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Abstract

For the general linear scalar time-delay systems of arbitrary order with two delays, this article
provides a detailed study on the stability crossing curves consisting of all the delays such that the
characteristic quasipolynomial has at least one imaginary zero. The crossing set, consisting of all the
frequencies corresponding to all the points in the stability crossing curves, are expressed in terms
of simple inequality constraints and can be easily identified from the gain response curves of the
coefficient transfer functions of the delay terms. This crossing set forms a finite number of intervals
of finite length. The corresponding stability crossing curves form a series of smooth curves except
at the points corresponding to multiple zeros and a number of other degenerate cases. These curves
may be closed curves, open ended curves, and spiral-like curves oriented horizontally, vertically, or
diagonally. The category of curves are determined by which constraints are violated at the two ends of
the corresponding intervals of the crossing set. The directions in which the zeros cross the imaginary
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axis are explicitly expressed. An algorithm may be devised to calculate the maximum delay deviation
without changing the number of right half plane zeros of the characteristic quasipolynomial (and
preservation of stability as a special case).

0 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The study of time-delay systems began as early as the 18th century. The topic received
substantial attention due to its prevalence in many practical problems in biology, ecology,
chemistry, physics, and numerous engineering disciplines. Indeed, it is the main subject of
many books over the last few decades, see, for example, [1,12,13,18,19,22].

In this article, we will study the stability of the class of systems described by the equa-
tion

n

ZZ dx(t_”) —0, (1.1)

1=0 k=0

where the coefficientp;;, 1 =0,1,2;k=0,1,2,...,n are real, andg = 0. The stability
of such a system is completely determined by the zeros of its characteristic quasipolyno-
mial

p(s) = po(s) + p1(s)e” ™ + pa(s)e” ™, (1.2)
where
n
pi(s) =) pus*.
k=0

We will study the change of system stability as the delayandt, vary.

The distribution of zeros of the characteristic quasipolynomial of time-delay systems
and its implications for stability have been described in detail in the book by Bellman
and Cooke [1]. While delays have often been regarded as having the tendency to cause
instability, Cooke and Grossman [7] demonstrated, through a number of simple sys-
tems, that for an arbitrarily given intege¥, it is possible to construct a system such
that it switches from being stable to unstable and back to being stable aiMeasies
as the delay increases. Another interesting study on such switches was conducted re-
cently by Beretta and Kuang [2] regarding systems whose coefficients depend on the
delays.

One problem, which typically admits simpler formulation, is the stability independent
of delays. Hale et al. [17] described the necessary and sufficient conditions for the zeros
not to reach the imaginary axis (which they refer to as bdipgerbolig as the delays
vary either independently or in a linearly dependent fashion. These conditions include
delay-independent stability as special cases. Chen and Latchman [5] proposed a frequency-
sweeping algorithm to check delay-independent stability.
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For systems with commensurate delays, i.e., when the delays are multiples of some
constant, Walton and Marshall [32] described an elimination procedure to identify all the
delay values in which the zeros cross the imaginary axis, and thus identifying the intervals
of delays such that the system is stable. In its appendix, [32] also gave a correction and a
list of references on an alternative method, known as the pseudodelay technique, based on a
bilinear transformation proposed by Rekasius [27]. This technique was also used in a more
recent paper by Olgac and Sipahi [25]. For systems that are stable when the delays are set
to zero, Chen, et al. [6] gave another method which is based on the Orlando Theorem and
involves calculating generalized eigenvalues.

For systems with incommensurate delays, Neimafk'subdivision approach [11,19]
can be used for many situations. Cooke and van den Driessche [8] proposed a procedure to
vary the delays one at a time and identify the crossing points, which in theory can determine
the number of right half plane (RHP) zeros for any given delays. However, it requires the
identification of all the real zeros of quasipolynomials, and therefore, is computationally
challenging. For example applications of such systems, see [22] for combustion systems,
and [20] for biological systems. A particular case with two delays as applied to communi-
cation systems is considered in [23].

