects. In the case
of RSK, one uses the Schensted Insertion Algorithm to build a bijection with pairs of standard
Young tableaux having the same shape (a partitiarf n, denoted: + n; see [10]). However,
in the case of Patience Sorting, one achieves a bijection between permutations and somewha
more restricted pairs of pile configurations. In particular, these pairs must not only have the
same shape (a compositipnof n, denotedy — n) but their reverse patience words must also
simultaneously avoid containing certain generalized permutation patterns in the same positions
(see [3] for more details). This restriction can also be understood geometrically using Viennot’s
(northeast) shadow diagram construction for the permutation implicitly defined by a pair of pile
configurations (as is discussed in [3]), but a full geometric characterization requires the dual
southwest shadow diagram construction used to define Geometric Patience Sorting in Section 3.
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Viennot introduced the shadow diagram of a permutation in the context of studying the
Schitzenberger Symmetry Property for RSK (first proven using a direct combinatorial argument
in [11]). Specifically, one can use recursively defined shadow diagrams to construct the RSK
Correspondence completely geometrically via a sequence of recursively defined collections of
non-intersecting lattice paths (with such collections called “shadow diagrams”). Then, using a
particular labeling of the constituent “shadow lines” in each shadow diagram, one recovers suc-
cessive rows in the usual RSK insertion and recording tableaux. The Schitzenberger Symmetry
Property for RSK then immediately follows since reflecting these shadow diagrams through the
line “y = x” both inverts the permutation and exactly interchanges the labelings on the shadow
lines that yield the rows in these tableaux.

We review Viennot's Geometric RSK Algorithm in Section 2 below. Then, in Section 3, we
define a natural dual to Viennot's construction that similarly produces a geometric characteriza-
tion of the Extended Patience Sorting Algorithm. As with RSK, the Schitzenberger Symmetry
Property is then immediate for Extended Patience Sorting. Unlike Geometric RSK, though, the
lattice paths formed under Geometric Patience Sorting are allowed to intersect. Thus, having
defined these two algorithms, we classify in Section 4 the types of intersections that can oc-
cur under Geometric Patience Sorting and then characterize when they occur in terms of the pile
configurations associated to a given permutation under Extended Patience Sorting (Algorithm 1.2
below).

We close this introduction by stating the Extending Patience Sorting Algorithm and giving a
complete example.

Algorithm 1.2 (Extended Patience Sorting Algorithm). Given a shuffled deck of cards =
c1c2- - - ¢y, inductively buildinsertion piles R = R(o) = {r1,r2,...,r,} andrecording piles
S=S(0) ={s1,s2,...,5,} as follows:

e Place the first card; from the deck into a pile by itself, and set1 = {1}.
e For each remaining carg (i = 2,...,n), consider the cardg,, do, ..., d; atop the piles
ri,r2, ..., r; that have already been formed.
— If ¢; > max{d1, d>, ..., dy}, then putc; into a new piler,1 by itself and set;.1 = {i}.
— Otherwise, find the left-most cardj that is larger thar; and put the card; atop piler;
while simultaneously putting at the bottom of pile;.

Example 1.3.Let o0 = 64518723 Gg. Then according to Algorithm 1.2 we simultaneously
form the following pile configurations:

insertion recording insertion recording
piles piles piles piles

Form a Then

new pile play the 4 1

with 6: 6 1 4onit 6 2

Form a Add the 1 1

new pile 4 1 1to left 4 2

with 5: 6 5 2 3 pile: 6 5 4 3
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Form a 1 1 Then 1 1

new pile 4 2 play the 4 7 2 5
with 8: 6 5 8 4 3 5 7onit 6 5 8 4 3 6
Add the2 1 1 Add the 1 3 1 5
tomiddle 4 2 7 2 3 5 3toright 4 2 7 2 3 6
pile: 6 5 8 4 7 6 pile: 6 5 8 4 7 8

