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Abstract

Athree-species Lotka—Volterra type food chain model with stage structure and time delays is investigated.
It is assumed in the model that the individuals in each species may belong to one of two classes: the
immatures and the matures, the age to maturity is presented by a time delay, and that the immature predators
(immature top predators) do not have the ability to feed on prey (predator). By using some comparison
arguments, we first discuss the permanence of the model. By means of an iterative technique, a set of easily
verifiable sufficient conditions are established for the global attractivity of the nonnegative equilibria of the
model.
0 2005 Elsevier Inc. All rights reserved.
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1. Introduction

An important and ubiquitous problem in predator—prey theory and related topics in mathemat-
ical ecology, concerns the long term coexistence of species. Lotka—Volterra type predator—prey
systems are very important in the models of multi-species populations interactions and have been
studied by many authors (see, for example, [5-8]). It is assumed in the classical predator—prey
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model that each individual predator admits the same ability to attack prey and each individual
prey admits the same risk to be attacked by predator. This assumption seems not to be realistic for
many animals. In the natural world, there are many species whose individuals have a life history
that takes them through two stages, immature and mature, where immature predators are raisec
by their parents, and the rate they attacking at prey and the reproductive rate can be ignored;
on the other hand, it may be reasonable for a number of animals to assume that immature prey
population concealed in the mountain cave and are raised by their parents; the rate of mature
predators attacking at immature prey can be ignored.

Stage-structured models have received great attention in recent years. The pioneering work
of Aiello and Freedman [1] on a single species growth model with stage structure represents a
mathematically more careful and biologically meaningful formulation approach. In [1], a model
of single species population growth incorporating stage structure as a reasonable generalization
of the classical logistic model was formulated and discussed. This model assumes an average
age to maturity which appears as a constant time delay reflecting a delayed birth of immatures
and a reduced survival of immatures to their maturity. Recently, many authors studied different
kinds of stage-structured models and some significant work was carried out (see, for example,
[2—-4,9-16]).

Motivated by the recent work of Aiello and Freedman [1], in the present paper we are con-
cerned with the effect of stage structure for each species on three species Lotka—\olterra type
food chain model. To do so, we study the following delayed differential system:

%1(1) = 1e " xq (1 — 1) — aax (1) — agpxa () x2(1),

y1(t) = cax1(t) — yaya(t) — aze” "xq(t — 11),

fa(t) = ape 22y (t — To)x2(t — T2) — raxa(t) — azx3 (1) — azaxa(1)xa(t),

Y2(t) = agx1(t)x2(t) — y2y2(t) — aze” 22x1(t — 12)x2(t — 72),

%3(r) = age*Bxp(r — 13)x3(f — T3) — rax3(r) — azax3 (1),

y3(t) = azxa(t)x3(t) — yay3(t) — aze” *™xa(t — 13)x3(t — 73), (1.1)

wherex1(r) andy1(¢) denote the densities of the mature and immature prey population at,time
respectively;x2(r) and y, () represent the densities of the mature and immature predator pop-
ulation at timer, respectively;x3(t) andy3(¢) denote the densities of the mature and immature
top predator population at time respectivelyai1, a12, azz, azs, ass, r2, r3, a1, @2, a3, ¥1, V2,

y3, T1, T2 andrsz are positive constants. The model is derived under the following assumptions:

(A1) The prey population: the birth rate of the population is proportional to the existing mature
population with a proportionality constaat > 0; the death rate of the immature popu-
lation is proportional to the existing immature population with a proportionality constant
y1 > 0; a1 is the death and intra-specific competition rate of the mature population. The
termage 1" x1(t — 1) represents the immature prey individuals who were born at time
t — 71 and survive at time, and therefore represents the transformation of immature prey
population to mature prey population.

(A2) The predator population: aj» is the capturing rate of the mature predatar/ai» is the
conversion rate of nutrients into the reproduction of the mature predatmdas, are the
death rate and the intra-specific competition rate of the mature predators, respectively; the
death rate of the immature population is proportional to the existing immature population
with a proportionality constant; > 0. The termuge "2%2x1(t — 12)x2(t — T2) represents
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the number of immature predators that were born at timer, which still survive at time
t and are transferred from the immature stage to the mature stage at tineeassumed
in (1.1) that immature individual predators do not feed on prey and do not have the ability
to reproduce.

