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Abstract

This article studies the motion of temperature dependent plastic dynamic viscosity and thermal conductivity of steady
incompressible laminar free convective magnetohydrodynamic (MHD) Casson fluid flow over an exponentially stretching surface
with suction and exponentially decaying internal heat generation. It is assumed that the natural convection is driven by buoyancy
and space dependent heat generation. The viscosity and thermal conductivity of Casson fluid is assumed to vary as a linear function
of temperature. By using suitable transformation, the governing partial differential equations corresponding to the momentum
and energy equations are converted into non-linear coupled ordinary differential equations and solved by the Homotopy analysis
method. A new kind of averaged residual error is adopted and used to find the optimal convergence control parameter. A
parametric study is performed to illustrate the influence of Prandtl number, Casson parameter, temperature dependent viscosity,
temperature dependent thermal conductivity, Magnetic parameter and heat source parameter on the fluid velocity and temperature
profiles within the boundary layer. The flow controlling parameters are found to have a profound effect on the resulting flow
profiles.
c⃝ 2015 The Authors. Production and Hosting by Elsevier B.V. on behalf of Nigerian Mathematical Society. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

As fluid flows on continuous moving surface, boundary layer is formed and it’s of important in nature due to its
influence on the transport phenomena. Natural convection arises within the fluid when temperature changes cause
density variation leading to buoyancy forces which act directly on the fluid elements. Theoretical and experimental
study on heat transfer MHD free convection flow with thermal radiation effects on a vertical plate has received
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deep interest during the last decades. The study of magnetohydrodynamics flow and heat transfer over a continuous
stretching sheet is one of the very important problems in fluid dynamics due to its numerous applications in industrial
manufacturing processes such as paper production, manufacturing of ceramic polymer extrusion and production of
plastic. Sakiadis [1,2] started a research on boundary layer behavior when fluid flows on a continuous solid surface.
Crane [3] furthered the research and considered the boundary layer flow caused by a stretching sheet which moves
with a velocity varying linearly with the distance from a fixed point. Carragher and Crane [4] continued this research
and studied heat transfer aspect under the conditions when the temperature difference between the surface and the
ambient fluid is proportional to a power of the distance from a fixed point. Ibrahim [5] adopted numerical analysis
method in order to study heat and mass transfer effects on steady two dimensional flow of a viscous incompressible,
electrically conducting dissipating fluid past an exponentially stretching surface in the presence of magnetic field,
heat generation and radiation. In the governing equation, the author considered magnetic field term and square of
velocity component in x-direction. Miansari et al. [6] applied the Homotopy analysis method together with Pade-
Approximation to solve dimensionless momentum and energy equations considering the case of a two dimensional
incompressible flow passing over a wedge. They also presented efficiency of HAM together with trial and error
method for solving the momentum equation. They also solved the momentum equation by considering the Pade-
Approximation with HAM. The flow and heat transfer over an exponentially stretching surface have been studied by
many researchers. Elbashbeshy [7] investigated wall mass suction, Khan and Sanjayanand [8] presented the boundary
layer flow of viscoelastic fluid and heat transfer over an exponentially stretching sheet with viscous dissipation effect,
Partha et al. [9] reported a similarity solution for mixed convection flow past an exponentially stretching surface.
Ishak [10] studied the magnetohydrodynamic (MHD) boundary layer flow over an exponentially shrinking sheet in
the presence of thermal radiation, Bhattacharyya [11] discussed the boundary layer flow and heat transfer caused due
to an exponentially shrinking sheet and Bhattacharyya and Pop [12] showed the effect of external magnetic field on
the flow over an exponentially shrinking sheet. Recently, Bhattacharyya and Vajravelu [13] described the stagnation
point boundary layer flow due to exponentially shrinking sheet for Newtonian fluid.