The idea behind Algorithm 1.2 is that we are using a new pile configuratien (called
the “recording piles”) to implicitly label the order in which the elements of the permutation
are added to the usual Patience Sorting pile configurakian) (which we will now by ana-
logy to RSK also call the “insertion piles”). It is clear that this information then allows us to
uniquely reconstruct by reversing the order in which the cards were played. However, even
though reversing the Extended Patience Sorting Algorithm is much easier than reversing the RSK
Algorithm through recursive “reverse row bumping,” the trade-off is that the pairs of pile config-
urations that result from the Extended Patience Sorting Algorithm are not independent (see [3]
for more details), whereas the standard Young tableau pairs generated by RSK are completely
independent (up to shape).

2. Northeast shadow diagrams and Viennot’s geometric RSK

In this section we briefly develop Viennot’s geometric form for RSK in order to motivate the
geometric form for the Extended Patience Sorting that is introduced in Section 3 below.

2.1. Thenortheast shadow diagram of a permutation
We begin with the following fundamental definition:

Definition 2.1. Given a lattice pointm, n) € Z2, we define theortheast shadow of (m, n) to be
the quarter space(m,n) = {(x,y) e R? |x >m, y >n}.

See Figure 2.1(a) for an example of a point’s northeast shadow.
The most important use of these shadows is in building so-called northeast shadowlines:

Definition 2.2. Given lattice pointsm1, n1), (mo, n2), . .., (my, ny) € Z2, we define theinorth-
east shadowline to be the boundary of the union of the northeast shadSws(mi,n1),
SNE(m2,n2), ..., SNE(m, ng).

8 8 ° 8
[ )
6 6 6
4 4
[ ]

2 2

0
012345678 012345678 012345678 012345678
(a) The Shadow (b) Shadowline (c) Shadowline (d) Shadowline

SNE(2, 4). L1(64518723. L, (64518723. L3(64518723.

Fig. 2.1. Examples of northeast shadow and shadowline constructions.
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In particular, we wish to associate to each permutation a certain collection of northeast
shadowlines (as illustrated in Figure 2.1(b)—(d)):

Definition 2.3. Given a permutatiors = o102---0, € &,, the northeast shadow diagram
Dl(\% (o) of o consists of the shadowlinds (¢), L2(0), ..., Ly (o) formed as follows:

e L1(0) is the northeast shadowline for the lattice poif(ts 01), (2, 02), ..., (n,0p)}.
e While at least one of the point4, 1), (2, 02), ..., (n, g,) is not contained in the shadow-
linesLy(o), La(0), ..., Lj(0), defineL ;1 1(o) to be the northeast shadowline for the points

J
G, 01) | Goon) ¢ | Leo) |-

k=1

In other words, we define the shadow diagram inductively by first takip@) to be the
shadowline for the diagrafil, o1), (2, 02), ..., (n, 0,)} of the permutation. Then we ignore the
lattice points whose shadows were used in buildingr) and definel2 (o) to be the shadowline
of the resulting subset of the permutation diagram. We then Hug{d) as the shadowline for
the points not yet used in constructing eitligo) or L2(o), and this process continues until all
points in the permutation diagram are exhausted.

We can characterize the points whose shadows define the shadowlines at each stage as follows:
they are the smallest collection of unused points whose shadows collectively contain all other
remaining unused points (and hence also contain the shadows of those points). As a consequence
of this shadow containment property, the shadowlines in a northeast shadow diagram will never
cross. However, as we will see in Section 3.1 below, the dual construction to Definition 2.3 that
is introduced will allow for crossing shadowlines, which are then classified and characterized in
Section 4. The most fundamental cause for this distinction is the way that we will reverse the
above shadow containment property for the points used in defining southwest shadowlines.