(A3) Thetop predator population: a3 is the capturing rate of the mature top predatgyazs is
the conversion rate of nutrients into the reproduction of the mature top precgdodass
are the death rate and the intra-specific competition rate of the mature top predators, the
death rate of the immature population is proportional to the existing immature population
with a proportionality constants > 0. The termuze 3%8x2(¢t — t3)x3(¢t — 73) denotes the
number of immature top predators that were born at timers which still survive at time
t and are transferred from the immature stage to the mature stage at im{&.1) we also
assume that the immature top predator do not feed on predator and do not have the ability
to reproduce.

The initial conditions for system (1.1) take the form
xi(0) = ¢i(0), yi(0) =i (0),
¢i (0) >0, ¥i(0)>0, i=123, (1.2)

where(¢1(0), ¥1(0), $2(0), ¥2(8), $3(8), ¥3(8)) € C([—1, 0], Rio), the Banach space of con-
tinuous functions mapping the intervgkt, 0] into RS, wheret = max(z1, 1, 13}, R®

+0’ +0 =
{(x1, x2, x3, x4, x5, x6) | x; 20,i =1,2,...,6}.
For continuity of the initial conditions, we further require
0
y1(0) = / a1p1(s)e™ ds,
it
0
720 = [ aaps(9)0a0e7 ds.
5
0
y3(0) = / azp(s)p3(s)e’™ ds. (1.3)

—13

The paper is organized as follows. In the next section, we will discuss the positivity of solutions
and the permanence of system (1.1). In Section 3, a set of easily verifiable sufficient conditions
are derived for the global attractivity of the nonnegative equilibria of system (1.1) by using an
iterative technique. A brief discussion is given in Section 4 to conclude this work.

2. Permanence

In this section, we are concerned with the permanence of system (1.1) with initial conditions
(1.2) and (1.3).

Definition. System (1.1) is said to be permanent if there exists a compact ré&yionnt Ri
such that every solutiox1(t), y1(z), x2(2), y2(t), x3(¢), y3(¢)) of (1.1) with initial conditions
(1.2) and (1.3) eventually enters and remains in the refion
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In the following we first show the positivity of solutions to system (1.1) with initial conditions
(1.2) and (1.3).

Lemma 2.1. Solutions of system (1.1) with initial conditions (1.2) and (1.3) are positive for all
t>0.

Proof. Let (x1(2), y1(t), x2(2), y2(¢), x3(t), y3(t)) be a solution of system (1.1) with initial con-
ditions (1.2) and (1.3). Let us first consides(¢) for ¢ € [0, t*], wheret* = min{ry, 71, 12}
Noting that¢2(6) > 0, ¢3(0) > 0 for 6 € [—1, O], we obtain from the fifth equation of system
(1.1) that
X3(r) = age " Ro(t — 13)¢3(r — T3) — raxa(t) — azax3 () = —raxa(t) — aszri(r).
By comparison, it follows that for € [0, 7],
r3x3(0) -
azzx3(0) (e —1) +r3
We derive from the third equation of system (1.1) thatfer[O, *],

x3(t) >

%2(1) = a2e 22y (t — T2) (1 — T2) — raxa(t) — azox3(t) — azax2(1)x3(r)
> x2(t) (—r2 — azox2(r) — azax3(1))

since ¢1(0) > 0, ¢2(0) > 0, 6 € [—7,0]. A standard comparison argument shows that for
t €[0, t*],

x2(0) expl— [ (r2 + azaxa(s)) ds]
1+ azox2(0) [y expl— [y (r2 + azsxs(u)) dulds

Similarly, it follows from the first equation of system (1.1) that fa# [0, t*],

x2(t) 2

£1(1) = a1e 1 (t — T1) — a1axi (1) — aroxa(t)x2(t)
> x1(t)[—a11x1(1) — azox2(1)]
since¢1(0) > 0,60 € [—1, 0]. By comparison, we derive that fore [0, T*],
x1(0) exp —a12 [y x2(s) ds]
1+ a11x1(0) fy expl—aiz f x2(u) dulds