The study of non-Newtonian fluids has attracted much attention because of their extensive variety of applications
in engineering and industry especially in extraction of crude oil from petroleum products, production of plastic
materials and syrup drugs. In the category of non-Newtonian fluids, Casson fluid has distinct features. Casson fluid
is one of the types of such non-Newtonian fluids, which behaves like an elastic solid, and for this kind of fluid, a
yield shear stress exists in the constitutive equation. Non-Newtonian transport phenomena arise in many branches of
mechanical and chemical engineering and also in food processing. Some materials e.g. muds, condensed milk, glues,
printing ink, emulsions, paints, sugar solutions, shampoos and tomato pastes exhibit almost all the properties of non-
Newtonian fluid. This rheological model was introduced originally by Casson [14] in his research on a flow equation
for pigment oil-suspensions of printing ink. Casson model constitutes a plastic fluid model which exhibits shear
thinning characteristics, yield stress, and high shear viscosity. According to a research conducted by Rao et al. [15],
it is stated that Casson fluid model is reduced to a Newtonian fluid at a very high wall shear stress, i.e., when the wall
stress is much greater than yield stress. This fluid model also approximates reasonably well the rheological behavior
of other liquids including physiological suspensions, foams, cosmetics, syrups, etc. Although different models are
proposed to explain the behavior of non-Newtonian fluids, the most important non-Newtonian fluid possessing a yield
value is the Casson fluid. Bird et al. [16] investigated the rheology and flow of visco-plastic materials and reported that
the Casson model constitutes a plastic fluid model which exhibits shear thinning characteristics, yield stress, and high
shear viscosity. In 2007, Evan Mitsoulis discussed in detail on the stress-deformation behavior of viscoplastic models
(i.e. Bingham models, Herschel–Bulkley model and the Casson model) and different constitutive equations proposed
in [16]. Mitsoulis [17] further reviews several benchmark problems of viscoplastic flows, such as entry and exit flows
from dies, flows around a sphere and a cylinder and squeeze flows. The fundamental analysis of the flow field of
non-Newtonian fluids in a boundary layer adjacent to a stretching sheet or an extended surface is very important and
is an essential part in the study of fluid dynamics and heat transfer [18]. Hayat et al. [19] investigated Soret and
Dufour effects on magnetohydrodynamic (MHD) flow of Casson fluid. Fredrickson [20] investigated the steady flow
of a Casson fluid in a tube. The unsteady boundary layer flow and heat transfer of a Casson fluid over a moving flat
plate with a parallel free stream were studied by Mustafa et al. [21] and they solved the problem analytically using
the Homotopy analysis method (HAM). Recently, Animasaun [22] presented the effects of some thermo-physical
parameters on non-darcian MHD dissipative Casson fluid flow along linearly stretching vertical surface when there
exists migration of colloidal particles in response to a macroscopic temperature.
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Internal energy generation can be explained as a scientific method of generating heat within a body by a chemical,
electrical or nuclear process. Natural convection induced by internal heat generation is a common phenomenon in
nature. Examples include motion in the atmosphere where heat is generated by absorption of sunlight [see Tasaka
et al. [23]]. In the energy equation, Sahin [24] considered heat generation rate resulting from the radiation absorp-
tion by differentiating the radiation intensity. Crepeau and Clarksean [25] carried out a similarity solution for a fluid
with an exponentially decaying heat generation term and a constant temperature vertical plate under the assump-
tion that the fluid has an internal volumetric heat generation. An exponential form is used for the internal energy
generation term. In many situations, there may be appreciable temperature difference between the surface and the
ambient fluid. This necessitates the consideration of temperature dependent heat sources that may exert a strong in-
fluence on the heat transfer characteristics [26]. The study of heat generation or absorption effects is important in
view of several physical problems such as fluids undergoing exothermic or endothermic chemical reaction; although,
exact modeling of internal heat generation or absorption is quite difficult, some simple mathematical models can ex-
press its average behavior for most physical situations [27]. Recently, Makinde [28] analyzed the effect of variable
viscosity on thermal boundary layer over a permeable flat plate with radiation and a convective surface boundary
condition. The purpose of this theoretical study is to unravel the behavior of velocity and temperature profiles of
Casson flow with variable plastic dynamic viscosity and thermal conductivity within boundary layer over a vertical
surface with suction and space dependent internal heat generation by using analytical approximate method of solution.
The governing partial differential equations are modified and converted to nonlinear ordinary differential equations
using suitable similarity transformations. The transformed self-seminar ODE’s are solved by the Homotopy analysis
method.

2. Mathematical formulation

A steady two-dimensional laminar free convective boundary layer flow of a viscous incompressible electrically
conducting fluid flow along a vertical exponentially stretching sheet in the presence of suction is considered for a
theoretical study. The surface is elastic. The motion of an incompressible non Newtonian fluid is induced because
of the stretching property of the surface, buoyancy effects which are generated by gradients in the temperature field
of a dissolved species and space dependent internal heat generation. This occurs in view of the elastic properties of
the surface parallel to the x-axis through equal and opposite forces when the origin is fixed at x = y = 0. The
physical model is shown in Fig. 1. A magnetic field Bo of uniform strength is applied transversely to the direction

Fig. 1. Flow configuration and the coordinate system.

of the flow. Since the fluid pressure is constant throughout the boundary, it is assumed that induced magnetic field is
small in comparison to the applied magnetic field; hence it is neglected. Under the above assumptions and invoking
the Boussinesq approximation, the boundary layer equations governing the flow and heat transfer of a viscous and
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incompressible fluid can be written as

∂u

∂x
+
∂v

∂y
= 0, (1)
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(3)

where T is the temperature of the fluid, ϑ =
µ
ρ

is the kinematic coefficient of viscosity with µ being the fluid viscosity
and ρ is the fluid density, α =

κ
ρCp is the thermal diffusivity with κ being the fluid thermal conductivity and Cp is

the heat capacity at constant pressure. The dimensionless space internal heat generation term in energy equation is
modeled following the concept introduced in [29–31] where Qo is the coefficient of space-dependent internal heat
generation. From the definition of viscosity (τ = µ ∂u

∂y |y=0) and according to [18,20] it is assumed that the rheological
equation of an isotropic and incompressible flow of a Casson fluid can be written as

τi j =


µb +

Py
√

2π


2ei j when π > πc,

τi j =


µb +

Py
√

2πc


2ei j when π < πc, (4)

Py is known as yield stress of the fluid, mathematically expressed as

Py =
µb

√
2π

β
, (5)

µb is known as plastic dynamic viscosity of the non-Newtonian fluid, π is the product of the component of deformation
rate with itself (i.e. π = ei j ei j ), where ei j is the (i, j)th component of the deformation rate and πc is the critical value
based on the non-Newtonian model. In a case of Casson fluid (Non Newtonian) flow, where π > πc, it is possible to
say that

µ = µb +
Py

√
2π
. (6)