2.2. Viennot's geometric RSK algorithm

As simple as northeast shadowlines were to define in the previous section, a great deal of in-
formation can still be gotten from them. One of the most basic properties of the northeast shadow
diagramD,(\loé(o) for a permutatiornr € G,, is that it encodes the top row of the RSK insertion
tableauP (o) (respectively recording tableai(o)) as the smallest ordinates (respectively small-
est abscissae) of all points belonging to the constituent shadowliftes, L2(o), ..., Ly(c).

One proves this by comparing the use of Schensted Insertion on the top row of the insertion
tableau with the intersection of vertical lines having the farm a. In particular, as: increases
from O ton, the linex = a intersects the lattice points in the permutation diagram in the order
that they are inserted into the top row, and so shadowlines connect elemeritstbbse smaller
elements that will eventually bump them. (See Sagan [10] for more details.)

0

Remarkably, one can then use the northeast corners (calledlibiet points) of Dygz(o) to

form a new shadow diagralﬂ,(\‘lé(o) that similarly gives the second rows &f(c) and Q (o).

Then, inductively, the salient points dj,(\,lé(a) can be used to give the third rows &f(o)

and Q(o), and so on. As such, one can view this recursive formation of shadow diagrams as
a geometric form for the RSK correspondence. We illustrate this process in Fig. 2.2 for the
following permutation from Example 1.3:



A. Burstein, |. Lankham/ Advances in Applied Mathematics 36 (2006) 106117 111

8 8 &l%: 8 &T%: 8 —

6 6 6 6

4 4 4 4

2 2 2 2

0 0 0 0
012345678 012345678 012345678 012345678

(a) Salient points for  (b) Shadow Diagram  (c) Salient points for  (d) Shadow Diagram
D (64518723, DR (64518723, D (64518723, D2 (64518723,

Fig. 2.2. The northeast shadow diagrams for the permutation 645X3®23

1[2[3][1]3]5
o =645187235K | [4]5]7]| [2]6]8
68| ,la]7

3. Southwest shadow diagrams and geometric patience sorting

In this section we introduce a very natural dual algorithm to Viennot's geometric form for
RSK as given in Section 2.2.

3.1. The southwest shadow diagram of a permutation
As in Section 2.1, we begin with the following fundamental definition:

Definition 3.1. Given a lattice pointm, n) € Z2, we define thesouthwest shadow of (i, n) to be
the quarter spacsy (m, n) = {(x, y) € R? | x <m, y <n}.

See Fig. 3.1(a) for an example of a point’s southwest shadow.
As with their northeast counterparts, the most important use of these shadows is in building
southwest shadowlines:

Definition 3.2. Given lattice pointsm1, n1), (mo, n2), . .., (my, ny) € Z2, we define theisouth-
west shadowlineto be the boundary of the union of the shad®y§ (m1, n1), Ssw (m2, n2), ...,
Ssw (mg, ng).

8 8 8 . 8
o
6 6 6te 6
4 4- 1- e 4
[ ]
2 2 - 2 - _L. 2
[ ]

0 o . o I 0 I
012345678 012345678 012345678 012345678
(a) The Shadow (b) Shadowline (c) Shadowline (d) Shadowline

Ssw (6. 7). 1% (64518723, LY (64518723, LY (64518723,

Fig. 3.1. Examples of southwest shadow and shadowline constructions.
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st st st
61 61 61
4 4 4t
2 - 2 1 21

0 0 0 —=—+t++—++
012345678 012345678 012345678 012345678
(a) Salient points for  (b) Shadow Diagram  (c) Salient points for  (d) Shadow Diagram

© @ @ @
D), (64518723, Dy (64518723,  Dg;, (64518723 Dy (64518723,

Fig. 3.2. The southwest shadow diagrams for the permutation 645X3®23

In particular, we wish to associate to each permutation a certain collection of southwest
shadowlines. However, unlike the northeast case, these shadowlines sometimes cross (as illus-
trated in Figs. 3.1(b)—(d) and Fig. 3.2(a)).

