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Equivalence of the AdS-metric and the QCD running coupling
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We use the functional form of the QCD running coupling to modify the conformal metric in AdS/CFT
mapping the fifth-dimensional z-coordinate to the energy scale in the four-dimensional QCD. The result-
ing type-0 string theory in five dimensions is solved with the Nambu–Goto action giving good agreement
with the Coulombic and confinement Q Q̄ potential.
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1. Introduction

The AdS/CFT conjecture relates type IIB superstring theory in
the AdS5 × S5 background with four-dimensional super-Yang–Mills
theory. Supersymmetric QCD is scale invariant with a vanishing
β-function. In contrast, QCD has no supersymmetry and a non-
vanishing β-function with a well defined running coupling. This
defines in our opinion the first task of how to modify the back-
ground of supergravity on AdS5 × S5, in order to obtain a more
QCD-like theory: We have to break conformal invariance and dis-
regard supersymmetry. One possible coordinate system of AdS5 is
given in the near horizon limit by

ds2
radial = L2

r2
dr2 + r2

L2

(−dt2 + d�x2). (1)

In the radial coordinates the boundary of the space is at r → ∞.
We are going to use another coordinate system, the Poincaré coor-
dinates, related with the radial coordinates by the transformation
z = L2/r. These coordinates are also called conformal coordinates,
because one can directly read off the scale invariance of the metric
in this coordinate patch

ds2 = Gμν dXμ dXν = L2

z2

(−dt2 + d�x2 + dz2). (2)

L is the radius of AdS5. The boundary of the AdS space is at z = 0.
A simple ansatz of breaking conformal invariance is to multiply
the metric in Eq. (2) by the so-called warping function. One can
show [1] that global Poincaré invariance demands that the warping
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function has to depend only on the z-coordinate. Thus the new
metric is of the form

ds2
QCD = h(z) · ds2 = h(z)

L2

z2

(−dt2 + d�x2 + dz2), (3)

where the subscript “QCD” symbolizes that this is not anymore a
metric for the AdS5 space but is a first attempt to obtain a QCD-
like theory from this modified AdS5 space.

How should one choose h(z)? QCD is a renormalizable quan-
tum field theory. Hence, the UV divergences can be absorbed in a
renormalized coupling g . It is common to use the strong coupling
constant αs = g2/4π . This coupling is given to the lowest order by
the formula

αs(p) = 1

4πβ0 log(p2/Λ2
QCD)

= 4π

(11 − 2
3 n f ) log(p2/Λ2

QCD)
. (4)

Here p is the scale, which can be chosen to coincide with the
transferred momentum [2]. ΛQCD is called the QCD scale param-
eter, which is to be determined by experiments. Finally β0 =

1
(4π)2 (11 − 2

3 n f ) is the absolute value of the first coefficient of the

β-function, which is subtraction-scheme-independent. One can see
that, for p → ∞, the coupling αs vanishes, and the theory becomes
scale invariant.

It can be shown [3] that the radial coordinate r and thus also
the coordinate z corresponds to the energy scale p ∝ 1/z of the
boundary field theory. Hence, we have for small values of z the
UV region of the boundary field theory, and for large values of z
we are in the IR region of the boundary field theory. Therefore,
the bulk space contains all possible energy scales of the boundary
field theory [4]. For QCD correlation functions, it is natural to have
a scale-invariant theory in the limit z → 0. In that limit, we should
have h(z) → 1. Given the fact that the warp factor and the dilaton
(which determines the running coupling) are not independent and
coupled via the 5D Einstein equations, it seems reasonable to try
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an ansatz for the warping function that equates it with αs given
in (4), i.e.

h(z) = c2

log[ 1
z2+l2s

1
Λ2 ] . (5)

We will see in the rest of the Letter that such an ansatz leads to
very good agreement with the Cornell potential. The introduction
of the parameter ls guarantees the conformal limit h(z) → finite at
z → 0. The requirement h(z) → 1 for z → 0 fixes c2 = log( 1

l2s Λ2 ).