In a similar way, we treat the intervals*, 2t*],..., [nt*, (n + 1)t*],n € N. Thus,x;(¢) > 0
forallr >0,i=1,23.
It follows from (1.1) and (1.3) that

x1(t) 2

t

yi(t) = / aze ) x(s) ds,

1—171
t

ya(t) = f aze 72079 x1 (s)x2(s) ds,

t—12
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t

valt) = / aze 1) xp(s)x3(s) ds. (2.1)

t—13

Therefore, the positivity of; () (i =1, 2, 3) follows. This completes the proof.0
In order to discuss the permanence of system (1.1), we need the following result from [13].

Lemma 2.2. Consider the following equation:
%) =ax(t — 1) — bx(t) — cx?(1),
wherea, b, ¢ and t are positive constants, x(¢) > 0 for ¢t € [—t, 0]. We have

(i) ifa > b, thenlim,_ o0 x(1) = (a — b)/c;
(i) ifa < b, then lim;_ 400 x(r) = O.

Theorem 2.1. System (1.1) with initial conditions (1.2) and (1.3) is permanent provided that

(H1) A; >0,i =1, 2, where

A1 = a11a22a33 — arazseze” " — agzaroe”?% > 0,
Az = (a10p03e V22T — raaqiage ™3™ — r3agnagy — raarpaze”12%)

aroae V22 gpzuze V3T
x|1-—

a1iazz az2d33

—y2T2 —y373
B aoae asaaze
— raajpaoe y2r2< + )

aiiazz az2a33

2.2)

Proof. Suppose&xi(t), y1(t), x2(), y2(t), x3(t), y3(t)) is a positive solution of system (1.1) with
initial conditions (1.2) and (1.3). It follows from the first equation of system (1.1) that

$1(1) < age My (1 — 11) — agaxZ ().
Consider the following auxiliary equation:
i(t) = are "u(t — t1) — aru?().

By Lemma 2.2, we derive that

) Qe 7
lim u@) = .
t—400 all

By comparison, it follows that

] ae 11T
limsupxy(z) <
t——+00 ail

Therefore, fore > 0 sufficiently small, there is @11 > 0 such that it > 731,

e N
x1(f) <

+¢&:= M. (2.3)
ail

We derive from the third equation of system (1.1) for T11 + 7 that

%2(1) < a2e 22 Myxa(t — 12) — raxa(t) — azox3(t).
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A comparison argument shows that

_ -r171
e Vzrz(alea—ll +8) —r

limsupx2(z) <
t——+00 a2

Sincee > 0 is arbitrary and sufficiently small, we can conclude that

—Viti—y2t2 __
. ajaze raail
limsupx2(z) < .
t—+00 aiiaz2

Therefore, fore > 0 sufficiently small there existg 2 > T11 + t such that iff > Ty,

—Yiti—y2t2 _
alaze raaiil
x2(t) < + & := M>. (2.4)
aiiaz?

Similarly, we derive from the fifth equation of system (1.1) and (2.4) that

—Y¥313 —YiTi—Yy2t2 _ —

_ aze (a12e rpai1) — raa11az?2
limsupxz() < )
> 100 a11a22a33

Hence, fore > 0 sufficiently small there i§13 > T12 + t such that ift > Ty3,

—Yy313 —Y1iT1—Y2T2 __ —

ase (a102e rpaj1) — raa11az2

x3(t) < +é&:=Ms. (2.5)
a11a2a33

SetTy = Tiz+ t. It follows from (2.1), (2.3)—(2.5) that far > Ty,

M
) < 21— e ) = Ny,
MiM
ya(t) < M(l— eﬂ/zfz) = No,
V2
Mo M-
ya(0) < % (1—e773%) := Na. (2.6)

Again, we derive from the first equation of system (1.1) and (2.4) that fof,
X1(1) = @1e M xq (1 — 1) — ax (1) — a1oMaoxa (). (2.7)

