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The inverse scattering problem for the wave equation �2
t u=c(x, y)2 2x, yu is

considered in Rn
x_R1

y , n�2. The sound speed of the background medium, c0( y),
takes different constant values on [ y>0] and [ y<0]. The exponentially decreasing
perturbation c(x, y)&c0( y) is uniquely reconstructed from the scattering matrix of
an arbitrarily fixed energy. � 1997 Academic Press

1. INTRODUCTION

In many wave propagation problems of classical physics, one encounters
layered media. The seismic wave propagates inside the earth through the
layered structure and in acoustic problems in fluids such as atmosphere or
oceans, the media often have a stratified form. Many works have been
devoted to the spectral and forward scattering problems for the stratified
media (see, e.g., Wilcox [22], Dermenjian and Guillot [2], Weder [21],
Kikuchi and Tamura [14], and Shimizu [19]). A complete set of
generalized eigenfunctions are constructed, the wave operators are defined
and are shown to be asymptotically complete, and the scattering matrices
are proved to be unitary. Little is known, however, about the inverse
problem, in spite of its great importance. The construction of the pertur-
bation from the scattering matrix is one of the main themes of the
study of the wave propagation problem and it certainly has considerable
significance in practical applications.

In the present paper we shall pick up the simplest and the most
fundamental case of the wave equation in a stratified medium. Namely, we
study the equations

(���t)2 u=c0( y)2 2x, y u, (���t)2 u=c(x, y)2 2x, yu, (1.1)
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in Rn+1, n�2, where 2x, y=�n
i=1 (���xi)

2+(���y)2. Here and henceforth,
x=(x1 , ..., xn) # Rn, y # R1. Let us assume that

(A-1) c0( y)=c\ for \y>0, where c\ are constants such that
0<c&<c+.

(A-2) inf c(x, y)>0.

(A-3) There exist constants C, $0>0 such that

|c(x, y)&c0( y)|�Ce&$0( |x|+| y| ).

Note that no regularity is assumed on the perturbation c(x, y)&c0( y).
In particular, it is allowed to be piecewise continuous.

As mentioned above, with this problem one can associate a family of
unitary scattering matrices [S� (E ) ; E>0], E being an energy parameter.
The precise definition of S� (E ) is given in Section 2. Our aim is to show the
following theorem.

Theorem 1.1. Under the assumptions (A.1)�(A.3), the perturbation
c(x, y)&c0( y) is uniquely reconstructed from the scattering matrix of an
arbitrarily fixed energy E>0.

For example, let us consider the wave propagation in the atmosphere
under the following situation: The atmosphere has an interface 1, above
and below which the sound speed takes different constant values. Then
1 is uniquely reconstructed from the scattering matrix of an arbitrarily
fixed energy provided 1 coincides with the plane [y=0] outside a bounded
set.

Despite their appearance, the equations (1.1) require a rather involved
analysis. In order to deal with the above problem in a Hilbert space
L2(Rn+1 ; dx dy), we employ the unitary transformations U0 f (x, y)=
c0( y) f (x, y), Uf (x, y)=c(x, y) f (x, y), by which &c0( y)2 2x, y and
&c(x, y)2 2x, y are transformed into

H0=&c0( y) 2x, yc0( y), (1.2)

H=&c(x, y) 2x, yc(x, y). (1.3)

Next we note that with the aid of the invariance principle, studying the
scattering matrix for the wave equations (1.1) is equivalent to doing so for
the Schro� dinger equations

i�u��t=H0u, i �u��t=Hu. (1.4)

(See, e.g., Reed and Simon [17]).
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Our basic strategy is to accommodate the Faddeev theory of inverse
scattering [4] developed for Schro� dinger operators to (1.4). We follow
mainly our previous work [11, 12], in which the theory of Faddeev and
the Green operator of Eskin and Ralston [3] were reformulated in terms
of pseudo-differential calculus. In our case (1.4), the coefficient c0( y) has a
singularity at the interface [ y=0], which makes it difficult to use the
pseudo-differential calculus directly. We shall replace it in this paper by the
calculus of commutators, which was developed in the study of N-body
Schro� dinger operators [6, 9, 10]. The basic observation is very simple. Let

A=
1
2i

(x } {x+ y�y+{x } x+�yy). (1.5)

Then [A, c0( y)]=0; hence

i[H0 , A]=2H0 . (1.6)

This simple relation enables us to transfer the results proved for N-body
Schro� dinger operators to our operators H0 and H. In particular, one can
introduce the radiation condition for H0 in terms of B=X&1�2AX&1�2,
X=(1+|x|2+ y2)1�2, which in turn is essential in studying the crucial tool
of the direction dependent Green operator for H0 .

In Section 2, we represent the scattering matrix using the spectral
representation of H0 . In Section 3, we summarize various facts on the
resolvent of H0 and the direction-dependent Green operator, leaving
the proof until Sections 6 and 7. In Section 4, we construct the Faddeev
scattering amplitude and the perturbation is reconstructed from this in
Section 5.

The commutator calculus has now turned out to be one of the most
powerful tools in the study of spectral and scattering theory in mathemati-
cal physics. It is therefore very plausible that the commutator method also
has a wide range of applicability in the inverse scattering problem. We shall
return to this subject elsewhere.

Let us also remark that by the terminology inverse scattering, we restrict
ourselves in this paper to the reconstruction of the perturbations from the
scattering matrices. There are of course many different formulations of
inverse scattering, some of which can be seen in [1, 7, 18, 20].

We finally mention some notations used in this paper. C\=
[z # C ; \Im z>0]. For `=(`1 , ..., `n) # Cn, `2=�n

j=1 `2
j . For x # Rn, let

(x)=(1+|x| 2)1�2. For two Banach spaces X and Y, B(X ; Y ) is the set of
all bounded operators from X to Y, B(X )=B(X ; X ). Cs denote various
constants. F( } } } ) denote the characteristic function of the set [ } } } ]. For
example, F(t>0) is the Heaviside function. For a linear operator A, _p(A)
denotes the set of the eigenvalues of A.
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2. PRELIMINARIES

2.1. Spectral Properties of H

Let H be as in (1.3). By the assumptions (A-1)�(A-3), it is self-adjoint
with the domain

D(H )=[u ; c(x, y) u # H2(Rn+1)], (2.1)

where Hm(Rn+1) denotes the Sobolev space of order m. For s # R, the
weighted Hilbert space L2, s is defined by

u # L2, s � &u&s=&(1+|x|+| y| )s u(x, y)&L2(Rn+1)<�. (2.2)

The following theorem was proved by Weder [21, p. 40, p. 59]. Let
R(z)=(H&z)&1.

Theorem 2.1. H has no eigenvalues. For any E>0 and s>1�2, the norm
limit

R(E\i0)=lim
= a 0

R(E\i=)

exists in B(L2, s ; L2, &s).

2.2. Spectral Representation for H0

We recall the spectral representation for H0 defined by (1.2). For the
details see [22] or [2]. The generalized eigenfunctions for H0 are given by

.j (x, y, E, !)=(2?)&n�2 eix } !c0( y)&1 aj (E, !) �j ( y, E, !), 1� j�3, (2.3)

where E>0, ! # Rn, and �j is a solution to the equation

\&\ d
dy+

2

&Ec0( y)&2+!2+ �j ( y, E, !)=0.

Explicitly, they have the following expressions. Let

%\=%\(E, !)=E�c2
\&!2. (2.4)

If !2<E�c2
+ or E�c2

&<!2,

.1(x, y, E, !)=0.
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If E�c2
+<!2<E�c2

& ,

a1(E, !)=%1�4
& (?E(c2

+&c2
&))&1�2 c+c& ,

�1( y, E, !)

={e&(&%+)1�2 y,
1
2 (1+i(&%+ �%&)1�2) ei%&

1�2y+ 1
2 (1&i(&%+ �%&)1�2) e&i%&

1�2y,
y>0,
y<0.