Substituting (5) into (6), the kinematics viscosity of Casson fluid is now depending on plastic dynamic viscosity µb,
density ρ and Casson parameter β

ϑ =
µb

ρ


1 +

1
β


. (7)

Rosseland approximation requires that the media is optically dense media and radiation travels only a short distance
before being scattered or absorbed. Since we are considering a situation in which the radiation of heat within optically
thick Casson fluid exists before the heat is scattered, radiative heat transfer is taken into account. Rosseland equation
which is a simplified model of Radiative Transfer Equation (RTE) is adopted to account for this effect. When material
has a great extinction coefficient, it can be treated as optically thick. qr is the radiative heat flux and is defined using
the Rosseland approximation [32], [33] as

qr =
−4σ
3k∗

∂T 4

∂y
, (8)

where σ is the Stefan–Boltzmann constant and k∗ is known as the absorption coefficient. Following [14,16,17], we
assumed that the temperature differences within the flow are sufficiently small such that T 4 may be expressed as a
linear function of the freestream temperature T∞. This is obtained by expanding T 4 in a Taylor series about T∞ and
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neglecting higher order terms, we obtained

T 4
≈ T 4

∞ + 4T 3
∞T − 4T 3

∞T∞, (9)

∂qr
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∂T 4

∂T

∂T

∂y


. (10)

Upon substitution, we obtained

∂qr

∂y
=

−16σT 3
∞

3k∗

∂2T

∂y2 . (11)

We are interested in the case where plastic dynamic viscosity µb and thermal conductivity of Casson fluid κ vary as a
linear function of temperature. Molecules of fluids exert forces of attraction on each other either in motion or at rest.
In liquids, this kind of force is strong enough to keep the mass together but not strong enough to keep it rigid like that
of solid. When a fluid flows over a surface, the layer next to the surface may become attached to it (wets the surface
“no slip condition”). Casson fluid exhibits shear thinning characteristics which can conduct heat when exposed. This
assumption is valid since it is known that the physical properties of the fluid may change significantly with tempera-
ture. For lubricating fluids, heat generated by the internal friction and the corresponding rise in temperature affects the
viscosity of the fluid and so the fluid viscosity can no longer be assumed constant. The increase of temperature leads
to a local increase in the transport phenomena by reducing the viscosity across the momentum boundary layer and
so the heat transfer rate at the wall is also affected greatly. In industrial systems, fluids can be subjected to extreme
conditions such as high temperature, pressure, high shear rates and external heating (Ambient Temperature) and each
of these factors can lead to high temperature being generated within the fluid. Modified governing equations are:
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In Physics, it is a well-known fact that, if an object is on an elastic surface at rest, when the surface is stretched;
the object also tends to move towards the direction of the pull. The surface of the plate in Fig. 1 is assumed to be
highly elastic and is stretched in the x-direction with a velocity u = U0exp( x

L ). Eqs. (12) and (13) are subject to the
following boundary conditions

u = U0exp
 x

L


, v = −voexp

 x

2L


, T = T∞ + T0exp

 x

2L


at y = 0 (14)

u → 0, T → T∞, as y → ∞. (15)

In this research, U0 is a constant and L is the reference length. It is very important to note that, the exponential velocity
at the wall U0exp

 x
L


is valid only when x ≪ L . When x ≥ L , it is very obvious that the effect of the exponential

property on wall velocity may skyrocket. Also, in the third term of (14), it is obvious that (Tw − T∞) = T0exp
 x

2L


.

The following relations are introduced for u and v as u =
∂ψ
∂y and v = −

∂ψ
∂x respectively. Here ψ(x, y) is the stream

function. Introduce similarity variables

η = y


U0

2ϑL
exp

 x

2L


, ψ(x, y) =


2ϑLU0 f (η)exp

 x

2L


,

dimensionless temperature, temperature dependent viscosity model in [34,35] and temperature dependent thermal
conductivity model in [36,37] respectively as

θ(η) =
T − T∞

Tw − T∞

, µb(T ) = µ∗

b[a + b(Tw − T )], κ(T ) = κ∗
[1 + δ(T − T∞)]. (16)
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These automatically satisfied continuity equation (1) and we obtained the following locally similar ordinary differen-
tial equations:

1 +
1
β


[1 + ξ − θξ ]

d3 f

dη3 − ξ


1 +

1
β


dθ

dη

d2 f

dη2 − 2


d f

dη

2

+ f
d2 f

dη2 − Ha
d f

dη
+ JT θξ = 0, (17)

1 +
4

3N
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d2θ

dη2 + ε


dθ

dη

2

− Prθ
d f

dη
+ Pr f

dθ

dη
+ Prγ exp(−nη) = 0. (18)

Together with the boundary conditions

d f

dη
= 1, f = S, θ = 1 at η = 0 (19)

d f

dη
→ 0, θ → 0, as η → ∞ (20)

where ξ = b(Tw − T∞) is the variable plastic dynamic viscosity parameter, β =
µb

√
2π

Py
is the non-Newtonian Cas-

son parameter, JT =
2gβ+L

bU 2
0 exp


2x
L

 is the local modified Grashof related parameter, ε = δ(Tw − T∞) is the variable

thermal conductivity parameter, Pr =
C pµ

κ
is the Prandtl number, γ =

Q0
ρCp

2L
U0exp( x
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is the space dependent internal

heat source parameter, Ha =
2σ B2

o L
ρUo

is the magnetic field parameter and N =
κκ∗

4σT 3
∞

is the Radiation parameter. The

suction parameter S =
vo2L

√
2ϑLUo

holds by invoking η = 0. For practical applications, the major physical quantities of
interest are the local skin friction coefficient and Nusselt number. The first physical quantities of interest is the wall
skin friction coefficient C f defined as