By comparison, it follows from (2.4) and (2.7) that

agope V1T1TY272—rpaqq -I-S)

—rit _
a1e alz( ai11a22

liminf x1(z) >
t——+o0 all
Sincee > 0 is arbitrary and sufficiently small, we conclude that

agage” YITLTY2T2 —ryay;
a11az

are "1 — aqo

liminf x1(r) >
t—>—+00 all
Therefore, fore > 0 sufficiently small there i8> > T1 such that ift > T,

Qe T a12“1“2€_yzf11;1‘;22f2—r2a11
x1(t) > —&:=my. (2.8)
al

It follows from the third equation of system (1.1), (2.5) and (2.8) that fer7» + 7,

%2(1) = a2e 2 2myxo(t — 12) — raxa(t) — azox3(t) — azzMaxa(1). (2.9)
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By comparison, we obtain from (2.5), (2.8) and (2.9) that

1000 V1TLTY22 —rpa1,

a11a22 _ 8) —r
ail

age” 38 (aqope™ M1 TY22 — raaqy) — raainaz

— a3 +e)q.
a11a22a33

Sincee > 0 is arbitrary small, we can conclude that

. 1 o (e1eT a1
liminf xo(t) > —  ape 1272
t——+00 a2

(alaze—nfl—yzfz _ )(1 _ appape™¥272 uzgage*V3’3) 4 13023
aii 2 a11a22 a2a33 ass

liminf xo(2) >
t——+00 a2
Hence, fore > 0 sufficiently small there is @& > T> + t such that ift > T3,

(alaze*Vl’l*VZTZ _ i’z) (1 _ appage™¥22 a23w3€73’3f3) r3az3

Xz(l) > arl apiazz a2da33 asz3 —&:=mpy (2 10)
az2
Similarly, we derive from the fifth equation of system (1.1) that
Lo A
liminf x3(z) > 72,
I—+00 a11a22a33

where A; is defined in (2.2). Therefore, far> 0 sufficiently small there exists By > T3 + 1
such that ift > Ty,
x3(t) > 42 —&:=ma3. (2.11)
a11a22033
We note that if (H1) holds ang > 0 is chosen sufficiently smaky; > 0.
It follows from (2.1), (2.8), (2.10) and (2.11) that therelis> T4 + t such that ift > T,

v > FR (1 nm) s 0,
va(t) > M(l — e—yzrz) >0,
y3(t) > %(1 _ e—Vsts) = 0.

This completes the proof.O
3. Global attractivity of nonnegative equilibria

In this section, we discuss the global attractivity of the nonnegative equilibria of system (1.1)
by using an iterative technique developed by some authors (see, for example, [3,13,14,16]).

It is easy to show that system (1.1) has at least two nonnegative equillyi@; 0, 0, O,
0,0), Er(a1e "™ /ay1, afe‘ylfl(l — e 1) /(a11y1), 0,0, 0, 0). By analyzing the correspond-
ing characteristic equations, we know thztis always unstable; ik1aze 71" 772%2 > roaq1, E1
is locally unstable, ifxv1ape 717177272 < rpaq4, E1 is locally stable. lfuwjope ™ "177Y272 > roaq 1,
system (1.1) has another nonnegative equilibriggne?, y9, x9, y9, 0, 0), where

o axoie "+ roagn o Qape MIRTY2T2 — pogqq
X1 = ) Xy = )
! a11a22 + ajpope— Y2t 2 aiiaz2 + ajpope—v2t2
0 0,0
o1x _ W2X7X _
y](_): 1(1_6‘ )/1'51)’ y(ZJ: #(1_6 7272). (31)

¢! Y2



R. Xu et al./ J. Math. Anal. Appl. 315 (2006) 90-105 97

Furthermore, system (1.1) admits a unique positive equilibiiirex, y7, x5, y5, x3, y3) if the
following holds:

(H2) A3 > 0, where

*
A; @1Xq

?k:— '21,2,3, *:—1— _Vlfl,
X == (i ) n=- (1—e7m)
aoxFxk azxixd
= Zyi—z (1-e2),  y3= 3—2 21-emrm), (3.2)
in which

A1 = apoazzare” ™ — raaioazz + azzeioze” YT roagsass,
Ap = azzoiape” YTV22 — roagiazz + raa11azs,
Az = aqapage” V2RSS — raayjaze” 3™ — raiiazy — raaioe” 27,

A = a11ap0a33 + a11ap303e” 3" + agpazzoze” 122, (3.3)
We first give a result on the global attractivity of the positive equilibriiinof system (1.1).