If E�c2
+<!2,

.j (x, y, E, !)=0, j=2, 3.

If !2<E�c2
+,

a2(E, !)=?&1�2%1�4
+ (%1�2

+ +%1�2
& )&1,

a3(E, !)=?&1�2%1�4
& (%1�2

+ +%1�2
& )&1,

�2( y, E, !)

={e&i%&
1�2y,

1
2 (1&(%& �%+)1�2) ei%+

1�2y+ 1
2 (1+(%& �%+)1�2) e&i%+

1�2y,
y<0,
y>0,

�3( y, E, !)

={ei%+
1�2y,

1
2 (1+(%+ �%&)1�2) ei%&

1�2y+ 1
2 (1&(%+ �%&)1�2) e&i%&

1�2y,
y>0,
y<0.

Using these generalized eigenfunctions, we can obtain the following
spectral representation for H0 . Let

80=(.1 , .2 , .3), 80*= t(.1, .2, .3).

Define the auxiliary Hilbert space by

H(E )= t(L2(01(E )), L2(02(E )), L2(03(E ))),

01(E )=[! ; E�c2
+<!2<E�c2

&], (2.5)

02(E )=03(E )=[! ; !2<E�c2
+].

We define the operator F0(E) by

(F0(E ) f )(!)=|
Rn+1

80*(x, y, E, !) f (x, y) dx dy. (2.6)
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Then for any E>0 and s>1�2,

F0(E)=B(L2, s ; H(E)).

F0(E )* # B(H(E ) ; L2, &s) is an eigenoperator of H0 in the sense that

(H0&E ) F0(E)*=0.

Moreover it satisfies

1
2?i

(R0(E+i0)&R0(E&i0))=F0(E )* F0(E). (2.7)

Here R0(z)=(H0&z)&1. We also introduce

H= t(L2(01), L2(02), L2(03)),

01=[(E, !) ; E�c2
+<!2<E�c2

&],

02=03=[(E, !) ; !2<E�c2
+].

It has a direct integral representation

H=|
�

(0, �)
H(E ) dE,

and for g # H,

|| | g(E, !)| 2 d! dE=|
�

0
&g(E, } )&2

H(E) dE.

We define (F0 f )(E, !)=(F0(E ) f )(!) for f # L2, s, s>1�2. Then F0 is
uniquely extended to a unitary operator from L2(Rn+1) to H. It
diagonalizes H0 :

(F0H0 f )(E, !)=E(F0 f )(E, !).

2.3. Scattering Matrix
The wave operators are define by

W\=s-lim
t � \�

eitHe&itH0.

Let S=W*+W& be the scattering operator. We define

S� =F0SF0* .
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Then it has the direct integral representation

S� =|
�

(0, �)
S� (E) dE.

More precisely, for any E>0 there exists a unitary operator S� (E) on
H(E ) such that

(S� f )(E, !)=(S� (E ) f (E, } ))(!), \f # H.

The unitary operator S� (E ) is called the scattering matrix and has the
following representation.

Lemma 2.2.

S� (E )&I= &2?iEF0(E )(Q&EQ� R(E+i0)Q� ) F0(E )*,

Q=1&\c0

c +
2

, Q� =
c
c0

&
c0

c
.

Proof. Since c0 �c&1 is H0 -compact, we have

W\ =s-lim
t � \�

eitH c0

c
e&itH0

=
c0

c
+i |

\�

0
eitHQ� H0e&itH0 dt.

Using this formula, one can argue in the same way as in [8, Lemma 3.1]
to get

S� (E )&I=&2?iF0(E )
c0

c
Q� F0(E )*

+2?iF0(E ) H0 Q� R(E+i0) Q� H0 F0(E )*.

Since H0F0(E )*=EF0(E )*, we obtain the lemma. K

3. GREEN OPERATORS

In this section, we summarize fundamental properties of the resolvent of
H0 and introduce the direction dependent Green operator. Most of the
proofs are given in Sections 6 and 7.
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3.1. Resolvent of H0

We first introduce some notations. Let px=&i{x , py=&i���y, and
X=(1+|x|2+| y| 2)1�2. Let B be the self-adjoint operator defined by

B= 1
2 X&1�2(x } px+ px } x+ y } py+ py } y)X&1�2. (3.1)

For m # R, Fm denotes the set of C�-functions f (t) on R satisfying

| f (k)(t)|�Ck(1+|t| )m&k, \k�0.

For a, m # R, Fm
\(a) are the subsets of Fm such that

Fm
+(a)=[ f # Fm ; supp f/(a, �)],

Fm
&(a)=[ f # Fm ; supp f/(&�, a)].

Let R0(z)=(H0&z)&1. The following theorem will be proved in Section 6.

Theorem 3.1. (1) For any E>0 and s>1�2,

R0(E\i0) # B(L2, s ; L2, &s).

(2) Let C0(E )=- E�c+. Then for any m> &1�2, t>1 and F � #
F0

�(\C0(E)),

F �(B) R0(E\i0) # B(L2, m+t ; L2, m).

(3) Let 0<:<1�2<s<1 and E>0. Let u # L2, &s satisfy c0( y)u #
H 2

loc(R
n+1) and H0 u=Eu. Suppose there exists an =>0 such that

F(B) u # L2, &: either for any F # F0
&(=) or for any F # F0

+(&=). Then u=0.

By the above theorem, one can see that when u # L2, &s (s>1�2) satisfies

(H0&E ) u= f # L2, s,

u is written as u=R0(E+i0) f if and only if there exist =>0 and
0<:<1�2 such that

(C )out F&(B) u # L2, &:, \F& # F0
&(=),

and u is written as u=R0(E&i0)f if and only if

(C )in F+(B) u # L2, &:, \F+ # F0
+(&=),
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for some =>0 and 0<:<1�2. Therefore, (C )out should be called the out-
going radiation condition and (C )in the incoming radiation condition. We
shall also use the terminology outgoing (incoming) solution, the meaning
of which is evident.

3.2. Direction Dependent Green Operator

For ` # Cn, let

H0(`)=c0( y)(( px+`)2+ p2
y) c0( y), (3.2)

L0(`)=( px+`)2+ p2
y&V( y), (3.3)

V( y)=Ec0( y)&2. (3.4)

We then have formally

(H0(`)&E )&1=c&1
0 L0(`)&1 c&1

0 .

We fix an arbitrary direction # # Sn&1 and construct L0(z#)&1 for z # C+ .
For =>0 let

D==[z # C+; |Re z|<=�2]. (3.5)

Let .1(t) # C�(R) be such that .1(t)=1 for |t|>2=, .1(t)=0 for |t|<=.
Let

V#, 0(E, z)=(Fx � !)&1 ((!+z#)2+ p2
y&V( y))&1 .1(# } !) Fx � ! , (3.6)

where Fx � ! denotes the Fourier transformation

Fx � ! f =(2?)&n�2 |
Rn

e&ix } !f (x) dx.

Since |Im(!+z#)2 | = |2i Im z(# } !+Re z)| � = Im z, V#, 0(E, z) is a
B(L2(Rn+1))-valued analytic function on D= .

For =1>0, let

0(\)
=1

=C\ _ [z ; |Im(z+E�c2
+)| 2�=1 Re(z+E�c2

+)]. (3.7)

For s # R, let

Hs=[u ; es( |x|+| y| )u # L2(Rn+1)].

Without loss of generality, we take #=(1, 0, ..., 0) and let x=(x1 , x$). We
define H$s similarly to above on Rn&1

x$ _R1
y . Then for any $>0, there
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exists =1>0 such that ( p2
x$+ p2

y&V( y)&z)&1 defined for z # C\ has an
analytic continuation on 0(\)

=1
as a B(H$$ ; H$&$)-valued function (see

Theorem 7.5), which we denote by R$\(z).
Let .0(t)=1&.1(t) and

W#, 0(E, z)=(Fx1 � !1
)&1 [R$+(&(!1+z)2) F(!1<0) .0(!1)

+R$&(&(!1+z)2) F(!1>0) .0(!1)] Fx1 � !1
, (3.8)

where Fx1 � !1
denotes the partial Fourier transformation with respect to x1 .