C f =
τw

ρ

U0exp

 x
2L

2 where τw =


µb +

Py
√

2π


∂u
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y=0

τw is known as Shear stress or skin friction along the stretching sheet

√
2exp

 x

2L


ReC f =


1 +

1
β


f ′′(0). (21)

Another physical quantity of interest is the local Nusselt number Nux , which is defined as

Nux =
Lqw

κ(Tw − T∞)
where qw = −κ

∂T

∂y


y=0

(22)

qw is known as heat flux from the sheet

Nux exp
 x

2L


√

Re
= −θ ′(0). (23)

Here local Reynold number Re =
Uo L
ϑ

.

3. Approximate solution (homotopy analysis method)

Nonlinear differential equations are usually arising from mathematical modeling of many physical systems. Many
of them have been solved using numerical methods and some by using analytic methods such as perturbation
techniques, Adomian Decomposition and δ-expansion method. Generally speaking, it is still difficult to obtain
analytical solutions of nonlinear problems. Aluko and Animasaun [38] adopted the Adomian Decomposition method
to obtain semi analytic solution of typical dimensionless momentum and energy equation. It is observed that ADM
provides a semi analytic solution which converges within a small domain of independent variable (η). In this research,
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the Homotopy analysis method is considered as a method of solution because of its efficiency as an approximate
solution of linear and nonlinear differential equations and also, HAM is valid for strongly nonlinear problems even
if a given nonlinear problem does not contain any small/large parameters. HAM provides us with a convenient way
to adjust the convergence region and rate of approximation series and HAM also provides us with freedom to use
different base functions to approximate a nonlinear problem. Introduction to Homotopy theory was introduced by
Hilton [39] and the Homotopy Analysis Method (HAM) proposed by Liao [40] to gain analytic approximations of
highly nonlinear differential equation. The HAM has some advantages over other traditional analytic approximation
methods. First, unlike perturbation techniques, HAM is independent of small/large physical parameters, and thus is
valid in more general cases. Besides, different from all other analytic techniques, HAM provides us a convenient
way to guarantee the convergence of a series solution. Furthermore, the HAM provides extremely large freedom to
choose initial guess and equation-type of linear sub-problems. It is found in Liao [41,42] that lots of nonlinear BVPs
in science, engineering and finance can be solved conveniently by means of the HAM, no matter whether the interval
is finite or not. Let us consider a differential equation

N [ f (η)] = 0 (24)

where N is a nonlinear operator, η denotes independent variable and f (η) is an approximate solution of (24) which is
an unknown function. Let fo(η) denote an initial approximation of f (η), H(η) is known as the auxiliary function and
L denotes an auxiliary linear operator with the property

L[ f (η)] = 0 when f (η) = 0. (25)

Instead of using the traditional Homotopy

H [ f (η; q); q] = (1 − q)L[ f (η; q)− fo(η)] + q N [ f (t; q)]

we considered a nonzero auxiliary parameter h̄ and a nonzero auxiliary function H(η) to construct a new kind of
Homotopy (26) which is more general than traditional Homotopy and a special case when h̄ = −1 and H(η) = 1

H [ f (η); q, h̄, H(η)] = (1 − q)L[ f (η; q, h̄, H(η))− fo(η)] − qh̄ H(η)N [ f (η; q, h̄, H(η))] (26)

q ϵ [0, 1] is an embedding parameter and f (η, q) is a function of η and q.
When q = 0, Eq. (26) becomes

H [ f (η); 0, h̄, H(η)] = L[ f (η; 0, h̄, H(η))− fo(η)]. (27)

Next step is to find a solution of H [ f (η), 0, h̄, H(η)] = 0. Making use of (25), RHS of Eq. (27) becomes

f (η; 0, h̄, H(η)) = fo(η). (28)

Eq. (28) is the solution of H [ f (η), 0, h̄, H(η)] = 0. When q = 1, Eq. (26) becomes

H [ f (η); 1, h̄, H(η)] = −h̄ H(η)N [ f (η; 1, h̄, H(η))] (29)

Considering the solution of H [ f (η); 1, h̄, H(η)] = 0

−h̄ H(η)N [ f (η; 1, h̄, H(η))] = 0

N [ f (η; 1, h̄, H(η))] = 0 but h̄ H(η) ≠ 0.

Equating to Eq. (24)

N [ f (η; 1, h̄, H(η))] = N [ f (η)]..