Definition 3.3. Given a permutatiors = o102---0, € &,, the southwest shadow diagram

D(S%{,(o) of o consists of the southwest shadowlirbg)(a), L(ZO)(a), ...,L,ﬁo)(a) formed as
follows:

° L(lo) (o) is the shadowline for those lattice poirtis y) € {(1, 01), (2, 02), ..., (n,0,)} such
that Ssw (x, y) does not contain any other lattice point.

e While at least one of the point4, o1), (2, 02), ..., (n, g,) is not contained in the shadow-
lines L(lo) (o), Léo) @),..., LEO) (o), defineLﬁl(o) to be the shadowline for the points

J
.y e.o)|Go) ¢l L}f”(a)}

k=1
such thatSsw (x, y) does not contain any other lattice point in the same set.

In other words, we again define a shadow diagram by recursively eliminating certain points
in the permutation diagram until every point has been used to define a shadowline. However,
we are here reversing both the direction of the shadows and the shadow containment property
from the northeast case. It is in this sense that the geometric form for the Extended Patience
Sorting Algorithm given in the next section can be viewed as “dual” to Viennot's geometric form
for RSK.

3.2. The geometric patience sorting algorithm

As in Section 2.2, one can produce a sequebgg (o) = (Dé%)v(o), Dgl‘i,(a), Dgzv)v(a), L)
of shadow diagrams for a given permutatiore &,, by recursively applying Definition 3.3 to
salient points, with the restriction that new shadowlines can only connect points that were on
the same shadowline in the previous iteration. (The reason for this important distinction from
Geometric RSK is discussed further in Section 4.1.) The salient points in this case are then
naturally defined to be the southwest corner points of a given set of shadowlines. See Fig. 3.2 for

an example of how this works for the permutation from Example 1.3.
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Definition 3.4. We call D(skv)v((’) the kth iterate of the exhaustive shadow diagram Dy (o) for
o€6,.

Moreover, the resulting sequence of shadow diagrams can then be used to reconstruct the pair
of pile configurations given by the Extended Patience Sorting Algorithm (Algorithm 1.2). To
accomplish this, index the cards in a pile configuration using the French convention for tableaux
so that the row index increases from bottom to top and the column index from left to right.
(In other words, we are labeling boxes as we would lattice points in the first quadridt)of
Then, for a given permutation € S, the elements of théth row of the insertion pileR (o)
(respectively recording pileS(o)) are given by the largest ordinates (respectively abscissae) of
the shadowlines that composrg")v.

The main difference between this process and Viennot's Geometric RSK is that care must
be taken to assemble each row in its proper order. Unlike the entries of a Young tableau, the
elements in the rows of a pile configuration do not necessarily increase from left to right, and
they do not have to be contiguous. As such, the components of each row should be recorded in
the order that the shadowlines are formed. The rows can then uniquely be assembled into a legal
pile configuration since the elements in the columns of a pile configuration must both decrease
(when read from bottom to top) and appear in the leftmost pile possible.

The proof of this is along the same lines as that of Viennot's Geometric RSK in that the
shadowlines produced by Definition 3.3 are a visual record for how cards are played atop each
other under Algorithm 1.2. In particular, it should be clear that, given a permutato®,,, the
shadowlines in both of the shadow diagraDﬁ;%v (o) andD,(\loé(o) are defined by the same lattice
points from the permutation diagram fer In [3] the points along a given northeast shadowline
are shown to correspond exactly to the elements in some columiioof (as both correspond
to one of the left-to-right minima subsequencesdf Thus, by reading the lattice points in the
permutation diagram in increasing order of their abscissae, one can uniquely reconstruct both
the piles inR (o) and the exact order in which cards are added to these piles (which implicitly
yieldsS(o)). In this sense, botDéov)V (0) andD,(\loé(o) encode the bottom rows & (o) andS(o)
as given by Algorithm 1.2.