Here we recall that F( } } } ) denotes the characteristic function of the set
[ } } } ]. For small =>0, &(!1+z)2 # 0 (\)

=1
if !1 # supp .0 , z # D= . Therefore

W#, 0(E, z) is analytic on D= as a B(H$ ; H&$)-valued function.
We finally define

U#, 0(E, z)=V#, 0(E, z)+W#, 0(E, z). (3.9)

We need to prepare some more notations. For t # R, let

M (\)
# (t)=(Fx � !)&1 F(\# } (!&t#)�0) Fx � ! . (3.10)

We also let x$=x&(# } x) #, X$=(1+|x$| 2+ y2)1�2 and

B$= 1
2X$&1�2(x$ } px$+ px$ } x$+ y } py+ py } y) X$&1�2. (3.11)

For s # R, L2, s
= is defined by

u # L2, s
= � &u&s, ==&(1+|x$|+| y| )s u(x, y)&L2(Rn+1)<�.

We prove the following theorem in Section 7.

Theorem 3.2. (1) For any $>0, there exists =>0 such that as a
B(H$ ; H&$)-valued function, U#, 0(E, z) is analytic on D= and for s>1�2,
there exists a constant C>0 such that

&U#, 0(E, i{)& B(L2, s ; L2, &s)�C�{ if {>1.

(2) Let I==(&=�2, =�2). As z � t # I= , U#, 0(E, z) converges in
B(H$ ; H&$). Hence so does V#, 0(E, z). Let V#, 0(E, t)=limz � t V#, 0(E, z).
Actually V#, 0(E, z) converges to V#, 0(E, t) in B(L2, s ; L2, &s) and

V#, 0(E, t) # B(L2, s ; L2, &s), s>1�2, t # I= .

(3) For t # I= , W#, 0(E, t) # B(L2, s
= ; L2, &s

= ), s>1�2.
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(4) Let

G1(E, t)=c&1
0 eitx } #V#, 0(E, t) e&itx } #c&1

0 , (3.12)

G0(E, t)=c&1
0 eitx } #W#, 0(E, t) e&itx } #c&1

0 , (3.13)

R#, 0(E, t)=G1(E, t)+G0(E, t). (3.14)

Then we have

(H0E) G1(E, t)=.1(# } px&t),

(H0&E) G0(E, t)=.0(# } px&t),

(H0&E )R#, 0(E, t)=I.

(5) For any m>&1�2 and s>1, we have

F\(B) M (\)
# (t) G1 ( E, t) # B(L2, m+s ; L2, m),

\F\ # F0
\(�C0(E )), (3.15)

F\(B$) M (\)
# (t) G0(E, t) # B(L2, m+s

= ; L2, m
= ),

\F\ # F0
\(�C=(E )), (3.16)

where C0(E)=- E�c+ , C=(E)=(E�c2
+&=2�4)1�2.

3.3. Perturbed Green Operator

We construct an operator satisfying

(( px+z#)2+ p2
y&Ec(x, y)&2) U# (E, z)=I.

It should satisfy the equation

(1&EU#, 0(E, z)(c&2&c&2
0 )) U# (E, z)=U#, 0(E, z).

In view of (A-3), we choose $=$0 �2, accordingly taking = small enough so
that U#, 0(E, z)(c&2&c&2

0 ) is a bounded operator on H&$ .

Definition 3.3 (Exceptional Points). E# (E) is the set of z # D= such
that 1 # _p(EU#, 0(E, z)(c&2&c&2

0 )).

Lemma 3.4. E# (E ) & C+ is discrete and E# (E ) & R is a closed set of
measure 0.
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Proof. As an operator on H&$ , U#, 0(E, z)(c&2&c&2
0 ) is compact and

analytic. Moreover by Theorem 3.2 (1) for {>1

&U#, 0(E, i{)(c&2&c&2
0 )& B(H &$)�C�{.

The lemma then follows from the analytic Fredholm theorem. K

We define for z # D� ="E# (E ),

U# (E, z)=(1&EU#, 0(E, z)(c&2&c&2
0 ))&1 U#, 0(E, z). (3.17)

The following theorem is a direct consequence of Theorem 3.2 and (3.17).

Theorem 3.5. (1) As a B(H$ ; H&$)-valued function, U# (E, z) is
analytic on D="E# (E ), continuous on D� ="E# (E ).

(2) There exists a constant C>0 such that

&U# (E, i{)&B(H$ ; H &$)�C�{

for {>1.

(3) For t # I="E# (E), let

R# (E, t)=c&1eitx } #U# (E, t) e&itx } #c&1. (3.18)

Then it satisfies

(H&E )R# (E, t)=I.

(4) (Resolvent Equations) Let W=c0 �c. Then

R# (E, t)=WR#, 0(E, t) W+EWR#, 0(E, t)(W&W &1)R# (E, t).

4. FADDEEV THEORY

R#, 0(E, t) introduced in (3.14) has the half-outgoing and half-incoming
property, which is seen in the following formal formula:

R#, 0(E, t)=R0(E&i0) M (+)
# (t)+R0(E+i0) M (&)

# (t). (4.1)

Let us give the precise meaning to (4.1). We take /(t) # C�(R) such that
/(t)=1 for |t|>2, /(t)=0 for |t|<1, and let for small $>0

K$=(Fx � !)&1 /(# } (!&t#)�$) Fx � ! . (4.2)
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Theorem 4.1. For f # L2, s, s>1�2, we have in L2, &s

R#, 0(E, t) f= lim
$ � 0

(R0(E&i0) M (+)
# (t)+R0(E+i0) M (&)

# (t))K$ f.

Proof. We take #=(1, 0, ..., 0) and let x=(x1 , x$). Letting K$
t

=1&K$ ,
we have for small $>0

R#, 0(E, t) K$
t

=G0(E, t) K$
t

.

Therefore by Theorem 3.2 (3) for f # L2, s

&X$&sR#, 0(E, t)K$
t

f &�C &X$sK$
t

f &,

which shows that as $ � 0

R#, 0(E, t) K$
t

f � 0 in L2, &s.

By the same reasoning we have

(R0(E&i0) M (+)
# (t)+R0(E+i0) M (&)

# (t)) K$
t

f � 0 in L2, &s.

Therefore we have only to show that for small $>0

R#, 0(E, t)K$=(R0(E&i0) M (+)
# (t)+R0(E+i0) M (&)

# (t))K$ . (4.3)

This is proved if we show that

M (\)
# (t)R#, 0(E, t)K$=M (\)

# (t)R0(E�i0)K$ .

Let u=M (&)
# (t) G1(E, t)K$ f. Then by Theorem 3.2 (4) and (5), u is the

outgoing solution of

(H0&E )u=M (&)
# (t) .1( px1

&t)K$ f.

Therefore by Theorem 3.1

M (&)
# (t) G1(E, t)K$=R0(E+i0) M (&)

# (t) .1( px1
&t)K$ . (4.4)

We next let v=M (&)
# (t) c0G0(E, t) c0K$ g with c0 g= f, and let w=

Fx1 � !1
v. Then by virtue of Theorem 3.2 (5), w is the outgoing solution of

the equation

( p2
y&V( y)+ p2

x$+!2
1)w=Fx1 � !1

M (&)
# (t) .0( px1

&t)K$g.
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Therefore in view of Theorems 7.1�7.3 in Section 7, we have

w=( p2
y&V( y)+ p2

x$+!2
1&i0)&1 Fx1 � !1

M (&)
# (t) .0( px1

&t) K$g.

