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Abstract

For n∈N the number of minimal addition chains, �(n), is examined by its representation
by reduced graphs. It is shown that �(n) = 1 implies n = 2k or n = 3 answering a question of
Thurber. Further those n with �(n) = 2 are characterized. c© 1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction

An addition chain is a �nite ascending ordered sequence of natural numbers starting
with 1 and ending with a given n∈N, i.e. 1 = a0¡a1¡ · · ·¡ar = n, such that each
element except the �rst is the sum of two preceding elements of the chain. The length
of an addition chain is by de�nition r. Further the minimal length of an addition chain
for n∈N is denoted by ‘(n). Formally:

De�nition 1. A(n) is called an addition chain for n∈N i� there is an r ∈N0 such that
(i) ∀k with 16k6r ∃ak ∈N: A(n) = (a0; a1; : : : ; ar) with a0 = 1
(ii) ∀k with 16k6r ∃i; j with i¡ k and j¡k: ak = ai + aj
(iii) ∃k with 06k6r: ak = n
(iv) ∀k with 16k6r: ak−1¡ak
(v) ∀i with 06i¡ r and ai 6= n ∃k with i¡ k6r ∃ j¡k: ak = ai + aj
hold. Then r is called the length of A(n), which is unique due to (i).
Let ‘(n) :=min{r ∈N0 | ∃A(n) of length r}. An addition chain A(n) is called a

minimal addition chain i� its length is ‘(n).
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Condition (v) is a restriction as practical as (iv), to ensure that an addition chain
contains no super
uous elements with respect to generating n by condition (ii). Many
people replace conditions (iii) and (v) by ar = n and do not mention the deeper
concept of addition chains for sets S ⊂N or the technical di�culties which can arise
from unnecessary elements of A(n).
In [4], Thurber de�ned the number of minimal addition chains for n∈N as

�(n) = |{A(n) of length ‘(n)}|. He asked for those n with �(n) = 1 and conjectured
that n must be three or a power of two to have exactly one minimal addition chain.
I will present a short proof of this conjecture using the concept of reduced graphs of
addition chains introduced by Knuth [3, pp. 460–462]. Hence, we need

De�nition 2. A reduced graph G = (V; E) is a �nite, directed, acyclic graph with a
unique source and a unique sink, such that each vertex except the source has in-degree
at least two and each vertex except the sink has out-degree at least two.

Throughout this paper, we will identify V = {v0; v1; : : : ; vk} with a subset of N,
i.e. label the vertices of V with di�erent numbers, such that, as in [3], the label of
each vertex vi of G is the number of paths from the source to vi. This label also
represents a member of any one of the addition chains that can be formed from G.
Thus, vi can be thought of as vertex vi ∈V or as the number vi ∈N in which case
it represents a member of an addition chain as well as the number of paths in G
from the source to vi. Lastly, we �x the order of the vertices by demanding i¡ j ⇒
vi ¡ vj. This immediately implies that for the source of G v0 =̂ 1 and for its sink
vk =̂ n for every A(n). For the ambiguity of the natural surjection between addition
chains and reduced graphs due to the de�ciency in the de�nition of addition chain
see [1].

2. The case �(n) = 1

Lemma 1. A reduced graph G corresponds to exactly one addition chain A i� its
edges are only between successive vertices.

Recall that by de�ntion a reduced graph on k+1 vertices must have out-degree(vi)¿2
for all i¡ k.
First, we prove the ⇒-direction of the lemma by induction on i, the index of a

vertex vi, starting with i set to k, the index of the sink, and proceeding by decreasing
i by 1 down to i = 0, the index of the source, which will generate all edges of this
acyclic graph.

Proof. By the inductive hypothesis the predecessor of vi, the vertex just considered,
is still unused in the construction of the addition chain corresponding to G. Therefore
there must be at least two out-going edges from vi−1 which point to vi. If there is a
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further edge to vi from a vertex vj with j¡ i, the corresponding addition chain must
stay the same when the order in which these edges are used changes, i.e. the order
of the corresponding addition steps building up the addition chain must not a�ect the
calculation of vi. So each further edge into vi must come from vi−1, too. The same
argument works now if we consider i − 1 in place of i.

Secondly, we prove the⇐-direction, which is intuitively easy, but technically di�cult
to make precise. The reader is referred to [1] for exactness.

Proof. Suppose the edges of G are only between successive vertices. Then out-
degree(vi) = in-degree (vi+1) = t(i)¿2 for each i¡ k, and vi+1 is the sum of t(i)
of the vi’s. There is only one possible path from vi to vi+1 that reduces to a node
vi and a node vi+1 with t(i) edges between them since each intermediate node of the
‘nonreduced’ graph of the addition chain A must have out-degree 1. The correspond-
ing ‘piece of A’ is vi; vi + vi; vi + vi + vi; : : : ; vi+1, containing t(i) numbers. Thus G
corresponds to exactly one addition chain.

Lemma 2. In a reduced graph which corresponds to a minimal addition chain there
can be at most three parallel edges.