It is then easy to see by induction that the salient pointhigl) (o) yield thekth rows of
R(o) andS (o), and so this gives the following

Theorem 3.5.The process described above for creating a pair of pile configurations (R'(o),
S’ (0)) from the Geometric Patience Sorting construction yields the same pair of pile configura-
tions (R(0), S(o)) asthe Extended Patience Sorting Algorithm (Algorithm 1.2).

Having given the above Geometric form for Algorithm 1.2, it is worth pointing out that—as
with RSK—there are various natural generalizations of Extended Patience Sorting for more gen-
eral combinatorial objects including words and lexicographic arrays. (See [7] for a description of
such extensions of RSK.) Moreover, many of these generalizations can still similarly be realized
as non-recursive analogs for the forms of RSK that can be applied to such objects. In particular,
the authors in [4] explore several such generalizations and develop geometric forms for them
much like the one given in this section.

In the case of words, Aldous and Diaconis [1] have given two different generalizations for
Patience Sorting based upon whether cards with equal value are played on top of each other or
not. These are called the “ties allowed” and “ties forbidden” cases, respectively, and the usual
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RSK and dual RSK algorithms can be modeled in order to develop bijective versions of them.
The geometric forms for the resulting algorithms as given in [4] can then be compared to Ful-
ton’s “Matrix-Ball” Geometric RSK algorithm (defined in [7]) just as we compare the Geometric
Patience Sorting given in this section to Viennot's Geometric RSK in Section 4.

4. Geometric patience sorting and intersecting lattice paths

Extended Patience Sorting (Algorithm 1.2) can be viewed as a “non-bumping” version of the
RSK algorithm for permutations in that cards are permanently placed into piles and are covered
by other cards rather being displaced by them. It is in this sense that one of the main differences
between their geometric algorithms lies in how and in what order (when read from left to right)
the salient points of their respective shadow diagrams are determined. In particular, as playing
a card atop a pre-existing pile under Patience Sorting is essentially like non-recursive Schensted
Insertion, certain particularly egregious “multiple bumps” that occur under the Schensted Inser-
tion Algorithm prove to be too complicated to be properly modeled by the “static insertions” of
Patience Sorting.

At the same time, it is also easy to see that for a gwen S,,, the cards atop the piles in
the pile configuration® (o) andS(o) (as given by Algorithm 1.2) are exactly the cards in the
top rows of the RSK insertion tabled(c) and recording tablea@ (o), respectively. Thus, this
raises the question of when the remaining rowsPéé) and Q(o) can likewise be recovered
from R(o) and S(o). While this appears to be directly related to the order in which salient
points are read (as illustrated in Example 4.1 below), one would ultimately hope to characterize
the answer in terms of generalized pattern avoidance similar to the description of reverse patience
words for pile configurations (as given in [3]).

Example 4.1.Consider the northeast and southwest shadow diagrams=a2431:

4 l—éf_ 4 -—%
© (2431 > : © 243p—5 e |
D =2 > vs. D =2
NE( :D 1 SW( :D 1 ___é_
0 0 —+ }
01234 01234

In particular, note that the order in which the salient points are formed (when read from left to
right) is reversed. Such reversals serve to illustrate one of the inherent philosophical differences
between RSK and the Extended Patience Sorting Algorithm.

As mentioned in Section 3.2, another fundamental difference between Geometric RSK and
Geometric Patience Sorting is that the latter allows certain crossings to occur in the lattice paths
formed during the same iteration of the algorithm. We classify these crossings in Section 4.1
and then characterize those permutations that yield entirely non-intersecting lattice paths in Sec-
tion 4.2.