Algebraically,

f (η; 1, h̄, H(η)) = f (η). (30)

In many cases, by means of analyzing the physical background and the initial/boundary conditions of the nonlinear
differential problem; it is possible to know base functions which are proper to represent the solution, even without
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solving the given nonlinear problem. In view of the boundary conditions (19) and (20), f (η) and θ(η) can be expressed
by the set of base functions of the form

⟨η j exp(−nj) | j ≥ 0, n ≥ 0⟩. (31)

The solutions [ f (η) and θ(η)] can be represented in a series form as

f (η) = a0
0,0 +

∞
n=0

∞
k=0

ak
n,kη

kexp(−nj) (32)

θ(η) =

∞
n=0

∞
k=0

bk
n,kη

kexp(−nj), (33)

in which ak
n,k and bk

n,k are the coefficients. As long as such a set of base functions is determined, the auxiliary function
H(η), initial approximations fo(η), θo(η) and auxiliary linear operators L f , Lθ must be chosen in such a way that
all solutions of the corresponding high-order deformation of Eqs. (58), (59) exist and can be expressed by this set of
base functions. This provides a fundamental rule on how to choose the auxiliary function H(η), initial approximations
fo(η), θo(η) and auxiliary linear operators L f , Lθ called rule of solution expression. This rule plays an important role
in the frame of the Homotopy analysis method, as shown in this research. As mentioned above, a real function f (x)
might be expressed by many different base functions. Thus, their might exist some different kinds of rule of solution
expressions and all of them might give accurate approximations for a given nonlinear problem. In this case we might
gain the best one by choosing the best set of base functions. The auxiliary linear operator L , initial approximations
fo(η), θo(η) and auxiliary function H(η) are useful to construct the zero-order deformation equation. Invoking the
rule of solution expressions above for f (η) and θ(η) on (17), (18) together with boundary conditions (19)–(20), the
initial guesses fo(η) and θo(η) which satisfy both the initial and boundary conditions (19), (20) are

fo(η) = 1 + S − exp(−η) θo(η) = exp(−η). (34)

Linear operators L f and Lθ are

L f [ f (η; q)] =
∂3 f (η; q)

∂η3 −
∂ f (η; q)

∂η
(35)

Lθ [θ(η; q)] =
∂2θ(η; q)

∂η2 − θ(η; q). (36)

The operators L f and Lθ have the following properties

L f [C1 + C2exp(−η)+ C3exp(η)] = 0 Lθ [C4exp(−η)+ C5] = 0, (37)

in which C1, C2, C3, C4 and C5 are constants.

3.1. Zero order of deformation

Let qϵ[0, 1] denote the embedding parameter, h̄ f and h̄θ are non-zero auxiliary parameters. The zero order
deformation equation (m = 0) is of the form

(1 − q)L f [ f (η; q)− fo(η)] = q h̄ f H f (η)N [ f (η; q), θ(η; q)] (38)

(1 − q)Lθ [θ(η; q)− θo(η)] = q h̄θ Hθ (η)N [ f (η; q), θ(η; q)]. (39)

Subject to boundary conditions

f (η = 0; q) = S,
∂ f (η = 0; q)

∂η
, θ(η = 0; q) = 1 (40)

∂ f (η → ∞; q)

∂η
, θ(η → ∞; q) = 0 (41)
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where the nonlinear operators are defined as
1 +

1
β


[1 + ξ − θ(η; q)ξ ]

∂3 f (η; q)

∂η3 − ξ


1 +

1
β


∂θ(η; q)

∂η

∂2 f (η; q)

∂η2 − 2

∂ f (η; q)

∂η

2

+ f (η; q)
∂2 f (η; q)

∂η2 − Ha
∂ f (η; q)

∂η
+ JT θ(η; q)ξ = 0 (42)

1 +
4

3N
+ θ(η; q)ε


∂2θ(η; q)

∂η2 + ε


∂θ(η; q)

∂η

2

− Prθ(η; q)
∂ f (η; q)

∂η

+ Pr f (η; q)
∂θ(η; q)

∂η
+ Prγ exp(−nη) = 0. (43)

When q = 0, zero order of deformation Eqs. (38)–(39) leads to

L f [ f (η; 0)− fo(η)] = 0, Lθ [θ(η; 0)− θo(η)] = 0.

With the property

f (η; 0) = fo(η) (44)
θ(η; 0) = θo(η), (45)

subject to

f (η = 0; 0) = S,
∂ f (η = 0; 0)

∂η
, θ(η = 0; 0) = 1 (46)

∂ f (η → ∞; 0)
∂η

, θ(η → ∞; 0) = 0. (47)

When q = 1, zero order of deformation Eqs. (38)–(39) leads to

0 = h̄ f H f (η)N [ f (η; 1), θ(η; 1)], 0 = h̄θ Hθ (η)N [ f (η; 1), θ(η; 1)].

Based on the fact that h̄ f H f (η) ≠ 0 and h̄θ Hθ ≠ 0 but

0 = N [ f (η; 1), θ(η; 1)] (48)
0 = N [ f (η; 1), θ(η; 1)]. (49)

Equating (48) and (49) with (24), we have

f (η; 1) = f (η) (50)
θ(η; 1) = θ(η), (51)

subject to

f (η = 0; 1) = S,
∂ f (η = 0; 1)

∂η
, θ(η = 0; 1) = 1 (52)

∂ f (η → ∞; 1)
∂η

, θ(η → ∞; 1) = 0. (53)

3.2. High order of deformation

Expanding f (η; q) and θ(η; q) in Taylor series with respect to the embedding parameter q,

f (η; q) = fo(η)+

∞
m=1

fm(η)q
m where fm(η) =

1
m!

∂m f (η; q)

∂ηm


q=0

(54)

θ(η; q) = θo(η)+

∞
m=1

θm(η)q
m where θm(η) =

1
m!