Multiplying by (Fx1 � !1
)&1, we see that v is the outgoing solution of the

equation

L0(0) v=M (&)
# (t) .0( px1

&t) K$g.

This implies that M (&)
# (t) G0(E, t) K$ f is the outgoing solution of the

equation

(H0&E ) u=M (&)
# (t) .0( px1

&t) K$ f.

Therefore we have

M AAAF&)
# (t) G0(Et) K$=R0(E+i0) M (&)

# (t) .0( pAAHx1
&t)K$ .(4.5)

The formulas (3.14), (4.4), and (4.5) imply tAAt

M (&)
# (t)R#, 0(E, t) K$=R0(E+i0) M (&)

# (t)K$ .

In theAAame way one can show that

M (+)
# (t)R#, 0(E, t) K$=R0(E&i0) M (+)

# (t)K$ . K

Let

T# (E )=2?iF0(E )* F(# } (!&t#)�0) F0(E ). (4.6)

The following formula follows directly from Theorem 4.1 and (2.7).

Lemma 4.2.

R#, 0(E, t)=R0(E+i0)&T# (E ).

Lemma 4.3. Let W=c0( y)�c(x, y). Then we have

R#=R&(W+ER(W&W &1)) T# (W+E(W&W &1)R#), (4.7)

where we have used the abbreviation R#=R# (E, t), R=R(E+i0),
T#=T# (E ).
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Proof. Using the resolvent equations,

R=WR0W+ER(W&W&1)R0W,

R#=WR#, 0W+EWR# , 0 (W&W &1)R# ,

we have

&(W+ER(W&W&1)) T# (W+E(W&W&1)R#)

=(W+ER(W&W&1))R#, 0(W+E(W&W &1)R#)

&(W+ER(W&W&1))R0(W+E(W&W&1)R#)

=(1+E(1&W&2))R#&R(1+E(1&W&2)R#)

=R#&R,

which proves the lemma. K

Let us define the operators in B(L2, s ; H(E)), s>1�2, by

F (E )=F0(E )(W+E(W&W &1) R(E+i0)*), (4.8)

F# (E, t)=F0(E )(W+E(W&W &1) R# (E, t)*). (4.9)

They are eigenoperators of H in the sense that

(H&E ) F (E )*=0, (H&E ) F# (E, t)*=0.

We define the physical scattering amplitude A(E ) and the Faddeev scat-
tering amplitude A# (E, t) by

A(E )=F0(E )(W&1&W ) F (E)*, (4.10)

A# (E, t)=F0(E )(W &1&W ) F# (E, t)*. (4.11)

By Lemma 2.2, we have

S� (E )=1&2?iEA(E).

Let

F#=F(# } (!&t#)�0). (4.12)
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Theorem 4.4.

F# (E, t)*=F (E )*+2?iEF (E )* F#A# (E, t), (4.13)

A# (E, t)=A(E)+2?iEA(E ) F#A# (E, t). (4.14)

Proof. By using Lemma 4.3, we have

F# (E, t)*=WF0(E )*+ER# (W&W&1) F0(E )*

=F (E )*&E(W+ER(W&W&1)) T# (W&W&1) F# (E, t)*.

Using the definition of T# , we get (4.13). By multiplying (4.13) by
F0(E )(W&W&1), we get (4.14). K

Theorem 4.5. Let K=2?iEA(E) F# . Then

t # E# (E ) � 1 # _p(K ).

Proof. One can easily check that

t # E# (E ) � 1 # _p(EWR#, 0(W&W&1)).

Letting K� =2?iEF (E )* F#F0(E )(W&1&W ), we have

1&EWR#, 0(W&W&1)=(1&EWR0(W&W&1))(1&K� ). (4.15)

In fact, by the resolvent equation and (4.8) we have

F (E )*=(W&1&ER0(W&W&1)) F (E )*. (4.16)

This and Lemma 4.2 imply that

(1&EWR0(W&W &1))(1&K� )

=1&EWR0(W&W &1)+EWT# (W&W&1)

=1&EWR#, 0(W&W&1).

Since E � _p(H), 1&EWR0(W&W&1) is a bijection. Therefore

1 # _p(EWR#, 0(W&W &1)) � 1 # _p(K� ).

Letting S1=F0(E)(W&1&W ), S2=2?iEF (E)* F# , we have

K=S1S2 , K� =S2S1 .
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As can be easily seen, _p(S1 S2)"[0]=_p(S2S1)"[0], which proves that

1 # _p(K� ) � 1 # _p(K ). K

By Theorem 4.5 and (4.14), for t # I="E# (E ) one can construct the
Faddeev scattering amplitude A# (E, t) from the physical scattering
amplitude:

A# (E, t)=(1&K )&1 A(E ). (4.17)

5. RECONSTRUCTION PROCEDURE

We shall prove Theorem 1.1 in this section. Suppose we are given the
scattering amplitude A(E ) for a fixed energy E>0. By virtue of (4.17), for
an arbitrary direction # # Sn&1, one can construct the Faddeev scattering
amplitude A# (E, t) for t # I= "E# (E ). This is an operator-valued 3_3 matrix,

A# (E, t)=(A ( jk)
# (E, t)),

where each A ( jk)
# (E, t) is in B(L2(0k(E )) ; L2(0j (E ))), and has the follow-

ing expression:

A (kj)
# (E, t)=Fj (E ) QFk(E)*&EFj (E) Q� R# (E, t) Q� Fk(E)*,

Q=1&\c0

c +
2

, Q� =
c
c0

&
c0

c
,

(Fj (E) f )(!)=|
Rn+1

.j (x, y, E, !) f (x, y) dx dy.

This has a continuous kernel A ( jk)
# (E, t ; !, !$), ! # 0j (E ), !$ # 0k(E ). We are

going to extend A ( jk)
# (E, t ; !, !$) meromorphically with respect to t by

restricting ! and !$ to some affine spaces. Let

*+(t)=\ E
c2

+

&t2+
1�2

,

and for |, |$ # Rn satisfying |||<1, ||$|<1, and | } #=|$ } #=0, let

B(t ; |, |$)=A (33)
# (E, t ; !(t, |), !(t, |$)),

!(t, |)=*+(t) |+t#, !(t, |$)=*+(t) |$+t#.
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By virtue of the expression of .3(x, y, E, !) and Theorem 3.5 (3), it has the
expression

B(t ; |, |$)=B1(t ; |, |$)&EB2(t ; |, |$),

B1(t ; |, |$)=| e&i*+(t)(|&|$)x 93( y, !(t, |))

_93( y, !(t, |$)) Q(x, y) c0( y)&2 dx dy,

B2(t ; |, |$)=| e&i*+(t) |x 93( y, !(t, |)) Q� (x, y) c0( y)&1 c(x, y)&1

_U# (E, t)(Q� ei*+(t) |$ } 93( } , !(t, |$)) c&1
0 c&1) dx dy,

93( y, !)=(2?)&n�2 a3(E, !) �3( y, E, !).

Since U# (E, t) has a meromorphic extension on D= by Theorem 3.5,
B(t ; |, |$) has a unique meromorphic continuation on D= by the well-
known theorem.

We reconstruct the perturbation c(x, y)&c0( y) from the asymptotic
behavior of B1(i{ ; |, |$) as { � �. We take p� =( p, pn+1) # Rn+1 with
p{0 and pn+1 {0 arbitrarily. We choose # # Sn&1, '� =(', 'n+1) # Sn such
that

p� } '� = p } #=' } #=0, 'n+1>0.

In fact, we first take # # S n&1 orthogonal to p. Then '� =c( p, &| p| 2�pn+1)
satisfies the above conditions by the suitable choice of c.

For sufficiently large {>0, let

(|, |n+1)=\1&
p� 2

4{2+
1�2

'� +
p�
2{

,

(|$, |$n+1)=\1&
p� 2

4{2+
1�2

'� &
p�
2{

.

