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Abstract

A three-species Lotka–Volterra type food chain model with stage structure and time delays is inves
It is assumed in the model that the individuals in each species may belong to one of two clas
immatures and the matures, the age to maturity is presented by a time delay, and that the immature
(immature top predators) do not have the ability to feed on prey (predator). By using some com
arguments, we first discuss the permanence of the model. By means of an iterative technique, a set
verifiable sufficient conditions are established for the global attractivity of the nonnegative equilibria
model.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

An important and ubiquitous problem in predator–prey theory and related topics in math
ical ecology, concerns the long term coexistence of species. Lotka–Volterra type predato
systems are very important in the models of multi-species populations interactions and ha
studied by many authors (see, for example, [5–8]). It is assumed in the classical predat
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model that each individual predator admits the same ability to attack prey and each ind
prey admits the same risk to be attacked by predator. This assumption seems not to be rea
many animals. In the natural world, there are many species whose individuals have a life
that takes them through two stages, immature and mature, where immature predators ar
by their parents, and the rate they attacking at prey and the reproductive rate can be i
on the other hand, it may be reasonable for a number of animals to assume that immatu
population concealed in the mountain cave and are raised by their parents; the rate of
predators attacking at immature prey can be ignored.

Stage-structured models have received great attention in recent years. The pioneerin
of Aiello and Freedman [1] on a single species growth model with stage structure repre
mathematically more careful and biologically meaningful formulation approach. In [1], a m
of single species population growth incorporating stage structure as a reasonable gener
of the classical logistic model was formulated and discussed. This model assumes an
age to maturity which appears as a constant time delay reflecting a delayed birth of imm
and a reduced survival of immatures to their maturity. Recently, many authors studied di
kinds of stage-structured models and some significant work was carried out (see, for ex
[2–4,9–16]).

Motivated by the recent work of Aiello and Freedman [1], in the present paper we are
cerned with the effect of stage structure for each species on three species Lotka–Volte
food chain model. To do so, we study the following delayed differential system:

ẋ1(t) = α1e
−γ1τ1x1(t − τ1) − a11x

2
1(t) − a12x1(t)x2(t),

ẏ1(t) = α1x1(t) − γ1y1(t) − α1e
−γ1τ1x1(t − τ1),

ẋ2(t) = α2e
−γ2τ2x1(t − τ2)x2(t − τ2) − r2x2(t) − a22x

2
2(t) − a23x2(t)x3(t),

ẏ2(t) = α2x1(t)x2(t) − γ2y2(t) − α2e
−γ2τ2x1(t − τ2)x2(t − τ2),

ẋ3(t) = α3e
−γ3τ3x2(t − τ3)x3(t − τ3) − r3x3(t) − a33x

2
3(t),

ẏ3(t) = α3x2(t)x3(t) − γ3y3(t) − α3e
−γ3τ3x2(t − τ3)x3(t − τ3), (1.1)

wherex1(t) andy1(t) denote the densities of the mature and immature prey population at tt ,
respectively;x2(t) andy2(t) represent the densities of the mature and immature predator
ulation at timet , respectively;x3(t) andy3(t) denote the densities of the mature and imma
top predator population at timet , respectively.a11, a12, a22, a23, a33, r2, r3, α1, α2, α3, γ1, γ2,
γ3, τ1, τ2 andτ3 are positive constants. The model is derived under the following assumpti

(A1) The prey population: the birth rate of the population is proportional to the existing ma
population with a proportionality constantα1 > 0; the death rate of the immature pop
lation is proportional to the existing immature population with a proportionality cons
γ1 > 0; a11 is the death and intra-specific competition rate of the mature population
termα1e

−γ1τ1x1(t − τ1) represents the immature prey individuals who were born at
t − τ1 and survive at timet , and therefore represents the transformation of immature
population to mature prey population.

(A2) The predator population: a12 is the capturing rate of the mature predator,α2/a12 is the
conversion rate of nutrients into the reproduction of the mature predator,r2 anda22 are the
death rate and the intra-specific competition rate of the mature predators, respectiv
death rate of the immature population is proportional to the existing immature popu
with a proportionality constantγ2 > 0. The termα2e

−γ2τ2x1(t − τ2)x2(t − τ2) represents
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the number of immature predators that were born at timet − τ2 which still survive at time
t and are transferred from the immature stage to the mature stage at timet . It is assumed
in (1.1) that immature individual predators do not feed on prey and do not have the
to reproduce.

(A3) The top predator population: a23 is the capturing rate of the mature top predator,α3/a23 is
the conversion rate of nutrients into the reproduction of the mature top predator,r3 anda33
are the death rate and the intra-specific competition rate of the mature top predato
death rate of the immature population is proportional to the existing immature popu
with a proportionality constantγ3 > 0. The termα3e

−γ3τ3x2(t − τ3)x3(t − τ3) denotes the
number of immature top predators that were born at timet − τ3 which still survive at time
t and are transferred from the immature stage to the mature stage at timet . In (1.1) we also
assume that the immature top predator do not feed on predator and do not have the
to reproduce.