4.1. Types of crossings in geometric patience sorting

Giveno € &,, we can classify the basic types of crossingi)@, (o) as follows: First note

that each southwest shadowline %(o) corresponds to a pair of decreasing sequences of the
same length, namely a column from the insertion pRés) and its corresponding column from
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the recording piles (o). Then, given two different pairs of such columnsikio) andS(c), the
shadowline corresponding to the rightmost (respectively leftmost) pair—under the convention
that new columns are always added to the right of all other columns in Algorithm 1.2)—is called
theupper (respectivelyiower) shadowline. More formally:

Definition 4.2.Given two shadowlinesl,l(m)(a), Lﬁ.m)(a) € Dg’”W)(a) withi < j, we calng’")(a)
the lower shadowline an(LEm)(o-), the upper shadowline. Moreover, iLEm)(a) and LE.’")(U)
intersect, then we call this\&rtical crossing (respectivelyhorizontal crossing) if it involves a
vertical (respectively horizontal) segmentloy“)(o).

We illustrate these crossings in the following example. In particular, note that the only permu-
tationso € &3 of length three having intersections in their Oth iterate shadow diag)gﬂ}‘(a)
are 312231e G3.

Example 4.3.

(1) The smallest permutation for whiohgov{, (o) contains a horizontal crossingds= 312 as
illustrated in Fig. 4.1(a). The upper shadowline involved in this crossing is the one with only
two segments.

(2) The smallest permutation for whicbg?v(o) contains a vertical crossing 8 = 231 as
illustrated in Fig. 4.1(b). As in part (1), the upper shadowline involved in this crossing is
again the one with only two segments.

(3) Considew =4231. From Fig. 4.1(c)D§ca, (o) contains exactly two southwest shadowlines,
and these shadowlines form a horizontal crossing followed by a vertical crossing. We call a
configuration like this a “polygonal crossing.” Note in particular tﬂéﬂ, (o) (trivially) has
no crossings.

(4) Considero = 45312. From Fig. 4.1(d)D§OV)V(a) not only has a “polygonal crossing” (this

time as two shadowlines have a vertical crossing followed by a horizontal oné)gﬁma)
does as well.

Polygonal crossings are what make it necessary to read only the salient points along the
same shadowline in the order in which shadowlines are formed (as opposed to constructing the
subsequent shadowlines using the entire partial permutation of salient points as in Viennot's
Geometric RSK).

4+ 4T 4 1
_T 5
3 —T 3 3 4 _T
2
1+ LT 1T 1+
1 -+
0 — t 0 } _T t 0 — _T 0 MH——
01 2 3 4 01 2 3 4 01 2 3 4 012345
(a) Shadow Diagram  (b) Shadow Diagram  (c) Shadow Diagrams  (d) Shadow Diagrams
¥ (312. DO (231. b . ph @23y, pO DY (4531,

Fig. 4.1. Shadow diagrams with different types of crossings.
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Example 4.4.Consider the shadow diagram ®f= 45312 as illustrated in Fig. 4.1(d). The Oth
iterate shadow dlagram( contain a polygonal crossing, and so the 1st iterate shadow diagram

D(l) needs to be formed as indicated in order to properly describe the pile configurgtions
andS(o) since

11
o =45312253 |32 32 1)
45 45

under the Extended Patience Sorting Algorithm.
4.2. Non-intersecting shadow diagrams

Unlike the rows of Young tableaux, the values in the rows of a pile configuration do not neces-
sarily increase when read from left to right. In fact, the descents in the rows of pile configurations
are very closely related to the crossings given by Geometric Patience Sorting.

As noted in Section 3.2, Geometric Patience Sorting is ostensibly simpler than Geometric
RSK in that one can essentially recover both the insertion ilgs) and the recording piles
S(o) from the Oth iterate shadow diagramé%)v The fundamental use, then, of the iterates

D(S’;l), Dg’;z), ... Is in understanding the intersections in ilie iterate shadow d|agram(’)

In particular, each shadowllrle(’") (o) € D( w (o) corresponds to the pair of segments of itie
columns ofR(o) andS(o) that are above thxath row (or are theth columns ifm = 0), where
rows are numbered from bottom to top.