Theorem 3.1. Let (H2) hold. Then the positive equilibrium E*(x7, y7, x5, y5, x3, y3) Of sys-
tem (1.1) is globally attractive provided that

(H3) ai1a20a33 > ar1arzeze ™3™ + azzasope 1272

Proof. Let (x1(1), y1(t), x2(2), y2(t), x3(¢), y3(¢)) be a positive solution to system (1.1) with
initial conditions (1.2) and (1.3).
Denote

U; =limsupx;(r), V;=Iliminfx;(t) (=12,3).
t—~400 1—>+00

We now claimthat/; = V; =x7 (i =1,2,3).
It follows from the first equation of system (1.1) that

$1(1) < @1e” M xq (1 — 11) — agxd (o).

By comparison, we derive that

. o . x1
Uy =limsupx1(t) < —— = Ny
t— 400 ail

Hence, fore > 0 sufficiently small there i§711 > 0 such that it > Ty1, x1(7) < Ni‘l +e.
We derive from the third equation of system (1.1) that:fer Ty1 + t,

2(t) < ape 22 (N3t + &)xa(t — T2) — raxa(t) — azox3 ().

A standard comparison argument shows that

, age V22(Nit + ) —ro
Us = limsupxa(t) < 1 .
t— 400 a2
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Since this is true for arbitrary > 0 sufficiently small, we conclude thab < Nfz, where
ape 22Nt — 1)
az? '

Hence, fore > 0 sufficiently small, there i1 > T11 + © such that ift > T»1, x2(¢) < Nfz + e.
We derive from the fifth equation of system (1.1) thatfor 751 + 1,

X2 _
Ni°=

K3(1) < age” PP (NY2 + £) x3(t — 13) — raxa(t) — asax3 (1),
By comparison, it follows that
aze  BB(N2 +6) —r3

Us =limsupxs(?) <
t—+00 ass

Since this is true for arbitrary > 0 sufficiently small, we conclude that; < NfS, where

aze BN —r3

Ny =
! azs
Therefore, fore > 0 sufficiently small, there i931 > T>1 + © such that ift > Tz, x3(f) <
NP® +e.
1

Again, we derive from the first equation of system (1.1) that fer7sy,
X1(1) = ane "y (1 — 11) — a11x2 (1) — arx1 (1) (N7? + ¢).
Thus, if fort > T31 we denote by (¢) the solution of
b(t) = are u(t — 11) — ag1v2(t) — a12v(t)(Nf2 + 8)
with suitable initial condition, them,(¢) > v(r) and hence

a1e 11T — alz(NiCz +¢)

Vi=Iliminfx1(r) > lim v() =
t—+00 t——+00

ail
Sincee > 0 is arbitrary, we have
a1e "™ — agpNy?
V> = 271 = mn,
ai
Therefore, for any > 0 sufficiently small, there exis®» > 731+t such that ift > T12, x1(¢) >

Myt —e.
1
It follows from the third equation of system (1.1) that fos T12 + 7,

X2(t) > ape 22 (M — €)xa(t — T2) — raxa(t) — azox3(t) — aza(Ny® + €)x2(t).
By comparison, we obtain that
aze 22 (M7t — &) — r2 — a23(Ny° + €)

az
Since this is true for arbitrary > 0 sufficiently small, we have

azefyzrszl —ro— angiC?’

a2

Vo =liminf x2(z) >
t——+00

Vo2

.—— X2
= M;2.