We assume that Λ is related to the AdS5-radius as Λ = 1/L and
define the dimensionless parameter ε as the ratio

ε ≡ l2s
L2

= l2s Λ
2. (6)

Then we obtain

h(z) = log( 1
ε )

log[ 1
(Λz)2+ε

] , (7)

with the IR singularity at

zIR =
√

1 − ε

Λ2
. (8)

According to the equivalence of 1/z to energy resolution in four
dimensions the scaling factor h(z) indirectly encodes the running
behavior of the strong coupling αs .

In the infrared we have broken the conformal invariance by
cutting off the AdS5 space at some finite value of z = zIR. In the
language of AdS/QCD this set-up is very similar to a hard-wall
model [5]. As we will demonstrate the modified coupling naturally
incorporates confinement at the infrared energy scale Λ ≈ 1/zIR. In
the ultraviolet QCD becomes a scale invariant theory at sufficiently
high energies because of asymptotic freedom, which shows up in
the metric preserving the conformal form, i.e. limz→0 h(z) = 1.

2. Heavy quark potential from AdS/QCD

In QCD one can include quarks as infinitely heavy external
probes. To determine the interaction potential V Q Q̄ (R) between
the quark and the antiquark we use the Wilson loop. The Wilson
loop describes the creation of a Q Q̄ -pair at some time t1, interac-
tion of the created quark and the antiquark with themselves and
the vacuum during a period of time T , and the annihilation of the
pair at time t2. The Wilson loop cf. Fig. 1 is defined as

W [C] = 1

N
Tr P exp

[
i

∮
C

Aμ dxμ

]
. (9)

The 1/N-factor is introduced for convenience because there are N
terms in the trace over the unit matrix in the fundamental rep-
resentation of an SU(N) gauge theory, and the P stands for path
ordering of the exponential: For T → ∞, the VEV of the Wilson
loop behaves as 〈W (C)〉 ∝ e−T V Q Q̄ .

According to the holographic dictionary [6,7], the expectation
value of the Wilson loop in four dimensions should be equal to
the string partition function on the modified AdS5 space, with the
string worldsheet ending on the contour C at the boundary of AdS5〈
W 4d[C]〉 = Z 5d

string[C] ≈ e−SNG[C]. (10)

The second relation is obtained by the saddle-point approximation,
in which the partition function is just given by the classical ac-
tion [8]. Hence, we have to consider the classical string worldsheet
action SNG. As in the original hadronic string theory the Nambu–
Goto action will play a major role to model the gluonic degrees of
Fig. 1. Rectangular Wilson loop contour put on the 4-dimensional boundary of the
modified AdS5 space.

freedom. However, the string-gauge theory has to be extended to
gravity if one looks for a consistent explanation of the metric as a
solution of the Einstein equations with a dilaton. This work will be
published separately. Note the string worldsheet is embedded into
the five-dimensional bulk space. The worldsheet is stretching from
the boundary of AdS5 at infinity down to a given point resulting in
an infinite worldsheet area and thus 〈W [C]〉 = 0. Since our world-
sheet is swept out by an infinitely heavy string, the mass of the
string times the length of the loop C should be subtracted from
SNG [4,8]. The resulting difference is finite. This is incorporated in
the later performed UV renormalization of the Nambu–Goto action.

To calculate the Q Q̄ potential we use the AdS/QCD background
Euclidean metric

ds2
Eucl = Gμν dXμ dXν = h(z)L2

z2

(
dt2 + d�x2 + dz2). (11)

The Nambu–Goto action SNG is given by

SNG = 1

2π l2s

∫
d2ξ

√
det hab, (12)

where ls is the string length and hab is the induced worldsheet
metric: The indices a,b are reserved to the ξ1, ξ2-coordinates on
the worldsheet, the Greek indices μ,ν to the coordinates of the
embedding five-dimensional space

hab = Gμν
∂ Xμ

∂ξa

∂ Xν

∂ξb
. (13)

In the static gauge, the worldsheet coordinates can be chosen as
ξ1 = t and ξ2 = x. In such a static configuration z = z(x) is the only
x-dependent function. The Wilson-loop contour C is located at the
boundary of the AdS space, i.e. at z → 0. The set-up is presented
in Fig. 1.