Theorem 4.5.Each iterate ng”v"} (o) (m = 0) of o € &, isfreefromcrossingsif and only if every
row in both R(¢) and S(o) is monotone increasing from left to right.

Proof. Since eacrL(’”) L(”’)(o) depends only on thith columns ofR = R(o) andS = S(o)
above rowmn, we may assume without loss of generality tRa&ind S have the same shape with
exactly two columns.

Letm + 1 be the highest row where a descent occurs in eikher S. If this descent occurs
in R, thenLg”) is the upper shadowline in a horizontal crossing sihf;@ hasy-intercept below
that ofL(lm), which is the lower shadowline in this crossing (as in 312). If this descent occurs
in S, thenLg”) is the upper shadowline in a vertical crossing siné@) hasx-intercept to the
left of Lgm), which is the lower shadowline in this crossing (as in 231). Note that both descents
may occur simultaneously (as in 4231 or 45312).

Conversely, suppose is the last iterate at which a crossing occurdisiy (o) (i.e., D“) (o)
has no crossings fof > m). We will prove thatLg") may have a crossing only at the first
or last segment. This, in turn, implies that rowin R or S is decreasing. A crossing oc-
curs when there is a vertex ah‘(l’”) not in the shadow of any point CII;’"). We will prove
that it can only be the first or last vertex. Lfgk1, 1), (s2,72), ...} and{(uz, 1), (u2, t2), ...}
be the vertices that definb(l’") and Lg”), respectively. Therr;};>1 and{z;};>1 are decreas-
ing while {s;};>1 and{u;};»1 are increasing. Writ€a, b) < (¢, d) if (a,b) is in the shadow
of (¢,d) (i.e. if a < b andc < d), and conside L(lm“) and L(Z’"+1). They are noncrossing
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and defined by point§(s1, r2), (s2,73), ...} and {(u1, t2), (u2, 13), ...}, respectively. Then, for
any i, (si,ri+1) < (uj,t;4+1) for some j. Suppose(s;,ri+1) < (uj,1j+1) and (si4+1,ri+2) <

(ug, tr+1) for some j < k. Each upper shadowline vertex must contain some lower shadow-
line vertex in its shadow, so for alle [, k], (s;, ri+1) < (ug, te1) OF (Si41, ri2) < (Ug, teg1)-
Choose the least € [, k] such that(s;+1, ri+2) < (ug, teg1). If (si,riv1) < (ug, t0+1), then
(Sit1, rit1) < (ug, teg1) < (ue,te). I (si,rign) & (e, tey1), then (s, rig1) < (ue—1, 1), SO
(si+1,ri+1) < (ug,t¢). Thus, in both casess;t1,ri+1) < (ug, t7), and the desired conclusion
follows.

An immediate corollary of the above proof is that all roins m in both R(o) andS(o) are
monotone increasing from left to right if and only if every iteralév)v(a) (i = m) is free from
crossings.

One can equivalently characterize intersecting shadowlines beyond the Oth iterate®f
in terms of sub-pile patterns for the entriesRiw) andS(o). We state the following such result
only for horizontal crossings, but vertical crossings can then be characterized by invefiting
by transposing within these pairs of patterns via a Schiitzenberger-type symmetry result proven
in [3]). Moreover, it is not difficult to show that avoiding both horizontal and vertical crossings
in every iterate is equivalent to avoiding all crossings.

Corollary 4.6. If R(o) and S(o) contain either of the following two simultaneous sub-pile pat-
terns, then the permutation o € &,, has a horizontal crossing in Dé’}}} (o) (here {xs}s>1 and
{yr}r>1 aremonotoneincreasing; m < k, [; and the numbers in the boxes indicate the number of

elements in respective sub-piles):

R or R .
Vs v : cS CR, cS

X2 ) y3 y2
[i+m] [j+m

—m
n o [0] v X2
3

=
x1
x4

j+m
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