Hence fore > 0 sufficiently small, there i§22 > T12 + t such that ift > Top, x2(7) > Mi‘z —e.
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Similarly, it follows from the fifth equation of system (1.1) that fos 7o + 7,
i3(t) > age” B (My? — &) — raxa(t) — agax (1),
which yields
aze 3BMI? —r3 _

ass

Va = liminf x3(¢) > =M.
t——+00

Thus, fore > 0 sufficiently small, there i$32 > To2 + T such that ift > T32, x3(¢) >

We derive from the first equation of system (1.1) thatrfer 73,
£1() < o1e "My (t — 1) — a1axZ (1) — ara(My? — &) xa (7).

A standard comparison argument shows that

—y1T1 _ X2 _

. ae ai2(M €)

Uy = limsupx1(r) < 1 .
t——+00 aill

Sincee > 0 is arbitrary and sufficiently small, we derive

VT g M2
age a2
Ur < L= Ny
aii

M

X3

99

1 —¢&.

Hence, fore > 0 sufficiently small, there i3 > T3>+ t such that ift > T13, x1(¢) < Ngl +&.

It follows from the third equation of system (1.1) that for T13+ 7,

(1) < a2e 22 (NGt + e)xa(t — T2) — raxa(t) — azox3(1) — aza(M7° — £)xa(1).

By comparison, we derive that

, w2e V22(NJL 4 8) —rp — (M2 — ¢)
Us = limsupxa(t) < 2 1 )
t—+o0 a2

Sincee > 0 is arbitrary and sufficiently small, we derive that

TRRNGL oy — MyP

e r2

Uz < Z L .= N2
a2

Therefore, fore > 0 sufficiently small, there i9»3 > Ti3 + t such that ift > To3, x2(f) <

N2 +e.
2
Similarly, we derive from the fifth equation of system (1.1) thatrfer T3+ ,

23(t) < aze 3B (N,2 + e)x3(t — 13) — raxa(t) — aszx3(1).

By comparison, it follows that

, az3e BB(NY2 +¢6) —r3
Uz = limsupxa(t) < 2 .
t——+00 ass

Sincee > 0 is arbitrary and sufficiently small, we get

—Y3T3 N2 _

oze r3

Us < =2z °.— N§3.
ass

Continuing this process, we obtain six sequendgs, N;*, M;?, N;?, M;°, N;° n=1,2,..))

such that fom > 2,
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N’fl _ n—1 ,
all
—y2To NJYL _ X3
N2 — ope Ny~ —r2—aM, >,
n - k
az?
T 2
N 93¢ V3BN, % —r3
n k)
ass
a1e 1T — agoN;?
pa = 9 12Ny
n - 9
all
— X X3
e = 92¢ PP My — 12— az3N,
n - ’
az?
—y3mw pp¥2 _
a3e r3
M3 = 1 . (3.4)
ass
Clearly, we have
M, <Vi<U <N,, i=123 (3.5)

It follows from (3.4) that fom > 2,

N Asz(a11a22a33 — aiiazzuze” 3% — agzajpoze” 12%2)
ntl (a11a22033)?
(a110a2303¢ 73% + aggarpope7272)?
(a11a22a33)?
whereAs is defined in (3.3).
We therefore rewrite (3.6) into

+

N3, (3.6)

N3, = (a11a22a33)% — (a11a2303¢ 737 + assalzaze_yzfz)zxé
(a11a22a33)?
(a11a230:3¢ 73" + agzapope12%2)?
(a11a22a33)?

NS, (3.7)

Noting thatn;® > x3 andaiiazoass > aiiazzaze” 3 + agzaioaze” 7272, we derive from (3.7)
that
(a11a22a33)° — (a11a23003¢ 3% + agzagpope 7272)2
(a11a22a33)? '3
(a11a23003¢ 737 + aggagoope1272)2
{ (a11a22a33)?

X3 NX3 —
Nn+1 Nn -

- 1}N,;‘3

(a11a22a33)° — (a11a2303¢ 3% + a33a12a2€_3’212)2x*
3
(a11a22a33)?
+ { (a11a2303¢~73% + azgaypope1272)?
(a11a22a33)?