The induced worldsheet metric obtained from Eq. (11)

hab = L2h(z)

z2

(
1 0
0 1 + ( ∂z

∂x )2

)
(14)

has to be put into the Nambu–Goto action together with the di-

mensionless parameter ε = l2s
L2 to get

SNG = T

2πε

∫
dx

h(z)

z2

√
1 + (z′)2, (15)

where z′ = dz
dx and T comes from the integral over time. Now we

can identify

L (z, z′) = h(z)
2

√
1 + (z′)2 (16)
z
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with an effective Lagrangian, and the problem reduces to a simple
problem of classical mechanics with the Hamiltonian

H = p(z) · z′ − L , (17)

where p(z) = ∂L
∂z′ is the conjugate momentum. One obtains

H = −h(z)

z2
√

1 + (z′)2
. (18)

Energy conservation allows one to set H = −1/c2, where c is
a constant

h(z)

z2
√

1 + (z′)2
= 1

c2
. (19)

We express this integration constant c via the maximal value of z,
which we denote as z0. Eq. (19) yields at x = 0:

h(z0)

z2
0

= 1

c2
. (20)

We can rewrite Eq. (19) as:

z′ =
√(

h(z)c2

z2

)2

− 1. (21)

Using the condition (20) for the maximum and rescaling z = νz0,
we obtain the inter-quark distance R as a function of z0:

R(z0) = 2z0

1∫
0

dν ν2 h(z0)

h(νz0)

1√
1 − ν4(

h(z0)
h(νz0)

)2
. (22)

By similar transformations we can write the energy, which we get
from the Nambu–Goto string action, as a function of z0

V Q Q̄ (z0) = 1

πε

1

z0

1∫
0

dν
h(νz0)

ν2

1√
1 − ν4(

h(z0)
h(νz0)

)2
. (23)

The regularization of the potential is related to the subtraction
of the masses of infinitely heavy quarks as discussed before. We
subtract the singular part ∝ 1

ν2 from the integrand and add its
primitive at the upper limit which results in

V ren.
Q Q̄

(z0) = − 1

πε

1

z0
+ 1

πε

1

z0

×
1∫

0

dν

(
h(νz0)

ν2

1√
1 − ν4(

h(z0)
h(νz0)

)2
− 1

ν2

)
. (24)

We continue evaluating Eqs. (22) and (23) in terms of the parame-
ter z0. In order to get a first impression how both integrals depend
on z0, we plot them in Figs. 2 and 3.

The phenomenological Cornell potential of the form V Q Q̄ =
− a

R + σ R determines the parameters in the underlying metric.
We fix the dimensionless parameter ε to the parameter a in the
Coulombic part of the potential and the parameter Λ to the string
tension σ in the long distance Q Q̄ -interaction. It is quite natural
to have two parameters in the metric to determine two param-
eters in the potential. The agreement with the phenomenological
potential can be improved [9]. Indeed the found Λ will be simi-
lar to ΛMS in QCD. The QCD string has been the origin of hadronic
string theory which has been supported by lattice simulations of
QCD where one identifies the stretched tube of the color electric
flux with a string. We can see from Fig. 2 that the Q Q̄ distance
R depends linearly on z0 for small z0. Looking at the definition
Fig. 2. A plot showing R(z0) for ε = 0.48 and Λ = 0.264 GeV.