Then we have

|='+
p
2{

+O({&2), |n+1='n+1+
pn+1

2{
+O({&2),

|$='&
p
2{

+O({&2), |$n+1='n+1&
pn+1

2{
+O({&2).
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We also have for any (|, |n+1) # Sn with |n+1>0

%+(E, !(t, |))1�2=\ E
c2

+

&!(t, |)2+
1�2

=*+(t) |n+1 ,

%&(E, !(t, |))1�2=\&t2|2
n+1+

E
c2

&

&
E

c2
+

|2+
1�2

.

Therefore as { � �,

%+(E, !(i{, |))1�2={|n+1+O({&1),

%&(E, !(i{, |))1�2={|n+1+O({&1).

We have therefore

93( y, !(i{, |))=2&1�2(2?)&(n+1)�2 ({|n+1)&1�4 ei{|n+1y+O({&5�4).

Choosing |, |$ as above we have

93( y, !(i{, |)) 93( y, !(i{, |$))

=2&1(2?)&(n+1) ({'n+1)&1�2 e&i{(|n+1&|$n+1)y+O({&3�2)

=2&1(2?)&(n+1) ({'n+1)&1�2 e&ipn+1y+O({&3�2).

Since *+(i{)(|&|$)= p+O({&1), we have

e&i*+(i{)(|&|$) } x=e&ip } x+O({&1).

We have therefore

B1(i{ ; |, |$)

t2&1(2?)&(n+1) ({'n+1)&1�2 | e&i( p } x+ pn+1y)Q(x, y) c&2
0 dx dy.

On the other hand, we have by Theorem 3.5 (2) that

{1�2B2(i{; |, |$) � 0.

This shows that the perturbation c(x, y)&c0( y) is uniquely reconstructed
from the limit of {1�2B(i{ ; |, |$) as { � �.
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6. PROPERTIES OF (H0&E�i0)&1

We shall prove Theorem 3.1 in this section. The method we use here is
the combination of the classical idea of integration by parts and the com-
mutator calculus developed in the study of N-body Schro� dinger operators.
The basic ideas have already been proposed in the papers [5, 6, 9], and
the summary of the applications to the N-body problem was presented
in [10]. We state below essential requisites to reproduce the arguments in
[5, 6, 9, 10] but sometimes omit the details.

6.1. Mourre Estimate

Let px=&i{x , py=&i���y and

A=(x } px+ ypy+ px } x+ pyy)�2. (6.1)

A is essentially self-adjoint on S=the space of rapidly decreasing func-
tions. Let Rn+1

\ =[(x, y) # Rn+1 ; \y>0]. Let D0 be the set of functions
u such that

u # H 1(Rn+1
+ ) & H 1(Rn+1

& ), x } pxu, ypy u # L2(Rn+1
+ ) & L2(Rn+1

& ).

By the cut-off argument and the standard mollifier technique, one can show
that D0 /D(A). A direct calculation shows that for u, v # D(H0) & D0

i[(Au, H0 v)&(H0 u, Av)]=2(H0u, v). (6.2)

Let E>0 and let .(t) # C �
0 (R) be such that .(t)=1 for |t&E|<$,

.(t)=0 for |t&E|>2$. Then it follows from (6.2) that for any =>0, there
exists $>0 such that

.(H0) i[H0 , A] .(H0)�2(E&=) .(H0)2. (6.3)

Let R0(z)=(H0&z)&1. Then by (6.3) and the well-known Mourre theory
[15, 16], we can show that

R0(E\i0) # B(L2, s ; L2, &s), \s>1�2. (6.4)

This is an alternative proof of Theorem 3.1 (1).

6.2. Commutator Calculus

Let X=(1+|x| 2+ y2)1�2 and

B=X&1�2AX &1�2. (6.5)
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For m # R, we let Vm be the set of smooth functions v(x, y) such that
|�:

x �;
y v|�C:, ;Xm&|:|&|;|, \:, ;. Pk, m denotes the set of differential

operators of order k with coefficients # Vm . For two operators P and A, we
define their multiple commutators by

ad0(P, A)=P,

adn(P, A)=[adn&1(P, A), A], n�1.

Straightforward manipulations show the following lemma.

Lemma 6.1. (1) [A, c0( y)]=[B, c0( y)]=0.

(2) P # Pk, m O [P, B] # Pk, m&1.

(3) adn(X, B) # P0, 1&n , n�0.

(4) i[H0 , B]=2X&1�2(H0&c0 B2c0)X&1�2+c0 X&1�2PX&1�2c0 , P#P1,&1 .

(5) adn(H0 , B)=c0 Pc0 , P # P2, &n , n�0.

We now define the following class of operators.

Definition 6.2. For m # R, OPm(X ) is the set of operators P satisfying
X:adn(P, B) X; # B=B(L2 ; L2), \:, ;, \n�0 such that :+;=n&m.

The following lemma is proved easily by the above definition and a
simple computation.

Lemma 6.3. (1) P # OPm(X ) � P=XmP0 for some P0 # OP0(X ).

(2) P # OPm(X ) O [P, B] # OPm&1(X ).

(3) P # OPm(X ) O XkPXl # OPm+k+l (X ), \k, l # R.

(4) P # OPm(X ) O P* # OPm(X ).

(5) P # OPm(X ), Q # OPn(X ) O PQ # OPm+n(X ).

(6) P # OPm(X ) O c0 P # OPm(X ).

Let Fm be the set introduced in Section 3. Representing f # Fm by its
almost analytic extension, one can show the following lemma (see [5,
Lemma 2.4] or [10, Lemma 2.4]).

Lemma 6.4. (1) f (X ) # OPm(X ) for f # Fm, m # R.

(2) f (H0), f (B) # OP0(X ) for f # Fm, m<0.
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Here in proving (2), one must use the following inequality

&c0( y)(H0&z)&1 f &H 2�C
(1+|z| )

|Im z|
& f &.

Lemma 6.5. (1) BN(H0+i)&N # B, \N�0.

(2) f (B) .(H0) # B if f # Fm, m # R, . # C �
0 (R).

Proof of (1). By an induction one can show that BN(H0+i)&N is
written as a finite sum of the terms of the form

B1(H0+i)&p1 } } } Bk(H0+i)&pk, Bi=adni (H0 , B).

The assertion (1) then follows from Lemma 6.1 (5). The assertion (2)
follows easily from (1). K

The following lemma is proved by the formulas (2.3) and (2.4) of [10].

Lemma 6.6. For P # OPm(X ), f # Fn, m, n # R, we have the following
asymptotic expansion

[P, f (B)]t :
k�1

(&1)k&1�k! adk(P, B) f (k)(B), adk(P, B) # OPm&k(X ).

6.3. Uniqueness Theorem

One can now prove the following uniqueness theorem which is well
known for the Laplacian.

Theorem 6.7. Let 0<:<1�2, E>0. Suppose u # L2, &: satisfies
c0( y)u # H 2

loc(R
n+1) and H0u=Eu. Then u=0.

Proof. Let .(t) # C�(R) be such that .(t)=1 for |t&E|<$, .(t)=0
for |t&E|>2$, where 0<$<E�2. Since u=.(H0)u, we have only to show
.(H0)u # L2.

Let v=.(H0)u, v==(1+=X )&: v. Then

(H0&E) v==2i:=(1+=X )&1 c0Bc0 v=+K=v,

|K=(x, y)|�CX &2,

where the constant C is independent of =>0. A direct calculation shows
that

i([H0 , A] v= , v=)=4:(XY=Bc0 v= , Bc0v=)+(Q= c0v, c0v),
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where Y===(1+=X )&1, |Q=(x, y)|�CX&2. Noting that XY=�1, we have

2(H0v= , v=)�4: &Bc0 v=&2+C &X &1v&2

�4: &{c0 v=&2+C &X &1v&2

�4:(H0v= , v=)+C.