The initial conditions for system (1.1) take the form

xi(θ) = φi(θ), yi(θ) = ψi(θ),

φi(0) > 0, ψi(0) > 0, i = 1,2,3, (1.2)

where(φ1(θ),ψ1(θ),φ2(θ),ψ2(θ),φ3(θ),ψ3(θ)) ∈ C([−τ,0],R6
+0), the Banach space of co

tinuous functions mapping the interval[−τ,0] into R6
+0, whereτ = max{τ1, τ2, τ3},R6

+0 =
{(x1, x2, x3, x4, x5, x6) | xi � 0, i = 1,2, . . . ,6}.

For continuity of the initial conditions, we further require

y1(0) =
0∫

−τ1

α1φ1(s)e
γ1s ds,

y2(0) =
0∫

−τ2

α2φ1(s)φ2(s)e
γ2s ds,

y3(0) =
0∫

−τ3

α3φ2(s)φ3(s)e
γ3s ds. (1.3)

The paper is organized as follows. In the next section, we will discuss the positivity of sol
and the permanence of system (1.1). In Section 3, a set of easily verifiable sufficient con
are derived for the global attractivity of the nonnegative equilibria of system (1.1) by usi
iterative technique. A brief discussion is given in Section 4 to conclude this work.

2. Permanence

In this section, we are concerned with the permanence of system (1.1) with initial cond
(1.2) and (1.3).

Definition. System (1.1) is said to be permanent if there exists a compact regionD ⊂ IntR6+
such that every solution(x1(t), y1(t), x2(t), y2(t), x3(t), y3(t)) of (1.1) with initial conditions
(1.2) and (1.3) eventually enters and remains in the regionD.
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In the following we first show the positivity of solutions to system (1.1) with initial conditi
(1.2) and (1.3).

Lemma 2.1. Solutions of system (1.1) with initial conditions (1.2) and (1.3) are positive for all
t � 0.

Proof. Let (x1(t), y1(t), x2(t), y2(t), x3(t), y3(t)) be a solution of system (1.1) with initial con
ditions (1.2) and (1.3). Let us first considery3(t) for t ∈ [0, τ ∗], whereτ ∗ = min{τ1, τ1, τ2}.
Noting thatφ2(θ) � 0, φ3(θ) � 0 for θ ∈ [−τ,0], we obtain from the fifth equation of syste
(1.1) that

ẋ3(t) = α3e
−γ3τ3φ2(t − τ3)φ3(t − τ3) − r3x3(t) − a33x

2
3(t) � −r3x3(t) − a33x

2
3(t).

By comparison, it follows that fort ∈ [0, τ ∗],

x3(t) � r3x3(0)

a33x3(0)(er3t − 1) + r3
> 0.

We derive from the third equation of system (1.1) that fort ∈ [0, τ ∗],
ẋ2(t) = α2e

−γ2τ2φ1(t − τ2)φ2(t − τ2) − r2x2(t) − a22x
2
2(t) − a23x2(t)x3(t)

� x2(t)
(−r2 − a22x2(t) − a23x3(t)

)
since φ1(θ) � 0, φ2(θ) � 0, θ ∈ [−τ,0]. A standard comparison argument shows that
t ∈ [0, τ ∗],

x2(t) �
x2(0)exp[− ∫ t

0(r2 + a23x3(s)) ds]
1+ a22x2(0)

∫ t

0 exp[− ∫ s

0 (r2 + a23x3(u)) du]ds
> 0.

Similarly, it follows from the first equation of system (1.1) that fort ∈ [0, τ ∗],
ẋ1(t) = α1e

−γ1τ1φ1(t − τ1) − a11x
2
1(t) − a12x1(t)x2(t)

� x1(t)
[−a11x1(t) − a12x2(t)

]
sinceφ1(θ) � 0, θ ∈ [−τ,0]. By comparison, we derive that fort ∈ [0, τ ∗],

x1(t) �
x1(0)exp[−a12

∫ t

0 x2(s) ds]
1+ a11x1(0)

∫ t

0 exp[−a12
∫ s

0 x2(u) du]ds
> 0.

In a similar way, we treat the intervals[τ ∗,2τ ∗], . . . , [nτ ∗, (n + 1)τ ∗], n ∈ N. Thus,xi(t) > 0
for all t � 0, i = 1,2,3.