∂mθ(η; q)

∂ηm


q=0

. (55)
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Since we are sure that the series (54) and (55) converge at q = 1, we have

f (η; q) = fo(η)+

∞
m=1

fm(η)q
m (56)

θ(η; q) = θo(η)+

∞
m=1

θm(η)q
m . (57)

For the mth order deformation, differentiate (38)–(39) m times with respect to q , divide by m! and set q = 0, then we
have

L f [ fm(η)− χm fm−1(η)] = h̄ f H f (η)R
f

m(η) (58)

Lθ [θm(η)− χmθm−1(η)] = h̄θ Hθ (η)R
θ
m(η), (59)

subject to

fm(η = 0) = 0,
d fm(η = 0)

dη
= 0, θm(η = 0) = 0 (60)

d fm(η → ∞)

dη
→ 0, θm(η → ∞) → 0 (61)

where

R f
m(η) =


1 +

1
β


[1 + ξ ]

d3 fm−1

dη3 − ξ

m−1
k=0

θm−1−k
d3 fk

dη3

− ξ


1 +

1
β

 m−1
k=0

θm−1

dη

d2 fm−1−k

dη2 − 2
m−1
k=0

d fm−1−k

dη

d fk

dη

+

m−1
k=0

fm−1−k
d2 fk

dη2 − Ha
d fm−1

dη
+ JT θm−1ξ (62)

Rθm(η) =


1 +

4
3N


d2θm−1

dη2 + ε

m−1
k=0

θm
d2θm−1−k

dη2 + ε

m−1
k=0

dθm−1−k

dη

dθk

dη

− Pr

m−1
k=0

θk
d fm−1−k

dη
+ Pr

m−1
k=0

fk
dm−1−k

dη
+ Prγ exp(−nη) (63)

and

χm = 0 when m ≤ 1

χm = 1 when m > 1. (64)

According to the rule of solution expression, the rule of coefficient ergodicity and the rule of solution existence as
discussed by Liao [41] we choose auxiliary functions as

H f = Hθ = 1. (65)

4. Convergence of homotopy solution

Liao [41] revealed that whenever an approximate solution converges, it will be one of the solutions of considered
problem. Therefore, it is important to ensure that the solutions series are convergent. It is very necessary to prove
the convergence of the solution series, the convergence and rate of approximation for the HAM solution of the
series which are strongly dependent upon the auxiliary parameter. Therefore, one can choose the proper values of
h̄ f and h̄θ by plotting the h̄-curves which ensure that the solution series (54) and (55) converge as suggested by
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Table 1
Comparison of −θ ′(0) at 10th-order approximation for several values of
Prandtl number with Nazar and Bidin [9].

Pr K = 0.5 Nazar and Bidin [43] N = 2 in present

1 0.6765 0.676506980749169
2 1.0735 1.073521347405536
3 1.3807 1.380754270594433

Pr K = 1 Nazar and Bidin [43] N = 1 in present

1 0.5315 0.531241548130990
2 0.8627 0.862772689888035
3 1.1214 1.121429576505715

[41,42]. In the present work, the optimal homotopy analysis approach [42] is used to obtain the optimal values of
the auxiliary parameters by means of the minimum of the residual squares of the governing equations. Using the
symbolic computation software Wolfram Mathematica, we directly employed the command “Minimize” to get the
optimal convergence-control parameter. In order to validate the accuracy of our approximate solution (Homotopy
Analysis Method) and to examine the application of the program applied, we have compared our results at 10th order
of approximation with heat transfer coefficients −θ ′(0) [E = 0] of Bidin and Nazar [43] when β = ∞, Ha = ξ =

JT = ε = γ = S = 0. It is very important to note that k = 0.5 in [43] is equivalent to N = 2 in the present study.
The results are found in excellent agreement and some of the comparisons are shown in Table 1.

The interval on h̄-axis for which the h̄-curve becomes parallel to the h̄-axis is recognized as the set of admissible
values of h̄ f and h̄θ for which the solution series converges. For this purpose the h̄-curves are plotted for 10th-order
of approximations in Figs. 2 and 3 using β = 0.2, ξ = 1, JT = 1, Ha = 0.2, ε = 0.3, N = 0.7, Pr = 0.72, γ = 0.5,
n = 0.5, S = 0.3. These figures show that the ranges for the acceptable values of h̄ f and h̄θ are −0.20 ≤ h̄ f ≤ −0.17
and −0.15 ≤ h̄θ ≤ −0.4. Obviously from the h̄-curves for this problem, we obtained the approximate optimal values
of h̄ f and h̄θ at 10th order of approximation as −0.16920296515000335 and −0.2728946683726691 respectively. At
these optimal values, f ′′(0) = −0.4699738574392338 and θ ′(0) = −0.39372718040951327.