The special case of a two-delay system described by

x()+ax(@)+bx(t —11)+cx(t—12)=0 (1.3)

has been studied by a number of authors. See, for example, the work by Nussbaum [24].
Another interesting study of a similar system was conducted by Ryan and Wei [26]. Hale
and Huang [16] conducted a thorough study of (1.3), and gave a very thorough char-
acterization of the boundary of the stability region (@i, t2) connected to the origin.
Such diagrams showing the boundaries of stability region are often known stabilty

charts The importance of stability charts in practical applications is well illustrated by
Stépan [29]. The book [28] contains a rich collection of such stability charts in the space
of delays or other parameters. Bélair and Campbell [3] conducted another such study. Part
of this article can be considered as an extension of [16] to the general systems of arbitrary
order and with neutral delays. Our approach here is more geometric rather than purely al-
gebraic, which allows us to provide a more explicit analysis and made the generalization
possible.

It should be pointed out that some attempt is also made to characterize such curves
in [30], and parallel results for a more general class of systems described by state-space
equations in [31]. The main results in these two articles are the observation of periodicity
of the curves and crossing directions.

The article is organized as follows. Section 2 describes the problem setup. Section 3
discusses how to identify frequencies and delays such that zeros of the characteristic qua-
sipolynomials may cross the imaginary axis, which we will refer to as the crossing set
and the stability crossing curves, respectively. Section 4 elaborates on the crossing set and
gives an exhaustive description of all the possible general forms of the stability crossing
curves. Section 5 studies the smoothness of the stability crossing curves. Section 6 dis-
cusses the direction in which the zeros cross the imaginary axis as the delays cross the
stability crossing curves. The article is concluded in Section 7 with a brief summary and
some discussions.
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2. Problem setup and background

Our notation is rather standafd.denotes the set of real numbers, &d denotes the
set of nonnegative real numbef®? andR’, are the sets of-dimensional vectors with
components iR andR_, respectivelyC denotes the set of complex numbers, @&hdis
the set of complex numbers with nonnegative real parts. We will often refér. tas the
right half plane (RHP). The complement @f. in C is referred to as the left half plane
(LHP), which is the set of complex numbers with strictly negative real parts.

We will study the change of the number of zeros of (1.2)(bnas the delaysry, t2)
vary onRi. For this purpose, we often write(s) in (1.2) asp(s, t1, t2). Since the main
objective of this article is to identify the regions @fi, t2) in Ri such thatp(s) is stable,
we will first exclude some simple trivial cases and restrict ourselvegdpri, t2) which
satisfy the following conditions:

(I) Existence of principal term:

ded(po(s)) = max{deq pi(s)). deq pa(s))}. (2.1)
(I1) Zero frequency
po(0) + p1(0) + p2(0) # 0. (2.2)

(Il The polynomialspg(s), p1(s) and p2(s) do not have any common zeros.
(IV) Restriction on difference operator:
lim (|pa(s)/po)] + [p2(s)/po()]) < 1. (2.3)

Indeed, if item (1) is not satisfied, the quasipolynomial cannot be stable for any positive
delays [1].

If (II) is violated, then O is a zero op(s) for any (z1, 12) € Ri and therefore, it can
never be stable.

(11 is natural. If it is not satisfied, there exists a common faet@n # constant, such
that p;(s) = c(s)q;(s), L =0, 1, 2. Choose:(s) be the highest possible order, thers),
[ =0,1,2 do not have any common zeros, and the delay-differential equation can be de-
composed to an ordinary differential equation with characteristic polynarialand a
delay-differential equation with characteristic quasipolynomial

qo(s) +q1(s)e” ™ +ga(s)e™ ™,

which satisfies condition (l11).

Regarding (1V), if the system is of retarded type, (2.3) is automatically satisfied since
its left-hand side is zero. For systems of neutral type, let
_ P
P
Then, it is known that the stability of the system (1.2) is possible only if the difference
equation

cr = S'Lmoo pi(s)/po(s), I=12

x() +cix(t —11) +cox(t —12) =0 (2.4)
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is exponentially stable [1]. The condition (2.3) guarantees the stability of (2.4). It is also
a necessary condition for the continuity condition (Lemma 2.1 to be presented next) to be
valid.

It can be argued that condition (1) is implied by (1V): if | is not satisfied, the left-hand
side of (2.3) is infinite. It is also important to point out that a system satisfying (I) to (IV) is
stable if and only if none of the zeros of the characteristic quasipolynomial is on the RHP.