Proof. If there are four or more parallel edges from say vi to vj we can generate a
shorter addition chain for the same n by inserting a further vertex with value 2vi after
vi and replacing each pair of edges from vi to vj by one edge from the new vertex to
vj. This contradicts the minimality of the given addition chain since the length of an
addition chain represented by a reduced graph G is |E| − |V |+ 1 [3].

Theorem 1. For any n∈N we have �(n) = 1; i� either n= 3 or n= 2k with k ∈N0.

Proof. The simple direction: if n = 3 then ‘(3) = 2 and there is only one (minimal)
chain (1; 2; 3). If n = 2k then ‘(2k) = k and each step in the addition chain must be
a doubling to reach n in k steps starting from 1. Therefore in that case the minimal
addition chain is unique, too.
Now the proof in the other direction: for each addition chain there exists at least

one reduced graph, which is unique if the elements of the chain are uniquely formed
from previous elements of the chain [1]. If �(n) = 1 the addition chain A(n) must
be unique and the corresponding reduced graph is unique, too, as we see because of
the applicability of Lemma 1 and its constructive ⇐-proof. So, we can talk about the
reduced graph G of the addition chain instead of any reduced graph G of A(n), which
nevertheless would be also su�cient for the purpose of the proof.
Next, we use Lemma 1 and conclude that all edges ∈E of G can only be between

successive vertices of (any) G. Because the corresponding addition chain to G should
be minimal, we can use Lemma 2 and get: there are only two or three edges between
successive vertices.
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Hence, n =̂ vk , which is the number of all paths from 1 to vk in any reduced graph,
equals

∏k
i=1 |{e is an edge from vi−1 to vi}|=2j3k−j for a �xed j∈N0. If k ¿ j¿ 0,

then 2 and 3 appear as factors in the product above. This means, a pair of edges
connecting adjacent vertices (that are connected by no further edges) could be inter-
changed with three edges connecting another pair of adjacent vertices. Doing this, we
would obtain another reduced graph for the same n from which an additional minimal
addition chain for n could be produced contradicting �(n) = 1. Consequently, n must
be either a power of two or a power of three.
Finally, we consider the case n = 3k : because n = 9 = 32 has two further di�erent

minimal addition chains apart from the chain considered (1; 2; 3; 6; 9) — i.e. (1; 2; 4; 8; 9)
and (1; 2; 4; 5; 9) — we could replace the �rst four steps of the addition chain generated
for 3k by one of the two others, if k ¿ 1. Thus, the addition chain would not be unique
or the original reduced graph does not correspond to a minimal chain for n. Therefore,
only k = 1 is possible if n is a power of three.

3. The case �(n) = 2

Now let us consider those n which have two minimal addition chains. What is the
structure of such n? If their reduced graph is not unique, then each of the two graphs
must correspond to exactly one addition chain. But reduced graphs with a unique
corresponding minimal addition chain must have n = 2j3k−j by Theorem 1. But if

�(n) = 2 then we must have
(
k
j

)
= 2, too. The only possibility is k = 2 and j = 1

which means n= 6. And indeed �(6) = 2.
In the other case the reduced graph G of an addition chain of n with �(n) = 2

is unique, but corresponds to two di�erent addition chains. In particular, the dual
graph of G [3, p. 462] must be identical to G. This means that G is edge-symmetric.
Furthermore, because we know that G generates exactly two di�erent addition chains,
there must be exactly one vertex vi of G with in-degree(vi) = 3 and of the three
corresponding edges one comes from vh and two from vj with j 6= h. All other vertices
6= vi must have either in-degree two or, if in-degree¿3, all edges come from the
same predecessor vertex. In the last case only in-degree three is possible, because of
the minimality of the corresponding addition chain. All these statements hold also for
out-degree(v) for every v∈V in place of in-degree(v) because of the edge-symmetry
of G. Moreover, for every path which would go via the special vertex vi and the
corresponding dual vertex vk−i, we could factor out vk−i from n and create another
addition chain (1; : : : ; n=vk−i ; : : : ; n) where the special vertex appears earlier. In detail:
consider any path that goes through the special vertex vi and the corresponding dual
vertex vk−i. If we suppose that vk−i occurs at the same place or before vi in the graph,
respectively resultant addition chain, then as a consequence of the restrictions placed
on the edges of the reduced graph, vk−i will divide every vertex, resp. number, that
occurs after it in the reduced graph, resp. addition chain. This allows the formation of
an addition chain (1; : : : ; vi=vk−i ; : : : ; n=vk−i ; : : : ; n) with special vertex vi=vk−i. The part
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Fig. 1. The reduced graph for n = 2617 together with its addition chains.

of the chain from 1 to n=vk−i is formed by dividing each number of the original chain
from vk−i to n by vk−i. And the remainder of the new chain is formed by multiplying
each number of the original chain from 2 to vk−i by n=vk−i. This new minimal addition
chain must be identical to the original since �(n) = 2. Thus, i must be k, resulting in
vk−i = v0 = 1. Therefore, we can formulate

Proposition 1. The reduced graph of a minimal addition chain for n 6= 6 with �(n)=2
has its special vertex with in-degree three as the last vertex vk =̂ n and the vertex
v0 =̂ 1 must be its dual vertex with out-degree three.