<

X

— 1}x§.

Therefore, the sequendé,® is monotonically decreasing. Accordingly, im_ o, N;® exists.
Takingn — +o0, it follows from (3.7) that

lim N3 =x3. (3.8)

n——+o00
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We further derive from (3.4) and (3.8) that

lim N2 =xJ, lim M =xf, lim M2 =x3,
n——+00 n 2 n——+00o n 1 n—+00 n 2

lim M®=xi, lim N =xr. 3.9
n—stoo N 3 n——too 1 ( )

It follows from (3.5), (3.8) and (3.9) that
U]_:V]_:)CI, U2:V2:x§, U3:V3:x§. (3.10)
As a consequence, we obtain that
tLiToo xi()=x ((=12323).
Using L'Hospital’s rule, it follows from (2.1) that
' (O =v* (i=
t_lypoo yit)y=y; (i=123).

This completes the proof. O
Next, we discuss the global stability of the nonnegative equiliBti@f system (1.1).

Theorem 3.2. If aja2e™ 711177272 < rpay1, the nonnegative equilibrium E41 of system (1.1) is
globally asymptotically stable.

Proof. Noting that the nonnegative equilibriufy, is locally stable ifaqape 1177272 < roaq1,
it suffices to show thak; is globally attractive.
Lete > 0 be sufficiently small satisfying

Y e Ll —yaT3
age T +e)—ro<0, oze e—r3<0. (3.12)
11

We derive from the first equation of system (1.1) that
%1(1) < a1e M xq (1 — 1) — a1ax2 (1),
by comparison which yields

—yin
limsupxy() < &. (3.12)

t—+00 all

Therefore, fore > 0 sufficiently small satisfying (3.11) there & > 0 such that ift > Ty,
x1(t) <oaze "™ /ag; +e.
It follows from the third equation of system (1.1) that fos T3 + 7,

are 11T

a1l
Consider the following auxiliary equation:

x2(t) < aze_ym< + 8>x2(t — 12) — raxa(t) — agax5(1).

) B are N7 )
u(t) = age™ 7272 <7 + s)u(t — 12) — rou(t) — axou”(t). (3.13)
ail
By Lemma 2.2, we derive from (3.11) that

lim u(r)=0.
t—>—+00
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By comparison, it follows that

tllTOO x2(1) =0.

Hence, fore > 0 sufficiently small satisfying (3.11), there exi§ts> Ty + t such that ift > T>,
0<x2(t) <e.
It follows from the fifth equation of system (1.1) that fos 7> + 7,

%3(1) < age ¥ Bexa(r — 13) — raxa(t) — azaxs(r),
which, together with (3.11), yields
tlir_pr3(t) =0.
We derive from the first equation of system (1.1) thatrfer 7>,
X1(1) = are My (1 — 11) — a11x2(1) — a1zex1(1).
By comparison, it follows that

—vit1 _
L ole aizé
liminf xl(t) > —
t——+00 all

Since this is true for arbitrary > 0 sufficiently small, we can conclude that
—vinu
liminf xy () > o
t——+o0 all
which, together with (3.12), leads to
. are
Iim x1(t) = —.
t——+00 all
Using L'Hospital’s rule, we obtain from (2.1) that
lim y1(0) ajen (1—e7nm) im yo(t)= lim y3(t) =0
i )=—(1- i =i =0.
t——+00 1 aiiyi ¢ ’ t—>—+00 Y2 t—+400 3
The proofis complete. O

Finally, we show the global attractivity of the nonnegative equilibriipnof system (1.1).