5. Results and discussion

In order to analyze the approximate solutions, computation has been carried out using the method described in the
previous section for various values of temperature dependent plastic dynamic variable viscosity parameter (ξ), non-
Newtonian Casson parameter (β), local modified Grashof related parameter (JT ), temperature dependent variable
thermal conductivity parameter (ε), thermal radiation parameter (N ), Prandtl number (Pr ), space dependent internal
heat source parameter (γ ) and intensity of internal heat generation parameter on space (n). For graphical illustrations
of the results, see Figs. 4–19. Fig. 4 illustrates the velocity profiles for different values of temperature dependent
plastic dynamic viscosity parameter (ξ) when the magnitude of magnetic field is high (i.e. Ha = 1.2) and in the
presence of suction (i.e. S = 0.3). It is observed that when Casson fluid is treated as fluid with constant plastic
dynamic viscosity throughout the boundary layer, the velocity is found to be very small in quantity throughout the
boundary layer compared to when treated as variable plastic dynamic viscosity. This figure demonstrates the effect
of increasing ξ (i.e. to increase the resulting temperature of (Tw − T∞) at constant value of b which makes the bond
between Casson fluids to become weaker and drastically decreases the strength of plastic dynamic viscosity). This
effect eventually increases the transport phenomena across the momentum boundary layer. In Fig. 5, variations of
temperature field θ(η) against η for several values of (ξ) using Pr = 0.72, γ = 4 and n = 0.5 are shown. The figure
depicts the strong effect of the intensity of internal heat generation across the space. It is observed that the temperature
decreases as η → 8. Increase in the magnitude of temperature dependent plastic dynamic viscosity parameter leads
to decrease in thermal boundary layer thickness, which results in decrease of temperature profile θ(η). As the fluid
temperature increases (i.e. ξ increases), it tries to expand, since the fluid is incompressible, the pressure decreases
as its molecules become weak. Hence the fluid consumed all the temperature; this may account for decrease in the
temperature. Decrease in temperature profiles across the thermal boundary layer means a decrease in the velocity
of the Casson fluid. As a matter of fact, in this case, the fluid particles undergo two opposite forces which are: (i)
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one force increases the fluid velocity due to decrease in the fluid viscosity with increase in the values of ξ , (ii) the
second force decreases the fluid velocity due to decrease in temperature; since θ(η) decreases with increasing ξ . Very
near the vertical surface, as the temperature θ(η) is high, the first force dominates and far away from the surface, the
temperature θ(η) is low; this implies that the second force dominates in that region. Fig. 6 represents the velocity
profiles for the variation of magnetic field parameter Ha when ξ = 1. The velocity decreases significantly throughout
the fluid domain.

Fig. 2. The h̄ f -curve of f ′′(0) obtained at 10th-order approximation. Fig. 3. The h̄θ -curve of θ ′(0) obtained 10th-order approximation.

Fig. 4. Effect of temperature dependent variable plastic dynamic
viscosity parameter over velocity profiles.

Fig. 5. Effect of temperature dependent variable plastic dynamic
viscosity parameter over temperature profiles.

Fig. 6. Effect of magnetic field parameter over velocity profiles. Fig. 7. Effect of magnetic field parameter over temperature
profiles.



I.L. Animasaun et al. / Journal of the Nigerian Mathematical Society 35 (2016) 1–17 13

Fig. 8. Effect of thermal radiation parameter over velocity profiles. Fig. 9. Effect of thermal radiation parameter over temperature profiles.

Fig. 10. Effect of Prandtl number over velocity profiles. Fig. 11. Effect of Prandtl number over temperature profiles.

Fig. 12. Effect of space dependent internal heat source parameter
over temperature profiles.

Fig. 13. Effect of space dependent internal heat source parameter
over temperature profiles.
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Fig. 14. Effect of suction parameter over temperature profiles. Fig. 15. Effect of suction parameter over temperature profiles.

Fig. 16. Effect of Casson fluid parameter over velocity profiles. Fig. 17. Effect of Casson fluid parameter over temperature profiles.

Fig. 18. Skin friction coefficient f ′′(0) against temperature
dependent variable fluid viscosity parameter ξ at various
values of Ha and γ .

Fig. 19. Heat transfer coefficient −θ ′(0) against temperature
dependent variable fluid viscosity parameter ξ at various
values of Ha and γ .
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Application of a magnetic field to an electrically conducting Casson fluid produces a kind of drag-like force called
Lorentz force. This force causes reduction in the fluid velocity within boundary layer. It is observed that as Ha
increases, the temperature distribution increases. The effect of Lorentz force on velocity profiles generated a kind
of friction on the flow; this friction in turn generated more heat energy which eventually increases the temperature
distribution in the flow (see Fig. 7). Effect of radiation parameter N on the momentum boundary layer and thermal
boundary layer is shown in Figs. 8 and 9 respectively using ξ = 1, Pr = 0.72, γ = 0.5 and n = 0.5. For different
values of the radiation parameter N , it is noticed that an increase in the radiation parameter results in a decrease in the
velocity and temperature within the boundary layer. The effect of radiation parameter N is to reduce the temperature
significantly in the flow region. The increase in radiation parameter means the release (i.e. channel to loss) heat energy
from the flow region and so the fluid temperature decreases as the thermal boundary layer thickness becomes thinner.
Salem and Fathy [37] reported similar trend of velocity and temperature profiles in their study on effect of thermal
radiation on MHD convective heat transfer adjacent to a vertical continuously stretching sheet in the presence of
variable viscosity. The reason for this trend can be further explained as follows: the effect of radiation is to decrease
the rate of energy transport to the fluid, thereby decreasing the temperature of the fluid. From these figures, we also
observe that the effect of radiation becomes more significant as N → 0 (N ≠ 0) and can be neglected when N → ∞.
In addition, radiation demonstrates a more pronounced influence on the velocity and the temperature distributions for
a fluid with a small Pr (Pr < 1, gases) than for one with a large Pr (Pr > 1, liquids). Fig. 10 depicts effect of Prandtl
number over velocity profiles. As the magnitude of Pr increases, velocity profiles decrease significantly. At a fixed
value of specific heat capacity Cp and thermal conductivity κ , increase in the value of Prandtl number Pr =