Fig. 3. A plot showing V Q Q̄ (z0) for ε = 0.48 and Λ = 0.264 GeV.

of h(z) in Eq. (7) we realize that, for z0 ≈ 0, the ν-dependence of
h(z) is suppressed. Hence, we only make a negligible error when
performing Taylor expansion of the integrand of R(z0) in Eqs. (22)
and (23) at z0 = 0 up to the first order and then integrating over
ν in order to obtain the behavior of the potential V Q Q̄ at small

Q Q̄ -separations R . For Eq. (22) this yields

R(z0) = 2
√

π
�(3/4)

�(1/4)
z0 + O(z2

0), (25)

which is exactly the result we would have obtained in the confor-
mal case with h(z) = 1.

We expand the integrand of Eq. (23) at z0 = 0 to the order
O(z2

0), integrate over ν and then insert z0(R) from Eq. (25), and
finally obtain

V Q Q̄ (R) = −2

(
�(3/4)

�(1/4)

)2 1

εR
+ σ R, (26)

with

σ =
(

− 1

4π
+ 27

256π

�(1/4)2

�(7/4)2

)
Λ2

ε2 log(1/ε)

≈ 0.443
Λ2

ε2 log(1/ε)
. (27)

We can see from the 1/R-term in Eq. (26) that it is exactly the
same as in the case of the conformal metric [8]. In order to adjust
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Fig. 4. Numerically calculated heavy-quark potential for the modified metric,
Eq. (11), using h(z) from Eq. (7).

the above potential to the value of the Coulombic part of the Q Q̄
interaction given in [10], namely V Q Q̄ = − a

R + σ R with a = 0.48

and +σ = 0.183 GeV2 we have to choose

ε = 0.48, (28)

Λ = 264 MeV. (29)

This result looks rather reasonable. For example, the value of the

scale parameter in four-flavor QCD1 is Λ
n f =4
QCD = 274 ± 30 MeV [2].

Having fixed the two parameters we can now numerically eval-
uate the heavy quark potential to test the form on all length
scales. Fitting the numerical potential plotted in the interval
R ∈ [0.1 GeV−1,9.6 GeV−1] in Fig. 4 to a Cornell-like potential
V Cornell(R) = − a

R + σ R yields a = 0.47, σ = 0.181 GeV2. If one
takes the dependence of these parameters on the fit interval into
account the numerically determined values coincide with the ana-
lytical ones.

For further applications it is important to note that the validity
of a gravity dual to the string description is L4

l4s
� 1. We obtain

L4

l4s
≈ 4.3. This choice is imposed by the Q Q̄ potential. So it may

be necessary to include higher correction to the simple form of
gravity with an AdS-negative cosmological constant. One can try
to include these corrections via a modified dilaton potential in the
corresponding five-dimensional gravity theory. Due to the form of
the warp factor, the resulting dilaton dynamics may only reproduce
the β-function of QCD approximately [11].

In perturbative QCD one knows that for R → 0 the potential

V Q Q̄ = − N2
c −1

2Nc
αs

1
R and hence scales with g2

YMNc . It is possible to

show that L4

l4s
= g2

YMNc [4]. The potential obtained, Eq. (26), is only

proportional to L2

l2s
and hence scales with gYM

√
Nc . An explana-

tion of this discrepancy may be that the limit ls → 0 corresponds
to a Yang–Mills theory with a strong coupling g2

YMNc . For realistic
AdS/QCD this argument has to be studied in more detail. An in-
teresting result of our calculation is the proportionality between σ
and Λ given by Eq. (27), once ε is fixed.

From the Taylor expansion in Eq. (30) one can see that there
exists a complex singularity at z0 = zγ . Let us determine zγ . From
Eq. (22), one can see that the dominant contribution to the inte-
gral arises at ν = 1. A Taylor expansion of the integrand at ν = 1

1 We do not want to compare exactly to four-flavor QCD, but want to show that
Λ has the correct magnitude.
Fig. 5. Nambu–Goto worldsheet for the non-conformal metric of Eq. (11) at the
values of the Q Q̄ -separation R = 1 GeV−1 (blue), R = 6 GeV−1 (red), and R =
14 GeV−1 (magenta) plotted over the Wilson loop area (green) in the (x, t) plane.
(For interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this Letter.)