Now, de�ne the list of special vertices as follows: the �rst special out-vertex is
v0 =̂ 1. Exactly one of its edges, which does not go to its successor v1 =̂ 2 is called
special. This special edge points to the �rst special in-vertex. By de�nition the next
special out-vertex is the predecessor of the last special in-vertex. From this next special
out-vertex there is exactly one special edge which does not point to its successor vertex.
It points to the next special in-vertex and so forth. This scheme works until the special
in-vertex becomes the last vertex vk . As a result of the structure imposed upon G,
a vertex of G must appear in such a list as in-vertex or out-vertex uniquely. Nodes
of G which are not in this list must be strictly between the predecessor of a special
in-vertex and the successor of the out-vertex that points to this in-vertex — except at
the start of G where such nodes lie between the �rst two out vertices and at the end
of G where such vertices lie between the last two in-vertices. These missing vertices
can have only parallel edges to their successors. Furthermore, if there are at least two
successive vertices then they must all have out-degree two because of the uniqueness
of the addition chain in this part. Finally, we note that, conversely, if all minimal
addition chains for n have the same reduced graph G and G has the structure as just
described, then �(n) = 2.
As an illustration the reduced graph for n = 2617 is given in Fig. 1, where the

label of each vertex is obtained by counting the number of paths from the source
to this vertex. We get its (minimal) addition chains of length 14 by inserting either
1455 or 2324 before the last value 2617. The corresponding list of special vertices is
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Table 1

Restrictions on i; m∈N Family (ni) First n ‘(ni) s(ni)

– 6 3 1
i¿2 2i + 1 5 i + 1 1
i¿2; 2i 6= m; |m− i|¿ 2 (2i+1 + 1)2 · 2m + (2i + 1)2 2467 2i + m + 5 3

91913 20 4

Table 2

k 3 5 7 9 11 13, m¿7 15 17 19

n 9; 12 7; 27; 48 18; 192 768 3072 359; 11 · 2m + 7; 3 · 212 11; 3 · 214 711; 3 · 216 3 · 218

(1; 5; 4; 9; 5; 293; 288; 581; 293; 2617). We are left with the question: which n∈N have
only such a reduced graph for their corresponding minimal addition chains? The known
n∈N with �(n) = 2 including all these n up to 217 are as shown in Table 1.
The entries in this tables were found by examining all minimal addition chains for n

up to 217 computationally and then the families were recognized by a bit of perspicacity.
The last column, indicating the number of small steps in a minimal addition chain for n
can be calculated as s(n)=‘(n)−blog2(n)c. The family with s(ni)=3 could be proved
by the complete 3-smallstep-analysis of Flammenkamp [2], which would characterize
all further 3-smallstep addition chains with �(n) = 2, if such exist.

4. The case �(n)¿3

For even k, there are in�nitely many numbers n with �(n) = k [4, p. 290]. Thurber
showed also in his Theorem 2 that �(3 · 2k−1) = k for all k ∈N. Hence, at least one
number n exists for each k ∈N. But for which odd k ∈N are there in�nitely many
n∈N with �(n) = k? If we have a look at numbers n of the form 2m + 2m

′
+ 1 for

m¿m′¿ 0, we notice that �(n) covers certain odd values:

m′ = 1: n= 2m + 3 and m¿6; then �(n) = 23;

m′ = 2: n= 2m + 5 and m¿7; then �(n) = 21;

m′¿3: n= 2m + 2m
′
+ 1 and m¿2m′ + 1; then �(n) = 4m′ + 9:

These facts, found by computation up to some m, can be easily proved for all (larger)
m by the computer program of Flammenkamp, which just counts minimal addition
chains represented in exactly such algebraic representations, see [2]. Thus, if there are
only �nitely many n for which �(n) = k for some k ∈N0, then k ≡ 3 (mod 4) or
k ¡ 20. Table 2 lists the known n for odd k ¡ 20:
As we see, only in the case k = 13, are in�nitely many n known with exactly that

number of minimal addition chains — as mentioned above, this could also be proved
automatically, as it is covered by the 3-smallstep addition chains of case 125: 125 6∗
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@(p)+@(q)+@(r)+@(s)+@(−p+q+s+1)+@(−p+r+s+1) of Flammenkamp’s diploma the-
sis, setting p= m+ 3; q= m+ 1; r = m; s= 2.
During the �rst revision of this paper, one referee kindly communicated to me another

family, namely n= 187 · 2m + 63 for m¿7; m 6= 9, which appears to have �(n) = 13,
too.
We are left with the open problem similar to Thurber’s question: for which n does a

reduced graph exist presenting each minimal addition chain for n? The answer to this
question would describe all such n with e.g. �(n) = 2; 3 uniquely.
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