Cpµ
κ

simply implies, increase in the magnitude of fluid viscosity.
When the value of fluid viscosity is high this corresponds to fluid with low velocity. In Fig. 11, it is observed

that an increase in Prandtl number results in decrease of temperature and thermal boundary layer thickness and in
general lower average temperature within the boundary layer. The reason is that smaller values of Pr are equivalent
to increasing the thermal conductivities, and therefore heat is able to diffuse away from the heated plate more rapidly
than for higher values of Pr . Figs. 12 and 13 exhibit velocity profiles for different values of exponentially decaying
internal heat generation parameter when ξ = 5 and β = 0.2. The velocity profile and temperature profile increase as
γ ranges within 2 ≤ γ ≤ 5. Fig. 14 presents the effect of suction on fluid velocity when the temperature dependent
fluid viscosity is uniform (i.e. ξ = 5), with increase in the magnitude suction parameter when N = 0.1, Pr = 0.72,
the velocity is found to decrease (i.e. suction causes decrease of the fluid velocity in the momentum boundary layer
region). The physical explanation for such a behavior is as follows: (i) In case of suction, the heated fluid is pushed
towards the wall where the buoyancy forces can act to retard the fluid due to high influence of the viscosity, (ii) this
effect acts to decrease the wall shear stress and (iii) local Skin friction decreases. Fig. 15 exhibits the temperature θ(η)
with the increasing suction parameter S. The thermal boundary layer thickness decreases with an increase in the value
of suction parameter; this causes an increase in the rate of heat and mass transfer. The explanation for such behavior is
that the fluid is brought closer to the surface and reduces the thermal boundary layer thickness in case of suction. As
such, then the presence of wall suction decreases velocity boundary layer thickness. Figs. 16 and 17 depict the effect
of non-Newtonian Casson fluid parameter over velocity and temperature profiles.

Casson fluid is treated as fluid with variable plastic dynamic viscosity (i.e. ξ = 5) with strong effect of yield stress
Py , the velocity increases near the wall (0 ≤ η ≤ 7.2) and negligibly decreases far from the vertical heated wall when
β increases within 0.2 ≤ β ≤ 0.3. It is further observed that, as the nature of the fluid is tending towards the nature of
Newtonian fluid (i.e. β → ∞), the velocity increases greatly within a layer of fluids near the vertical wall. The result
is obvious for this case when ξ = 5 means temperature has been injected into the non-Newtonian fluid. More heat is
injected into the fluid layers since temperature of the exponentially stretching surface θ(η = 0) = 1 and, hence the
intermolecular forces within plastic dynamic viscosity is broken greatly near the wall (η = 0) where the heat can be
felt. This account for increase in the velocity profiles near the wall and decrease in temperature profiles. Figs. 18 and
19 exhibit the nature of skin-friction coefficient f ′′(0) and heat transfer coefficient −θ ′(0)with temperature dependent
variable fluid viscosity parameter ξ for two values of magnetic field parameter (Ha = 0.1, 0.4) and also for two values
of space dependent internal heat source parameter (γ = 0.5, 4) respectively. It is found that skin-friction coefficient
f ′′(0) increases with increase in ξ and decreases with increase in Ha . It is further observed that f ′′(0) increases
with increase in ξ and also increases with increase in γ . In Fig. 19, heat transfer coefficient −θ ′(0) increases with
increase in ξ and decreases with increase in Ha . In the same figure, heat transfer coefficient increases with increase
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Table 2
Variation of f ′′(0) and −θ ′(0) at 10th-order approximation when ξ =

ε = γ = 0, β = 0.2, JT = 1, N = 0.1, Pr = 0.72, S = 0.3 and
Ha = varies.

Ha f ′′(0) −θ ′(0)

0.4 −0.608590715730847 0.169675636346164
0.6 −0.636817665101602 0.165530795062700
0.8 −0.663735097058842 0.161849230188970

in ξ and decreases with increase in γ . When Casson fluid is treated as fluid with constant thermo-physical property
in the absence of exponentially heat source as shown in Table 2, it is observed that f ′′(0) which is related to skin
friction coefficient decreases significantly while −θ(0) which is related to local heat transfer decreases negligible
as magnitude of Ha increases. The significant decrease in the corresponding value of f ′′(0) can be traced to the
retardation of velocity profiles owing to increase in Lorentz force with an increase in magnetic field parameter.

6. Concluding remarks

Laminar free convective MHD boundary layer flow of non-Newtonian Casson fluid flow over an exponentially
stretching surface embedded in a thermally stratified medium has been studied. An approximate solution (HAM)
approach was utilized to study the effect of all the controlling parameters on the flow’s velocity and temperature
profiles in the boundary layer. The results reveal that:

• An increase in the variable plastic dynamic viscosity parameter of Casson fluid corresponds to an increase in the
velocity profiles and a decrease in temperature throughout the boundary layer.

• Based on the results of the present study, it can be concluded that the effect of Casson fluid parameter when treated
as fluid with variable plastic dynamic viscosity, the velocity profile increases, temperature distribution decreases.

• Variation of exponentially decaying heat source parameter shows significant effect on the thickness of the boundary
layer profiles (i.e. velocity and temperature).

• The magnetic field reduces the heat transfer rate, though it causes the increment in the temperature inside the
boundary layer.
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