What makes our discussions to follow meaningful is the continuity of the zeros with
respect to the delay parameters as stated in the following lemma.

Lemma 2.1. As the delayqt1, 72) continuously vary WithiﬂRi, the number of zeros
(counting multiplicity of p(s, 71, 72) onC can change only if a zero appears on or cross
the imaginary axis.

The lemma can be proven in a way very similar to [7]. From the Rouche theorem [21],
all the finite zeros of (s, 71, 72) vary continuously withe; andt,. Therefore, a root can-
not suddenly disappear or appear or change its multiplicity at a finite point in the complex
plane. Therefore, the only possibility of changing the number of RHP zeros without cross-
ing the imaginary axis first is at. However, this is not possible in our case: for either a
retarded system or a neutral system satisfying (2.3), any zeros of sufficiently large magni-
tude have negative real parts far> 0, t2 > 0.

In the special case that the system is stable whea t» = 0, and the stability region
connected to the origin (such as the case discussed in [16]), we may also invoke the theorem
due to Datko in [9]. It is also interesting to point out that the continuity in Lemma 2.1 no
longer holds if (2.3) is violated as was shown in [9].

Due to the continuity, givem; = t andt, = 72, in principle, we may find the number
of zeros ofp(s) on C using the following procedure:

(1) find the number of right half plane zeros pfs) with 71 =0 andz, = 0;

(2) form a curve in ther—t2 plane Within]REr initiating from the origin and ending at
(2, D

(3) find all the points ofz1, 72) in the curve such that there are zerop@f) crossing the
imaginary axis, and find the directions of crossing (from left to right, or the other way)
as one moves along the curve.

By keeping a tally on the number of RHP zeros as we move along the curve, we can
find the number of RHP zeros &t = rf andt; = tg, and, therefore, whether the system
is stable or not with the given delays. For example, the method proposed in [8] uses the
curve consisting of straight lines parallel#pandz; axis, and the method proposed in [32]
uses the straight line connecting the origin ar@, rg). Itis, therefore, of great interest to
identify these crossing points, which will be the topic of the next section.

To conclude this section, we introduce the following definition.

Definition 2.2. LetCy : [a, b] — R?, k=1, 2, ..., be a series of curves satisfying

Ck(b) —Cr(a)=A, k=12 ...,
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whereA e R? is a constant 2-dimensional vector independerit, aind

Cr+1(a) = Ci (D).
Then, the curve€ formed by connecting all the curv€s, k=1, 2, ...,

o
c=Ja
k=1
is known as apiral-like curve, andA is known as itsaxis If in addition,

Cer1(6)=Cr(§) + A forall§ €[a, b,

thenC is known as apiral.

In other words, a spiral is forms by connecting identical curves head to tail. On the
other hand, the composite curves in a spiral-like curve do not have to be identical. In this
article, in a spiral-like curvegj;,1 can often be viewed as formed frofp with a small
deformation, which justifies the term “spiral-like curve.”

3. ldentification of crossing points

Let 7 denote the set of all the points ¢f1, t2) in R?r such thatp(s) has at least one
zero on the imaginary axis. Angt1, t2) € 7 is known as arossing point The set7,
which is the collection of all the crossing points, is known assiability crossing curves
We will write

ai(s) = pi(s)/po(s), 1=12,
and
a(s, 11, 72) =14+ a1(s)e™ ™ +ax(s)e 25,

We will also writea(s, t1, t2) asa(s) when no confusion may arise. For givenandro,

as long aspo(s) does not have imaginary zergs(s) anda(s) share all the zeros in a
neighborhood of the imaginary axis. Therefore, in general, we may obtain all the crossing
points and directions of crossing (from LHP to RHP, for example) from the solutions of

a(s, 11,72) =0 3.1)

instead ofp(s, 71, 72) = 0.

For each given = jw, w # 0, we may consider the three termsiifyw, 11, 72) as three
vectors in the complex plane, with the magnitudegii(jw)|, and|a2(jw)|, respectively.
Furthermore, if we adjust the valuesqafandz,, we may arbitrarily adjust the directions
of the vectors represented by the second and third terms. Equation (3.1) means that if we
put these vectors head to tail, they form a triangle as illustrated in Fig. 3.1. This allows us
to conclude the following proposition.