Theorem 3.3. The nonnegative equilibrium E>(x?, y2, x9, 9, 0,0) is globally attractive pro-
vided that

(H4) O< aze 138 (a1ape 11177272 — qq1r)) < a11a22r3,
(H5) aiiaz > ajoope” V272,

Proof. Let (x1(2), y1(2), x2(2), y2(2), x3(t), y3(z)) be a solution of system (1.1) with initial con-
ditions (1.2) and (1.3).
Let e > 0 be sufficiently small satisfying

- aqope” 1TY22 — raaqy
woge V37-'3<

+ 8) —r3<0. (3.14)
aiiaz?
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We derive from the fifth equation of system (1.1) and (2.4) that thef® is O such that if
t> Ty,

Qrape VITLITY2T2 _ pogyy

%3(r) < 063€_V3T3< + s)xa(r — 13) — rax3(r) — azax3(1).

a11a2
Consider the following auxiliary equation:

aqope YITLITY22 — pogqq

u(t) = a3eV3T3< + 8>u(t — 13) — rau(t) — azzu®(). (3.15)
aiiaz2

By Lemma 2.2, it follows from (3.14) and (3.15) that
t—llr—poo u(®=0.

By comparison, we derive
t—llr—lr—]oo x3(1) =0.

Therefore, fore > 0 sufficiently small there i8> > T; such that ift > T, 0 < x3(¢) < &.
It therefore follows from the first and the third equation of system (1.1) that fof>,

%1(1) = a1e " xq (1 — 1) — aax (1) — agpx1()x2(),

%2(1) > ape V22x1 (1 — T2)x2(f — T2) — (r2 + az3e)x2(1) — aax3 (1), (3.16)
and

%1(1) = 1e "y (1 — 1) — a1ax (1) — agpx1()x2(r),

%2(r) < apeV22x1 (1 — T2)x2(t — T2) — raxa(r) — agax3(1). (3.17)
We consider the following auxiliary system:

i1(t) = ere” MU (t — 1) — ayaud(t) — azaur(Hua(t),

(1) = age 22y (t — T)ua(t — 12) — rua(r) — agou(t). (3.18)

It is easy to see that #jape™ 71177272 > gq4r, system (3.18) has a unique positive equilibrium
E;(uY,u9), where

o azxie "l +rapp 0 O10pe TITY2R2 — gy
ui = , Uy = .
17 a11a20 + arooe 12 27 anaz+ arpape 12"

If (H5) holds, using an iterative technique similar to that in the proof of Theorem 3.1, we can
derive that

lim wui(r) = u®, lim ua(r) = ul.
t—>—+00 l() 1 t——+00 2() 2

By comparison, it follows from (3.16) that

azaé

liminf x1(7) > x% + :

t—+00 7T G11a00 + arpape 122
a238

a11a22 + aipope 2%’

Since this true for arbitrary > 0 sufficiently small, we can conclude that

liminf xo(t) > x9 —
t—+00 2()/ 2
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lim inf xa (1) >x9, lim inf xa (1) > x. (3.19)
Similarly, by comparison we derive from (3.17) that

lim supxy (r) < x3, lim supx2(r) < x3,
t——+00 t—>—+00

which, together with (3.19), yields

lim x1(t) = x9, lim xp(t) = x2.
t—+o00 1() 1 t—+o00 2() 2

Using L'Hospital’s rule, we can easily show from (2.1) that

limsupy1(t) =y, limsupya(t) = 3, lim ys(r)=0.
t—400 t—400 1—>+00

This completes the proof.O
4. Discussion

In this paper, motivated by the work of Aiello and Freedman [1], we incorporated stage
structures into a three-species Lotka—\olterra type simple food chain model. By using some com-
parison arguments we first established sufficient conditions for the permanence of system (1.1).
By using an iterative technique, we discussed the global attractivity of the feasible equilibria of
system (1.1). By Theorem 3.1, we see that if the intra-specific competition rates dominate the
capturing rates of the mature predator and the mature top predator and the transformation rates
of the immature predator and the immature top predator, the positive equilibrium of system (1.1)
is globally attractive. By Theorem 3.2, we see that if the transformation rate of immature prey
population to mature prey population and the transformation rate of the immature predator pop-
ulation to mature predator population are low, and the death rate of the mature predator and the
intra-specific competition rate of the mature prey are high, the prey population will be persis-
tent, but the predator and the top predator populations will go to extinction. By Theorem 3.3
we see that if the death rate of the mature top predator is high enough satisfying (H4)—(H5), the
top predator population will go to extinction, but the prey and the predator populations will be
permanent.
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