It follows from (1.1) and (1.3) that

y1(t) =
t∫

t−τ1

α1e
−γ1(t−s)x1(s) ds,

y2(t) =
t∫

α2e
−γ2(t−s)x1(s)x2(s) ds,
t−τ2
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y3(t) =
t∫

t−τ3

α3e
−γ3(t−s)x2(s)x3(s) ds. (2.1)

Therefore, the positivity ofyi(t) (i = 1,2,3) follows. This completes the proof.�
In order to discuss the permanence of system (1.1), we need the following result from

Lemma 2.2. Consider the following equation:

ẋ(t) = ax(t − τ) − bx(t) − cx2(t),

where a, b, c and τ are positive constants, x(t) > 0 for t ∈ [−τ,0]. We have

(i) if a > b, then limt→+∞ x(t) = (a − b)/c;
(ii) if a < b, then limt→+∞ x(t) = 0.

Theorem 2.1. System (1.1) with initial conditions (1.2) and (1.3) is permanent provided that

(H1) Ai > 0, i = 1,2, where

A1 = a11a22a33 − a11a23α3e
−γ3τ3 − a33a12α2e

−γ2τ2 > 0,

A2 = (
α1α2α3e

−γ1τ1−γ2τ2−γ3τ3 − r2a11α3e
−γ3τ3 − r3a11a22 − r3a12α2e

−γ2τ2
)

×
(

1− a12α2e
−γ2τ2

a11a22
− a23α3e

−γ3τ3

a22a33

)

− r3a12α2e
−γ2τ2

(
a12α2e

−γ2τ2

a11a22
+ a23α3e

−γ3τ3

a22a33

)
. (2.2)

Proof. Suppose(x1(t), y1(t), x2(t), y2(t), x3(t), y3(t)) is a positive solution of system (1.1) wi
initial conditions (1.2) and (1.3). It follows from the first equation of system (1.1) that

ẋ1(t) � α1e
−γ1τ1x1(t − τ1) − a11x

2
1(t).

Consider the following auxiliary equation:

u̇(t) = α1e
−γ1τ1u(t − τ1) − a11u

2(t).

By Lemma 2.2, we derive that

lim
t→+∞u(t) = α1e

−γ1τ1

a11
.

By comparison, it follows that

lim sup
t→+∞

x1(t) � α1e
−γ1τ1

a11
.

Therefore, forε > 0 sufficiently small, there is aT11 > 0 such that ift > T11,

x1(t) � α1e
−γ1τ1

a11
+ ε := M1. (2.3)

We derive from the third equation of system (1.1) fort > T11 + τ that

ẋ2(t) � α2e
−γ2τ2M1x2(t − τ2) − r2x2(t) − a22x

2
2(t).
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A comparison argument shows that

lim sup
t→+∞

x2(t) �
α2e

−γ2τ2
(

α1e
−γ1τ1

a11
+ ε

) − r2

a22
.

Sinceε > 0 is arbitrary and sufficiently small, we can conclude that

lim sup
t→+∞

x2(t) � α1α2e
−γ1τ1−γ2τ2 − r2a11

a11a22
.

Therefore, forε > 0 sufficiently small there existsT12 > T11 + τ such that ift > T12,

x2(t) � α1α2e
−γ1τ1−γ2τ2 − r2a11

a11a22
+ ε := M2. (2.4)

Similarly, we derive from the fifth equation of system (1.1) and (2.4) that

lim sup
t→+∞

x3(t) � α3e
−γ3τ3(α1α2e

−γ1τ1−γ2τ2 − r2a11) − r3a11a22

a11a22a33
.

Hence, forε > 0 sufficiently small there isT13 > T12 + τ such that ift > T13,

x3(t) � α3e
−γ3τ3(α1α2e

−γ1τ1−γ2τ2 − r2a11) − r3a11a22

a11a22a33
+ ε := M3. (2.5)

SetT1 = T13 + τ . It follows from (2.1), (2.3)–(2.5) that fort > T1,

y1(t) � α1M1

γ1

(
1− e−γ1τ1

) := N1,

y2(t) � α2M1M2

γ2

(
1− e−γ2τ2

) := N2,

y3(t) � α3M2M3

γ3

(
1− e−γ3τ3

) := N3. (2.6)

Again, we derive from the first equation of system (1.1) and (2.4) that fort > T1,

ẋ1(t) � α1e
−γ1τ1x1(t − τ1) − a11x

2
1(t) − a12M2x1(t). (2.7)

By comparison, it follows from (2.4) and (2.7) that

lim inf
t→+∞ x1(t) �

α1e
−γ1τ1 − a12

(
α1α2e

−γ1τ1−γ2τ2−r2a11
a11a22

+ ε
)

a11
.

Sinceε > 0 is arbitrary and sufficiently small, we conclude that

lim inf
t→+∞ x1(t) �

α1e
−γ1τ1 − a12

α1α2e
−γ1τ1−γ2τ2−r2a11

a11a22

a11
.