Since 4:<2, we have (H0v= , v=)�C. This implies that

(H0.(H0)2 (1+=X )&: u, (1+=X )&: u)�C.

Letting = � 0, we have v # L2. K

Let us prove Theorem 3.1 (3).

Theorem 6.8. Let 0<:<1�2<s<1 and E>0. Let u # L2, &s satisfy
c0( y)u # H 2

loc(R
n+1) and H0u=Eu. Suppose there exists an =>0 such that

F(B)u # L2, &: either for any F # F0
&(=) or for any F # F0

+(&=). Then u=0.

Proof. We shall assume that F(B)u # L2, &: for any F # F0
&(=) and

prove u=0. Let v=c0( y)u. Then

(&2&V)u=0, V=c0( y)&2 E.

We take /(\) # C�
0 (R) such that /(\)=1 if |\|<1, /(\)=0 if |\|>2 and

let

/t
t(X )=|

�

X
k&2:/(k�t)2 dk, t>0.

Using the identity

i[&2x, y , /t
t]=2 Re \{x/t

t } px+
�

�y
/t
t } py+ ,

we have

Re(X&2:/2
t Bv, v)=0,

where /t=/(X�t). Since [B, c0( y)]=0, we have

Re(c0( y)2 X&2:/2
t Bu, u)=0. (6.6)

Let .(t) # C �
0 (R) be such that .(t)=1 for |t&E|<$, .(t)=0 for

|t&E|>2$, $ being a small constant. Since H0u=Eu, we have u=.(H0)u.
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We take F\(t) # C�(R) such that F+(t)+F&(t)=1, F&(t)=1 if t<=�2,
F&(t)=0 if t>=. Since

sup
t�1

|(c0( y)2 X&2:/2
t BF&(B) .(H0)u, .(H0)u)|<�,

by the assumption of the theorem, we have by using (6.6) and
F+(B)+F&(B)=1

sup
t�1

Re(c0( y)2 X&2:/2
t BF+(B) .(H0 u, .(H0)u)<�. (6.7)

Let g+(t)=(F+(t))1�2 and g&(t)=1& g+(t). (6.7) implies that - B g+(B)
.(H0)u # L2, &:, from which one can show g+(B)u # L2, &:. Therefore we
have u= g+(B)u+ g&(B)u # L2, &:, which implies u=0 by the previous
theorem. K

6.4. Resolvent Estimates

We turn to the proof of Theorem 3.1 (2). Let .(t) # C �
0 (R) be such that

.(t)=1 for |t&E|<$, .(t)=0 for |t&E|>2$. It follows from Lemma 6.1
(4) that

.(H0) X1�2i[H0 , B] X1�2.(H0)=2.(H0)(H0&c0 B2c0+K ) .(H0),

K being a compact operator. Therefore, for any =>0 there exists a $0>0
such that for any $<$0

.(H0) X 1�2i[H0 , B] X1�2.(H0)�2.(H0)(E&=&c2
+B2) .(H0).

This is the basic inequality used to estimate the commutator i[H0 , B]
from below.

For a small =1>0, we take F0(t) # F0
&(- E�c+) satisfying

{
F0(t)=0

F0(t)=1

F0(t)�0,

F $0(t)�0,

if

if

t>- E�c+&=1 ,

t<- E�c+&2=1 ,

- F0(t) # C�,

- &F $0(t) # C�.

We take =>0 such that

- E
c+

&=1<
1

c+

- E&2==: C1(E),

42 HIROSHI ISOZAKI



File: 505J 327125 . By:DS . Date:03:07:01 . Time:04:23 LOP8M. V8.0. Page 01:01
Codes: 2767 Signs: 1023 . Length: 45 pic 0 pts, 190 mm

and let

Fm(t)=(C1(E )&t)m F0(t),

F2m+1

t
(t)=(C1(E )&t) Fm(t)2.

Lemma 6.9. Let m>&1�2. With Fm(t) and .(t) introduced above, we
define Pm=X mFm(B) .(H). Then there exists a constant C0>0 such that

&Re .(H0) i[H0 , X 2m+1F2m+1

t
(B)] .(H0)�C0 P*mPm+(V),

where (V) denotes an operator having the following asymptotic expansion:

:
n�2

Pn fn(B), Pn # OP2m+1&n(X ),

fn # F0
&(- E�c+), supp fn /supp F0 .

Proof. The proof of this lemma is essentially the same as that of [5,
Lemma 3.2] or [10, Lemma 3.2]. We give only the sketch of the proof.
First we note that

i[H0 , X 2m+1F2m+1

t
(B)]

=i[H0 , X2m+1] F2m+1

t
(B)+iX 2m+1[H0 , F2m+1

t
(B)].

Applying Lemma 6.6 formally, we have

i[H0 , X 2m+1]=2(2m+1) c2
0BX 2m+ } } } ,

i[H0 , F2m+1

t
(B)]=i[H0 , B]F $2m+1

t
(B)+ } } } ,

where } } } denotes the lower order terms in X. Noting that

& F $2m+1

t
(t)=(2m+1) Fm(t)2+G(t),

G(t)=&2(C1(E )&t)2m+1 F $0(t) F0(t),

we have

&Re .(H0) i[H0 , X2m+1F2m+1

t
(B)] .(H0)

=2(2m+1) .(H0) Fm(B)Xm(c2
0B2&C1(E ) c2

0 B)XmFm(B) .(H0)

+(2m+1) .(H0) Fm(B)Xm+1�2i[H0 , B]Xm+1�2Fm(B) .(H0)

+.(H0)Xm
- G(B)X 1�2i[H0 , B]X1�2

- G(B)Xm.(H0)+(V).
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Taking account of Lemma 6.1 (4), we have

&Re .(H0) i[H0 , X 2m+1F2m+1

t
(B)] .(H0)

=2(2m+1) P*m(H0&C1(E ) c2
0B)Pm

+2.(H0)Xm
- G(B) (H0&c2

0B2) - G(B)X m.(H0)+(V).

We now use

c&�c0( y)�c+ ,

H0�E&= on supp .(H0),

the latter of which holds if 2$�=, to get

P*m(H0&C1(E ) c2
0B)Pm

�P*m(E&=&C1(E ) c2
0B)Pm+(V)

�P*m
c0

c+

(E&=&c2
+C1( E )B)

c0

c+

Pm+(V).

Noting that

E&=&c2
+ C1(E )B�= on supp Fm(B),

we have

P*m(H0&C1(E ) c2
0 B)Pm�=P*m \ c0

c++
2

Pm+(V)

�= \c&

c++
2

P*mPm+(V).

Since

E&=&c2
+B2�0 on supp G(B),

we also have

.(H0)X m
- G(B) (H0&c2

0B2) - G(B)X m.(H0)

�.(H0) Xm
- G(B) (E&=&c2

+ B2) - G(B)X m.(H0)+(V)

�(V).
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We have thus proven that

&Re .(H0) i[H0 , X2m+1F2m+1

t
(B)] .(H0)

�2(2m+1) = \c&

c++
2

P*m Pm+(V),

which completes the proof of the lemma. K

Once we have proved Lemma 6.9, we can prove the following theorem
in the same way as in Theorem 3.4 of [5] or Theorem 3.4 of [10]. We
have only to estimate the quadratic form

&Re(.(H0) i[H0 , X2m+1F2m+1

t
(B)] .(H0) R0(z) f, R0(z) f )

from above and below.

Theorem 6.10. Let R0(z)=(H0&z)&1, m>&1�2, t>1. Let F #
F0

&(- E�c+). Then we have

XmF(B) R0(E+i0)X&m&t # B.

The proof for R(E&i0) is obtained similarly.