followed by the integration yields up to O(1 − ν) the following
expression

R(z0) = 2iz0√
−1 + z2

0Λ2

(ε+z2
0Λ2) Log[ 1

ε+z2
0Λ2 ]

, (30)

which is only real for

z2
0Λ

2

(ε + z2
0Λ

2) Log[ 1
ε+z2

0Λ2 ] < 1. (31)

This inequality can be solved in terms of the ProductLog function,2

and one obtains for the above determined parameters

z0 < zγ , (32)

zγ =
√

ε

Λ2

(
1

ProductLog(εe)
− 1

)

≈ 1.85 GeV−1, (33)

where the e ≈ 2.71828 in the denominator is the base of the nat-
ural logarithm. A similar analysis of the integral in Eq. (23) yields
the same complex singularity at z0 = zγ .

This singularity defines a horizon3 in contrast to the purely
conformal AdS background, where there is no upper bound on
the parameter z0. For larger R-values, one obtains a larger z0. In
case of the modified metric, the z0 of the worldsheet is limited
by the horizon. For other confining backgrounds based on the run-
ning coupling we refer to the studies of Kiritsis et al. in [12,13]. In
these papers, the authors analyze various confining backgrounds
by studying the long-range part of the Q Q̄ -potential, given in the
form derived in [14]. It should be mentioned that our background
given by h(z) of Eq. (7) satisfies the criterium for a confining back-
ground by Eq. (3.12) of Ref. [13]. We also refer to [15], where the
Cornell potential is derived in various backgrounds.

Finally we show the minimal worldsheets for the modified met-
ric given by Eq. (11) in Fig. 5.

One can see that the worldsheets are flattening with the in-
crease of the Q Q̄ -separation R . There exists one crucial difference
compared to the conformal case, namely that we have an upper
bound zγ ≈ 1.85 GeV−1, dictated by the complex singularity dis-
cussed above. An upper bound on z0 implies an upper bound for R .

2 ProductLog( f ) gives the principal solution for w in f = wew .
3 This horizon should not be confused with the IR singularity of the modified

metric at zIR ≈ 2.73 GeV−1.
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Table 1
Comparison with [9].

[9] Our work Cornell [10]

L4/l4s 0.89 4.34 –
a 0.22 0.47 0.48
σ 0.18 GeV2 0.18 GeV2 0.18 GeV2

For the parameter values ε = 0.48 and Λ = 0.264 GeV, we obtain
for the upper bound R ≈ 2.8 fm. We can see from Fig. 5 that the
worldsheet already reaches its maximal z-value for x away from
zero, and the surface becomes completely flat, which makes a con-
fining potential. One can interpret this effect as touching the IR
horizon. Dubovsky and Rubakov [16] obtain a quite similar be-
havior, while studying two charges in front of a brane. There, the
electric flux of the charges drops down on the brane, while having
still confinement. We do not have string-breaking effects, despite
having a maximal Q Q̄ -separation R ≈ 14.1 GeV−1. This is due to
the fact that we have no dynamical quarks.

3. Conclusion

We have chosen the functional form of the warping factor of
the AdS-metric (7) such that it coincides with the functional form
of the QCD running coupling (4). Using the holographic dictionary
[6–8] we then extract the Q Q̄ -potential. Only one new param-
eter ε = 0.48 has to be fitted to reproduce the short and long
range Cornell potential [10]. The other parameter Λ = 264 MeV

in the metric is close to Λ
n f =4
QCD . The phenomenology of equivalence

proves to be successful and simple. Comparing with one of the pre-
vious calculations [9] of the Q Q̄ -potential one sees in Table 1 that
our work can reproduce both the strength of the Coulomb interac-
tion a and the string tension σ at the same time. The parameter
L4/l4s � 1 indicates that the string theory has a meaningful gravity
approximation which we will present in a separate paper [11].
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