Therefore, forε > 0 sufficiently small there isT2 > T1 such that ift > T2,

x1(t) >
α1e

−γ1τ1 − a12
α1α2e

−γ1τ1−γ2τ2−r2a11
a11a22

a11
− ε := m1. (2.8)

It follows from the third equation of system (1.1), (2.5) and (2.8) that fort > T2 + τ ,

ẋ2(t) � α2e
−γ2τ2m1x2(t − τ2) − r2x2(t) − a22x

2
2(t) − a23M3x2(t). (2.9)
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By comparison, we obtain from (2.5), (2.8) and (2.9) that

lim inf
t→+∞ x2(t) � 1

a22

{
α2e

−γ2τ2

(
α1e

−γ1τ1 − a12
α1α2e

−γ1τ1−γ2τ2−r2a11
a11a22

a11
− ε

)
− r2

− a23

(
α3e

−γ3τ3(α1α2e
−γ1τ1−γ2τ2 − r2a11) − r3a11a22

a11a22a33
+ ε

)}
.

Sinceε > 0 is arbitrary small, we can conclude that

lim inf
t→+∞ x2(t) �

(
α1α2e

−γ1τ1−γ2τ2

a11
− r2

)(
1− a12α2e

−γ2τ2

a11a22
− a23α3e

−γ3τ3

a22a33

) + r3a23
a33

a22
.

Hence, forε > 0 sufficiently small there is aT3 > T2 + τ such that ift > T3,

x2(t) >

(
α1α2e

−γ1τ1−γ2τ2

a11
− r2

)(
1− a12α2e

−γ2τ2

a11a22
− a23α3e

−γ3τ3

a22a33

) + r3a23
a33

a22
− ε := m2. (2.10)

Similarly, we derive from the fifth equation of system (1.1) that

lim inf
t→+∞ x3(t) � A2

a11a22a33
,

whereA2 is defined in (2.2). Therefore, forε > 0 sufficiently small there exists aT4 > T3 + τ

such that ift > T4,

x3(t) >
A2

a11a22a33
− ε := m3. (2.11)

We note that if (H1) holds andε > 0 is chosen sufficiently small,mi > 0.
It follows from (2.1), (2.8), (2.10) and (2.11) that there isT > T4 + τ such that ift > T ,

y1(t) � α1m1

γ1

(
1− e−γ1τ1

)
> 0,

y2(t) � α2m1m2

γ2

(
1− e−γ2τ2

)
> 0,

y3(t) � α3m2m3

γ3

(
1− e−γ3τ3

)
> 0.

This completes the proof.�
3. Global attractivity of nonnegative equilibria

In this section, we discuss the global attractivity of the nonnegative equilibria of system
by using an iterative technique developed by some authors (see, for example, [3,13,14,16

It is easy to show that system (1.1) has at least two nonnegative equilibria:E0(0,0,0,0,

0,0), E1(α1e
−γ1τ1/a11, α

2
1e−γ1τ1(1 − e−γ1τ1)/(a11γ1),0,0,0,0). By analyzing the correspond

ing characteristic equations, we know thatE0 is always unstable; ifα1α2e
−γ1τ1−γ2τ2 > r2a11, E1

is locally unstable, ifα1α2e
−γ1τ1−γ2τ2 < r2a11, E1 is locally stable. Ifα1α2e

−γ1τ1−γ2τ2 > r2a11,
system (1.1) has another nonnegative equilibriumE2(x

0
1, y0

1, x0
2, y0

2,0,0), where

x0
1 = a22α1e

−γ1τ1 + r2a12

a11a22 + a12α2e−γ2τ2
, x0

2 = α1α2e
−γ1τ1−γ2τ2 − r2a11

a11a22 + a12α2e−γ2τ2
,

y0
1 = α1x

0
1 (

1− e−γ1τ1
)
, y0

2 = α2x
0
1x0

2 (
1− e−γ2τ2

)
. (3.1)
γ1 γ2
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th
Furthermore, system (1.1) admits a unique positive equilibriumE∗(x∗
1, y∗

1, x∗
2, y∗

2, x∗
3, y∗

3) if the
following holds:

(H2) ∆3 > 0, where

x∗
i = ∆i

∆
(i = 1,2,3), y∗

1 = α1x
∗
1

γ1

(
1− e−γ1τ1

)
,

y∗
2 = α2x

∗
1x∗

2

γ2

(
1− e−γ2τ2

)
, y∗

3 = α3x
∗
2x∗

3

γ3

(
1− e−γ3τ3

)
, (3.2)

in which

∆1 = a22a33α1e
−γ1τ1 − r3a12a23 + a23α1α3e

−γ1τ1−γ3τ3 + r2a12a33,

∆2 = a33α1α2e
−γ1τ1−γ2τ2 − r2a11a33 + r3a11a23,

∆3 = α1α2α3e
−γ1τ1−γ2τ2−γ3τ3 − r2a11α3e

−γ3τ3 − r3a11a22 − r3a12α2e
−γ2τ2,

∆ = a11a22a33 + a11a23α3e
−γ3τ3 + a12a33α2e

−γ2τ2. (3.3)

We first give a result on the global attractivity of the positive equilibriumE∗ of system (1.1).