7. PROPERTIES OF L0(`)&1

We shall study various properties of L0(`)&1 in this section. We begin
with establishing the same results as in Theorem 3.1 for L0=L0(0)=
p2

x+ p2
y&V( y). Since [V( y), A]=0 and V( y)�E�c2

+ , we have

i[L0 , A]=2( p2
x+ p2

y)�2L0+2E�c2
+. (7.1)

Theorem 7.1. Let s>1�2. Then for *>&E�c2
+ ,

(L0&*�i0)&1 # B(L2, s ; L2, &s).

Moreover there exists a constant C>0 such that

&(L0&*�i=)&1&B(L2, s ; L2, &s)�C*&1�2,

for *>1 and =�0.
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Proof. This theorem follows from (7.1) and the Mourre theory. The
high-energy estimate is proved by the same method as in [13] (see
Theorem 4.2 of [13]). K

For a small $>0, let .(t) # C �
0 (R) be such that .(t)=1 for |t|<$,

.(t)=0 for |t|>2$. Then by a direct calculation we have

.(L0)X1�2i[L0 , B]X1�2.(L0)=2.(L0)(L0&B2+V+K ) .(L0),

K being a compact operator. Therefore for any =>0, by choosing $ small
enough we have

.(L0)X1�2i[L0 , B]X1�2.(L0)�2.(L0)(E�c2
+&B2&=) .(L0). (7.2)

This inequality (7.2) should be compared with (6.8). Using (7.2) one can
repeat the same argument as in the previous section to show the following
theorem.

Theorem 7.2. Let C0(E )=- E�c+. Then for m>&1�2, t>1 and
F� # F0

�(\C0(E )), we have

F �(B)(L0 �i0)&1 # B(L2, m+t ; L2, m).

The proof of Theorem 6.8 actually shows the following theorem.

Theorem 7.3. Let 0<:<1�2<s<1. Let u # L2, &s satisfy L0u=0.
Suppose there exists =>0 such that F(B) u # L2, &: either for any F # F0

&(=)
or for any F # F0

+(&=). The u=0.

In particular Theorems 3.1 and 7.1�7.3 imply

Corollary 7.4. R0(E\i0)=c&1
0 (L0 �i0)&1 c&1

0 .

We study the analytic continuation of (L0&z)&1.

Theorem 7.5. For any $>0, there exists an =>0 such that
(L0+E�c2

+&z)&1 defined on C\ have analytic continuations across the
positive real axis (0, �) into the region [z # C ; |Im z| 2�= Re z] as
B(H$ ; H&$)-valued functions.

Proof. Let A=&2x , B=&(���y)2&V( y)+E�c2
+. Let FA(*), *>0,

and FB(k), k>_, _=E�c2
+&E�c2

&, be the spectral representations for A
and B respectively. FA(*) is the trace on the sphere of radius - * of the
usual Fourier transformation. Therefore if e$ |x|f (x) # L2(Rn), FA(*) f is
analytic on [Re - *>0, |Im - *|<=0] for some =0>0. By solving the
differential equation (&d 2�dy2&V( y)+E�c2

+) u=ku explicitly (see, e.g.
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[21], p. 165), we see that the generalized eigenfunctions of B associated
with the energy k>0 are linear combinations of exp(\i - k y) and
exp(\i - k&_ y), both of which are analytic with respect to - k in the
right-half plane. Therefore if e$ | y | f ( y) # L2(R), FB(k) f is analytic on
[Re - k>0, |Im - f |<=0] for some =0>0.

Since FA(*)�FB(k) diagonalizes A�1+1�B, we have for Im z{0,

(A�1+1�B&z)&1=||
*>0, k>_

F1(*)*�FB(k)* FA(*)�FB(k)
*+k&z

d* dk.

The analytic continuation of this operator is obtained by deforming the
path of integration. For a, =>0, let us introduce the following sets:

0==[z # C ; |Im z| 2�= Re z],

0a, ==[z # 0= ; 5a<Re z<6a].

Elementary computations show the following facts:

z # 0= O |Im - z|�- =,

z # 0a, = , k<4a O |Im - z&k|�- 6=.

We split the integral for (A�1+1�B&z)&1 into two parts:

||
*+k<4a or *+k>8a

} } } d* dk+||
4a<*+k<8a

} } } d* dk=: I1(z)+I2(z).

I1(z) clearly has an analytic continuation on 0a, = as a B(L2 ; L2)-valued
function. I2(z) is again split into two parts:

||
4a<*+k<8a, k<4a

} } } d* dk+||
4a<*+k<8a, k>4a

} } } d* dk=: I3(z)+I4(z).

We factor the denominator if I3(z) as (- *&- z&k)(- *+- z&k). Since
|Im - z&k|�- 6= if k<4a, z # 0= , by deforming the path of - *-integra-
tion we see that I3(z) has an analytic continuation on 0a, = as B(H$ ;
H&$)-valued function for sufficiently small =>0. On the integrand of I4(z),
|Im - z&*|�- 6=, since *<4a, z # 0a, = . Therefore the deformation of the
path of - k-integration implies that I4(z) has an analytic continuation
on 0a, = . K
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We turn to the proof of Theorem 3.2. The main part of the proof is the
convergence of V#, 0(E, z) as z � t # I==(&=�2, =�2). Let z=t+i{, t # I= ,
0<{<1, and let

V� #, 0(E, z)=eitx } #V#, 0(E, z) e&itx } # (7.3)

=(Fx � !)&1 ((!+i{#)2+ p2
y&V( y))&1 .1(# } (!&t#)) Fx � ! .

For f # L2, s, we put

u\({)=(Fx � !)&1 F(\# } (!&t#)�0) Fx � ! V� #, 0(E, z) f. (7.4)

By the support property of .1 , they satisfy

supp! Fx � ! u\({)/[! ; \# } !�=�2], (7.5)

L0(i{#) u\({)=f\, (7.6)

f\=(Fx � !)&1 F(\# } (!&t#)�0) .1(# } (!&t#)) Fx � ! f. (7.7)

Lemma 7.6. Let m>&1�2 and Fm(B), F2m+1

t
(B) be as in Lemma 6.9.

Let .(t) be as in (7.2). We take �(t) # C�(R) such that �(t)=1 for
t< &=�4, �(t)=0 for t>&=�8. Then there exist a constant C0>0 and
Q # OP2m&1(X ) such that for 0<{<1

&Re .(L0) �(# } px) i[L0(i{#)* X2m+1F2m+1

t
(B)

&X2m+1F2m+1

t
(B) L0(i{#)] �(# } px) .(L0)

�C0P*m Pm+Q,

where Pm=X mFm(B) �(# } px) .(L0).

Proof. We shall estimate

&i(L0(i1#)* X2m+1F2m+1

t
(B)&X2m+1F2m+1

t
(B) L0(i{#))

=&i[L0 , X2m+1F2m+1

t
(B)]

&2{(X2m+1F2m+1

t
(B) # } px+# } pxX2m+1F2m+1

t
(B)).

Using (7.2) and arguing in the same way as in the proof of Lemma 6.9, we
have

&Re �(# } px) .(L0) i[L0 , X2m+1F2m+1

t
(B)] .(L0) �(# } px)

�C0P*mPm+Q

with C0>0, Q # OP2m&1(X ).
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We let

T=&.(L0) �(# } px) S�(# } px) .(L0),

S=Re(X2m+1F2m+1

t
(B) # } px+# } pxX2m+1F2m+1

t
(B)),

and estimate T from below by an operator in OP2m&1(X ).
Let

T1=(&# } px)1�2 �(# } px) .(L0),

T2=X m+1�2F2m+1

t
(B) Xm+1�2.

We show that

T&2T1T2 T1 # OP2m&1(X ).

In fact, using the relation

Re X2m+1F2m+1

t
(B)=T1+ 1

2 [[F2m+1

t
(B), X m+1�2], X m+1�2],

we have

T# &.(L0) �(# } px)(T2# } px+# } pxT2) �(# } px) .(L0) mod OP2m&1(X ).