Theorem 3.1. Let (H2) hold. Then the positive equilibrium E∗(x∗
1, y∗

1, x∗
2, y∗

2, x∗
3, y∗

3) of sys-
tem (1.1) is globally attractive provided that

(H3) a11a22a33 > a11a23α3e
−γ3τ3 + a33a12α2e

−γ2τ2.

Proof. Let (x1(t), y1(t), x2(t), y2(t), x3(t), y3(t)) be a positive solution to system (1.1) wi
initial conditions (1.2) and (1.3).

Denote

Ui = lim sup
t→+∞

xi(t), Vi = lim inf
t→+∞ xi(t) (i = 1,2,3).

We now claim thatUi = Vi = x∗
i (i = 1,2,3).

It follows from the first equation of system (1.1) that

ẋ1(t) � α1e
−γ1τ1x1(t − τ1) − a11x

2
1(t).

By comparison, we derive that

U1 = lim sup
t→+∞

x1(t) � α1e
−γ1τ1

a11
:= N

x1
1 .

Hence, forε > 0 sufficiently small there isT11 > 0 such that ift > T11, x1(t) � N
x1
1 + ε.

We derive from the third equation of system (1.1) that fort > T11 + τ ,

ẋ2(t) � α2e
−γ2τ2

(
N

x1
1 + ε

)
x2(t − τ2) − r2x2(t) − a22x

2
2(t).

A standard comparison argument shows that

U2 = lim supx2(t) �
α2e

−γ2τ2(N
x1
1 + ε) − r2

a
.

t→+∞ 22
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Since this is true for arbitraryε > 0 sufficiently small, we conclude thatU2 � N
x2
1 , where

N
x2
1 = α2e

−γ2τ2N
x1
1 − r2

a22
.

Hence, forε > 0 sufficiently small, there isT21 � T11 + τ such that ift > T21, x2(t) � N
x2
1 + ε.

We derive from the fifth equation of system (1.1) that fort > T21 + τ ,

ẋ3(t) � α3e
−γ3τ3

(
N

x2
1 + ε

)
x3(t − τ3) − r3x3(t) − a33x

2
3(t).

By comparison, it follows that

U3 = lim sup
t→+∞

x3(t) �
α3e

−γ3τ3(N
x2
1 + ε) − r3

a33
.

Since this is true for arbitraryε > 0 sufficiently small, we conclude thatU3 � N
x3
1 , where

N
x3
1 = α3e

−γ3τ3N
x2
1 − r3

a33
.

Therefore, forε > 0 sufficiently small, there isT31 > T21 + τ such that ift > T31, x3(t) �
N

x3
1 + ε.

Again, we derive from the first equation of system (1.1) that fort > T31,

ẋ1(t) � α1e
−γ1τ1x1(t − τ1) − a11x

2
1(t) − a12x1(t)

(
N

x2
1 + ε

)
.

Thus, if for t > T31 we denote byv(t) the solution of

v̇(t) = α1e
−γ1τ1v(t − τ1) − a11v

2(t) − a12v(t)
(
N

x2
1 + ε

)
with suitable initial condition, thenx1(t) � v(t) and hence

V1 = lim inf
t→+∞ x1(t) � lim

t→+∞v(t) = α1e
−γ1τ1 − a12(N

x2
1 + ε)

a11
.

Sinceε > 0 is arbitrary, we have

V1 �
α1e

−γ1τ1 − a12N
x2
1

a11
:= M

x1
1 .

Therefore, for anyε > 0 sufficiently small, there existsT12 > T31+τ such that ift > T12, x1(t) �
M

x1
1 − ε.

It follows from the third equation of system (1.1) that fort > T12 + τ ,

ẋ2(t) � α2e
−γ2τ2

(
M

x1
1 − ε

)
x2(t − τ2) − r2x2(t) − a22x

2
2(t) − a23

(
N

x3
1 + ε

)
x2(t).

By comparison, we obtain that

V2 = lim inf
t→+∞ x2(t) �

α2e
−γ2τ2(M

x1
1 − ε) − r2 − a23(N

x3
1 + ε)

a22
.

Since this is true for arbitraryε > 0 sufficiently small, we have

V2 �
α2e

−γ2τ2M
x1
1 − r2 − a23N

x3
1

a22
:= M

x2
1 .

Hence forε > 0 sufficiently small, there isT22 > T12 + τ such that ift > T22, x2(t) � M
x2 − ε.
1
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Similarly, it follows from the fifth equation of system (1.1) that fort > T22 + τ ,

ẋ3(t) � α3e
−γ3τ3

(
M

x2
1 − ε

) − r3x3(t) − a33x
2
3(t),

which yields

V3 = lim inf
t→+∞ x3(t) �

α3e
−γ3τ3M

x2
1 − r3

a33
:= M

x3
1 .