Commuting .(L0) �(# } px) and T2 , we get

T#T2T2
1+T2

1T2 mod OP2m&1(X ).

We finally commute T1 and T2 to get

T#2T1T2 T1 mod OP2m&1(X ).

Since T1T2T1�0, we have T�0 mod OP2m&1(X ), which completes the
proof. K

Lemma 7.7. Let m>&1�2 and Pm be as in Lemma 7.6. Then there exists
a constant C>0 such that for 0<{<1,

&Pmu&({)&�C(& f &m+1+&u&({)&m&1�2).

Proof. Let us first note that u&({)=�(# } px) u&({) by virtue of (7.5).
Using Lemma 7.6, we have

&Re i[(X2m+1F2m+1

t
(B) .(L0) u&({), .(L0) f&)

&(.(L0) f& , F2m+1

t
(B) X 2m+1.(L0) u&({))]

�C0 &Pmu&({)&2&C &u&({)&2
m&1�2 .
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Noting that [F2m+1

t
(B), X 2m+1] .(L0) # OP2m(X ), one can see that the

left-hand side is estimated from above by

2|(X2m+1F2m+1

t
(B) .(L0) u&({), .(L0) f&)|+C(& f &2

m+1+&u&({)&2
m&1).

Since .(L0) X 2m+1 F2m+1

t
(B) .(L0) u&({) = Xm+1QPm u&({) with Q #

OP0(X ), this is estimated from above by

= &Pmu&({)&2+C=(& f &2
m+1+&u&({)&2

m&1),

= being an arbitrary constant >0. This completes the proof. K

Lemma 7.8. Let 1�2<s<1 and :=1&s. Let F& # F0
&(C0(E )). Then

there exists a constant C>0 such that

&F&(B) u&({)&&:�C(& f &s+&u&({)&s&3�2)

for 0<{<1.

Proof. Let .(t) be as in (7.2) and .~ (t)=1&.(t). Then since
(L0+i{# } px) .~ (L0) u&({)=.~ (L0) f, we easily have

&.~ (L0) u&({)&s�C & f &s

with a constant C>0 independent of 0<{<1.
Let F& # F0

&(C0(E )). Choosing P&: suitably as in Lemma 7.6, we have

X&:F&(B) .(L0) u&({)=QP&: u&({)

with Q # OP0(X ). Hence, by Lemma 7.7, letting m=&:=s&1

&F&(B) .(L0) u&({)&&:�C(& f &s+&u&({)&s&3�2),

which proves the lemma. K

Lemma 7.9. Let 1�2<;<s<3�4. Then there exist constants C>0, =>0
such that

"F \X
t

>2+ u&({)"&;
�Ct&=(&u&({)&&;+& f &s),

for 0<{<1, t>1.
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Proof. We take \ # C�(R) such that \(k)=1 for k>2 and \(k)=0 for
k<1 and put \t(k)=\(k�t). We define

/t(k)=|
�

k
x&2;\t(x)2 dx.

It is easy to see that

|/t(k)|�Ct1&2;.

By a direct calculation we have, letting v=u&({),

&i([L0 , /t(X )]v, v)=2(BX &;\t(X )v, X&;\t (X )v).

On the other hand, using the relation L0(i{# } px)v= f& we have

&i([L0 , /t(X )]v, v)=&2i Im( f&, /t(X )v)+4{ Re(/t(X )# cot pxv, v).

By (7.5) and Ga# rding's inequality

Re(/t(X ) # } px v, v)�Ct1&2; &u&2
&1�Ct1&2; &u&2

&; .

We also have

|(/t(X )v, f&)|�Ct1&2;(&v&2
&;+& f &2

s ).

We have therefore

(BX &;\t(X )v, X &;\t(X )v)�Ct1&2;(&v&2
&;+& f &2

s ). (7.8)

Here we take F&(t) # F0
&(C0(E )) such that F&(t)=1 for t<C0(E )�2 and

let F+(t)=1&F&(t). By Lemma 7.8 we have for some =>0

&F&(B) X&;\t(X )v&�Ct&=(&v&&;+& f &s). (7.9)

Using F+(B)+F&(B)=1 and (7.9), one can also show that

&F+(B) X&;\t(X )v&�Ct&=(&v&&;+& f &s). (7.10)

The inequalities (7.9) and (7.10) prove the lemma. K

We let

Z(\)
#, 0 (E, z)=(Fx � !)&1 F(\# } (!&t#)�0) Fx � ! V� #, 0(E, z). (7.11)
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Theorem 7.10. Let 1�2<;<s<3�4. Then there exists a constant C>0
such that

&Z(\)
#, 0 (E, t+i{) f &&;�C & f &s ,

for t # I= , 0<{<1.

Proof. We shall prove this theorem for the (&) case. Suppose this is
not true. Then there exist tn+i{n , fn # L2, s such that tn+i{n � t # I= and
un=Z (&)

#, 0 (E, tn+i{n) fn satisfies

&un&&;=1, & fn &s � 0.

By Lemma 7.9 and Rellich's compactness theorem, [un]�
n=1 contains a

subsequence convergent to some u # L2, &;. Hence &u&&;=1, L0u=0. By
Lemma 7.8, F&(B) u # L2, &: for any F& # F0

&(C0(E )). Theorem 7.3 then
implies that u=0, which is a contradiction. K

Theorem 7.11. Let J=[z=t+i{ ; t # I= , 0<{<1]. Let 1�2<;<
s<3�4. Then as a B(L2, s ; L2, &;)-valued function, Z (\)

#, 0 (E, z) is uniformly
continuous on J.

Proof. Let . # C �
0 (R) be such that .(t)=1 near t=0. We have only to

consider .(L0) Z (&)
#, 0 (E, z). Suppose this is not uniformly continuous. Then

there exist =0>0, zn , z$n # J and fn # L2, s such that

& fn&s=1, zn , z$n � t # I= ,

&(Z (&)
#, 0 (E, zn)&Z (&)

#, 0 (E, z$n)) .(L0) fn &&;�=0 .

Let un=Z (&)
#, 0 (E, zn) .(L0) fn , vn=Z (&)

#, 0 (E, z$n) .(L0) fn . Take 1�2<s$<s.
By the compactness, one can assume that .(L0) fn converges in L2, s$. Let
wn=un&vn . Then &wn&&;�=0 . By Lemma 7.9 and Rellich's compactness
theorem, one can assume that wn converges to some w in L2, &;. Hence
&w&&;�=0 . On the other hand, one can see that L0w=0. By the same
reasoning as in the proof of Theorem 7.10, one is led to the
contradiction. K

Theorem 7.12. Let s>1�2. Then V#, 0(E, z) is uniformly continuous in
B(L2, s ; L2, &s) with respect to z # J and there exists a constant C>0 such
that

&V#, 0(E, z) f &&s�C & f &s , z # J.
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Proof. We choose ;, s$ such that 1�2<;<s$<s and consider

X&sV� #, 0(E, z) X&s=X&s+; } X &;Z (+)
#, 0 (E, z) X&s$ } X&(s&s$)

+X&s+; } X&;Z (&)
#, 0 (E, z) X&s$ } X &(s&s$)

We then apply Theorems 7.10 and 7.11 to conclude the theorem. K

We now prove Theorem 3.2. The analyticity of U#, 0(E, z) in z is obvious
by the definition. It is easy to show that &V#, 0(E, i{)&B(L2 ; L2)�C�{ for {>1.
On the other hand Theorem 7.1 implies that &W#, 0(E, i{)&B(L2, s; L2,&s)�C�{
for {>1, which proves that U#, 0(E, i{) satisfies the same inequality.
Theorem 7.12 proves (2). Theorem 7.1 proves (3). The assertion (4) follows
from a direct computation. Finally, the assertion (3.15) can be proved by
applying the same arguments as in the proof of Theorem 6.10 to V� #, 0(E, z).
The assertion (3.16) follows from Theorem 7.2.
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