Thus, forε > 0 sufficiently small, there isT32 > T22 + τ such that ift > T32, x3(t) � M
x3
1 − ε.

We derive from the first equation of system (1.1) that fort > T32,

ẋ1(t) � α1e
−γ1τ1x1(t − τ1) − a11x

2
1(t) − a12

(
M

x2
1 − ε

)
x1(t).

A standard comparison argument shows that

U1 = lim sup
t→+∞

x1(t) �
α1e

−γ1τ1 − a12(M
x2
1 − ε)

a11
.

Sinceε > 0 is arbitrary and sufficiently small, we derive

U1 �
α1e

−γ1τ1 − a12M
x2
1

a11
:= N

x1
2 .

Hence, forε > 0 sufficiently small, there isT13 > T32 + τ such that ift > T13, x1(t) � N
x1
2 + ε.

It follows from the third equation of system (1.1) that fort > T13 + τ ,

ẋ2(t) � α2e
−γ2τ2

(
N

x1
2 + ε

)
x2(t − τ2) − r2x2(t) − a22x

2
2(t) − a23

(
M

x3
1 − ε

)
x2(t).

By comparison, we derive that

U2 = lim sup
t→+∞

x2(t) �
α2e

−γ2τ2(N
x1
2 + ε) − r2 − (M

x3
1 − ε)

a22
.

Sinceε > 0 is arbitrary and sufficiently small, we derive that

U2 �
α2e

−γ2τ2N
x1
2 − r2 − M

x3
1

a22
:= N

x2
2 .

Therefore, forε > 0 sufficiently small, there isT23 > T13 + τ such that ift > T23, x2(t) �
N

x2
2 + ε.

Similarly, we derive from the fifth equation of system (1.1) that fort > T23 + τ ,

ẋ3(t) � α3e
−γ3τ3

(
N

x2
2 + ε

)
x3(t − τ3) − r3x3(t) − a33x

2
3(t).

By comparison, it follows that

U3 = lim sup
t→+∞

x3(t) �
α3e

−γ3τ3(N
x2
2 + ε) − r3

a33
.

Sinceε > 0 is arbitrary and sufficiently small, we get

U3 �
α3e

−γ3τ3N
x2
2 − r3

a33
:= N

x3
2 .

Continuing this process, we obtain six sequencesM
x1
n , N

x1
n , M

x2
n , N

x2
n , M

x3
n , N

x3
n (n = 1,2, . . .)

such that forn � 2,
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Nx1
n = α1e

−γ1τ1 − a12M
x2
n−1

a11
,

Nx2
n = α2e

−γ2τ2N
x1
n − r2 − a23M

x3
n−1

a22
,

Nx3
n = α3e

−γ3τ3N
x2
n − r3

a33
,

Mx1
n = α1e

−γ1τ1 − a12N
x2
n

a11
,

Mx2
n = α2e

−γ2τ2M
x1
n − r2 − a23N

x3
n

a22
,

Mx3
n = α3e

−γ3τ3M
x2
n − r3

a33
. (3.4)

Clearly, we have

Mxi
n � Vi � Ui � Nxi

n , i = 1,2,3. (3.5)

It follows from (3.4) that forn � 2,

N
x3
n+1 = ∆3(a11a22a33 − a11a23α3e

−γ3τ3 − a33a12α2e
−γ2τ2)

(a11a22a33)2

+ (a11a23α3e
−γ3τ3 + a33a12α2e

−γ2τ2)2

(a11a22a33)2
Nx3

n , (3.6)

where∆3 is defined in (3.3).
We therefore rewrite (3.6) into

N
x3
n+1 = (a11a22a33)

2 − (a11a23α3e
−γ3τ3 + a33a12α2e

−γ2τ2)2

(a11a22a33)2
x∗

3

+ (a11a23α3e
−γ3τ3 + a33a12α2e

−γ2τ2)2

(a11a22a33)2
Nx3

n . (3.7)

Noting thatNx3
n � x∗

3 anda11a22a33 > a11a23α3e
−γ3τ3 + a33a12α2e

−γ2τ2, we derive from (3.7)
that

N
x3
n+1 − Nx3

n = (a11a22a33)
2 − (a11a23α3e

−γ3τ3 + a33a12α2e
−γ2τ2)2

(a11a22a33)2
x∗

3

+
{

(a11a23α3e
−γ3τ3 + a33a12α2e

−γ2τ2)2

(a11a22a33)2
− 1

}
Nx3

n

� (a11a22a33)
2 − (a11a23α3e

−γ3τ3 + a33a12α2e
−γ2τ2)2

(a11a22a33)2
x∗

3

+
{

(a11a23α3e
−γ3τ3 + a33a12α2e

−γ2τ2)2

(a11a22a33)2
− 1

}
x∗

3.

Therefore, the sequenceNx3
n is monotonically decreasing. Accordingly, limn→+∞ N

x3
n exists.

Takingn → +∞, it follows from (3.7) that

lim Nx3
n = x∗

3 . (3.8)

n→+∞
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We further derive from (3.4) and (3.8) that

lim
n→+∞Nx2

n = x∗
2, lim

n→+∞Mx1
n = x∗

1, lim
n→+∞Mx2

n = x∗
2,

lim
n→+∞Mx3

n = x∗
3, lim

n→+∞Nx1
n = x∗

1 . (3.9)

It follows from (3.5), (3.8) and (3.9) that

U1 = V1 = x∗
1, U2 = V2 = x∗

2, U3 = V3 = x∗
3 . (3.10)

As a consequence, we obtain that

lim
t→+∞xi(t) = x∗

i (i = 1,2,3).

Using L’Hospital’s rule, it follows from (2.1) that

lim
t→+∞yi(t) = y∗

i (i = 1,2,3).

This completes the proof.�
Next, we discuss the global stability of the nonnegative equilibriaE1 of system (1.1).

Theorem 3.2. If α1α2e
−γ1τ1−γ2τ2 < r2a11, the nonnegative equilibrium E1 of system (1.1) is

globally asymptotically stable.

Proof. Noting that the nonnegative equilibriumE1 is locally stable ifα1α2e
−γ1τ1−γ2τ2 < r2a11,

it suffices to show thatE1 is globally attractive.
Let ε > 0 be sufficiently small satisfying

α2e
−γ2τ2

(
α1e

−γ1τ1

a11
+ ε

)
− r2 < 0, α3e

−γ3τ3ε − r3 < 0. (3.11)

We derive from the first equation of system (1.1) that

ẋ1(t) � α1e
−γ1τ1x1(t − τ1) − a11x

2
1(t),

by comparison which yields

lim sup
t→+∞

x1(t) � α1e
−γ1τ1

a11
. (3.12)

Therefore, forε > 0 sufficiently small satisfying (3.11) there isT1 > 0 such that ift > T1,
x1(t) � α1e

−γ1τ1/a11 + ε.

It follows from the third equation of system (1.1) that fort > T1 + τ ,

ẋ2(t) � α2e
−γ2τ2

(
α1e

−γ1τ1

a11
+ ε

)
x2(t − τ2) − r2x2(t) − a22x

2
2(t).

Consider the following auxiliary equation:

u̇(t) = α2e
−γ2τ2

(
α1e

−γ1τ1

a11
+ ε

)
u(t − τ2) − r2u(t) − a22u

2(t). (3.13)

By Lemma 2.2, we derive from (3.11) that

lim u(t) = 0.

t→+∞
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-

By comparison, it follows that

lim
t→+∞x2(t) = 0.

Hence, forε > 0 sufficiently small satisfying (3.11), there existsT2 > T1 + τ such that ift > T2,
0< x2(t) < ε.

It follows from the fifth equation of system (1.1) that fort > T2 + τ ,

ẋ3(t) � α3e
−γ3τ3εx3(t − τ3) − r3x3(t) − a33x

2
3(t),

which, together with (3.11), yields

lim
t→+∞x3(t) = 0.

We derive from the first equation of system (1.1) that fort > T2,

ẋ1(t) � α1e
−γ1τ1x1(t − τ1) − a11x

2
1(t) − a12εx1(t).

By comparison, it follows that

lim inf
t→+∞ x1(t) � α1e

−γ1τ1 − a12ε

a11
.

Since this is true for arbitraryε > 0 sufficiently small, we can conclude that

lim inf
t→+∞ x1(t) � α1e

−γ1τ1

a11
,

which, together with (3.12), leads to

lim
t→+∞x1(t) = α1e

−γ1τ1

a11
.

Using L’Hospital’s rule, we obtain from (2.1) that

lim
t→+∞y1(t) = α2

1e−γ1τ1

a11γ1

(
1− e−γ1τ1

)
, lim

t→+∞y2(t) = lim
t→+∞y3(t) = 0.

The proof is complete. �
Finally, we show the global attractivity of the nonnegative equilibriumE2 of system (1.1).

Theorem 3.3. The nonnegative equilibrium E2(x
0
1, y0

1, x0
2, y0

2,0,0) is globally attractive pro-
vided that

(H4) 0< α3e
−γ3τ3(α1α2e

−γ1τ1−γ2τ2 − a11r2) < a11a22r3,
(H5) a11a22 > a12α2e

−γ2τ2.

Proof. Let (x1(t), y1(t), x2(t), y2(t), x3(t), y3(t)) be a solution of system (1.1) with initial con
ditions (1.2) and (1.3).

Let ε > 0 be sufficiently small satisfying

α3e
−γ3τ3

(
α1α2e

−γ1τ1−γ2τ2 − r2a11 + ε

)
− r3 < 0. (3.14)
a11a22
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m

can
We derive from the fifth equation of system (1.1) and (2.4) that there isT1 > 0 such that if
t > T1,

ẋ3(t) � α3e
−γ3τ3

(
α1α2e

−γ1τ1−γ2τ2 − r2a11

a11a22
+ ε

)
x3(t − τ3) − r3x3(t) − a33x

2
3(t).

Consider the following auxiliary equation:

u̇(t) = α3e
−γ3τ3

(
α1α2e

−γ1τ1−γ2τ2 − r2a11

a11a22
+ ε

)
u(t − τ3) − r3u(t) − a33u

2(t). (3.15)

By Lemma 2.2, it follows from (3.14) and (3.15) that

lim
t→+∞u(t) = 0.

By comparison, we derive

lim
t→+∞x3(t) = 0.

Therefore, forε > 0 sufficiently small there isT2 > T1 such that ift > T2, 0< x3(t) < ε.

It therefore follows from the first and the third equation of system (1.1) that fort > T2,

ẋ1(t) = α1e
−γ1τ1x1(t − τ1) − a11x

2
1(t) − a12x1(t)x2(t),

ẋ2(t) � α2e
−γ2τ2x1(t − τ2)x2(t − τ2) − (r2 + a23ε)x2(t) − a22x

2
2(t), (3.16)

and

ẋ1(t) = α1e
−γ1τ1x1(t − τ1) − a11x

2
1(t) − a12x1(t)x2(t),

ẋ2(t) � α2e
−γ2τ2x1(t − τ2)x2(t − τ2) − r2x2(t) − a22x

2
2(t). (3.17)

We consider the following auxiliary system:

u̇1(t) = α1e
−γ1τ1u1(t − τ1) − a11u

2
1(t) − a12u1(t)u2(t),

u̇2(t) = α2e
−γ2τ2u1(t − τ2)u2(t − τ2) − ru2(t) − a22u

2
2(t). (3.18)

It is easy to see that ifα1α2e
−γ1τ1−γ2τ2 > a11r , system (3.18) has a unique positive equilibriu

E∗
1(u0

1, u
0
2), where

u0
1 = a22α1e

−γ1τ1 + ra12

a11a22 + a12α2e−γ2τ2
, u0

2 = α1α2e
−γ1τ1−γ2τ2 − ra11

a11a22 + a12α2e−γ2τ2
.

If (H5) holds, using an iterative technique similar to that in the proof of Theorem 3.1, we
derive that

lim
t→+∞u1(t) = u0

1, lim
t→+∞u2(t) = u0

2.

By comparison, it follows from (3.16) that

lim inf
t→+∞ x1(t) � x0

1 + a23ε

a11a22 + a12α2e−γ2τ2
,

lim inf
t→+∞ x2(t) � x0

2 − a23ε

a11a22 + a12α2e−γ2τ2
.

Since this true for arbitraryε > 0 sufficiently small, we can conclude that
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lim inf
t→+∞ x1(t) � x0

1, lim inf
t→+∞ x2(t) � x0

2. (3.19)

Similarly, by comparison we derive from (3.17) that

lim sup
t→+∞

x1(t) � x0
1, lim sup

t→+∞
x2(t) � x0

2,

which, together with (3.19), yields

lim
t→+∞x1(t) = x0

1, lim
t→+∞x2(t) = x0

2.

Using L’Hospital’s rule, we can easily show from (2.1) that

lim sup
t→+∞

y1(t) = y0
1, lim sup

t→+∞
y2(t) = y0

2, lim
t→+∞y3(t) = 0.

This completes the proof.�
4. Discussion

In this paper, motivated by the work of Aiello and Freedman [1], we incorporated
structures into a three-species Lotka–Volterra type simple food chain model. By using som
parison arguments we first established sufficient conditions for the permanence of system
By using an iterative technique, we discussed the global attractivity of the feasible equilib
system (1.1). By Theorem 3.1, we see that if the intra-specific competition rates domin
capturing rates of the mature predator and the mature top predator and the transformati
of the immature predator and the immature top predator, the positive equilibrium of system
is globally attractive. By Theorem 3.2, we see that if the transformation rate of immature
population to mature prey population and the transformation rate of the immature predat
ulation to mature predator population are low, and the death rate of the mature predator
intra-specific competition rate of the mature prey are high, the prey population will be p
tent, but the predator and the top predator populations will go to extinction. By Theore
we see that if the death rate of the mature top predator is high enough satisfying (H4)–(H
top predator population will go to extinction, but the prey and the predator populations w
permanent.
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