Proposition 3.1. For each w, w # 0, po(jw) # 0, s = jw can be a solution of
p(s, 11, 72) = 0 for some(ry, 7o) € R? if and only if
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Re
Fig. 3.1. Triangle formed by 1qq(jw)| and|az(jw)|.
|a1(jo)| + |az(jw)| = 1, (3.2)
1< |a(jo)| — |az(jw)| < 1. (3.3)

For w # 0 satisfyingpo(jw) =0, s = jw can be a zero op(s, 71, 2) for some(z1, 12) €
R? if and only if

|p1(j®)| = |p2(jw)|. (3.4)

Proof. For po(jw) # 0, conditions (3.2) and (3.3) are obvious from the geometric point
of view: a triangle can be formed by three line segments with arbitrary orientation if and
only if the length of any one side does not exceed the sum of the other two sides. Notice
also that/[a;(jw)e/®™], I = 1,2, can assume any value by adjusting/ = 1, 2, since

w # 0. For the case opg(jw) = 0, the condition (3.4) is obvious considering again the
fact thate=/@%, [ = 1,2, can be used to change the directions but not the magnitudes of
pi(jw)e 7T, 1=1,2. O

Due to symmetry and (2.2), we only need to consider posiivieet §2 be the set of all
o > 0 which satisfy (3.2) and (3.3) ifo(jw) # 0 and (3.4) ifpo(jw) = 0. We will refer
to £2 as thecrossing setlt contains all thew such that some zero(s) ¢f(s, t1, o) may
cross the imaginary axis gt. Then, for any giverw € £2, p;(jw) #0,1=0,1,2, one
may easily find all the pairs dfr1, t2) satisfying (3.1) as follows:

/ i 2u—1mx L0
tlzrfi(a))z al(Ja))—i—(wu d 120, u:ug,uoi—i—l,ug—i—l...,
(3.5)
Laz(j 2v—1 0
tzzrz"i(a)): az(]a))—i—(wv )7 F 220, v:voi,voi—i—l,voi—i—Z,...,
(3.6)

wheref, 62 € [0, ] are the internal angles of the triangle in Fig. 3.1, and can be calculated
by the law of cosine as

a1t laGe)? - |a2<jw)|2>
f1=c0s ( 2 ()] ’ G
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6y — COS_1<1+ laz(je)| — |a1<jw>|2>’ (3.8)

20az(jo)|

andug, ug v;{, v, are the smallest possible integers (may be negative and may depend

Ug —

+ + _
on ) such that the correspondin§°+, 7,° r;°+, r;" calculated are nonnegative.
Notice,ud <ugy, vd > vy . The position in Fig. 3.1 corresponds(td'™, ;™). The posi-
tion corresponding tor; ", ;") is its mirror image about the real axis.

Let7+ . and7, ., be the singletons defined by

,U,v U,V

T = { (05 @), 15 @)}.

[ORTRY
and define
— + -
720 - ( U %,u,v) U ( U Zz},u,v)'
u}ué’ uzugy
v}va' vy

Then7, is the set of all(r1, t2) such thatp(s) has a zero at = jw. In the following
remark, we will discuss the degenerate cases.0f w) = O for at least oné.

Remark 3.2. If po(jw) =0, w € £2. Then p(jw) = 0 and assumption (Ill) imply
Ip1(jw)| = |p2(jw)| # 0. In this case?, consists of the solutions of

[p1(jw) —wt1+2nu = Lpr(jw) —wt2+ 2ntv+ 7

in Ri for integersu, v. Instead of isolated pointg,, now consists of an infinite number of
straight lines of slope 1 of equal distance.

On the other hand, ipo(jw) # 0, w € 22, and p1(jw) = 0, thenai(jw) = 0 and
la2(jw)| = 1, we haved, = 0, andf1 can assume all the values [, =], and iju_v
contains all the points calculated by (3.5) and (3.6) wditte [0, ], 62 = 0. The cor-
respondindZ,, is a series of horizontal lines. Similarly, fare $2 satisfyingpo(jw) # 0,
p2(jw) =0, the correspondin (jfu’v contains all the points calculated by (3.5) and (3.6)

with 61 =0, 0, € [0, ], and7Z, is a series of vertical lines.

Obviously,
T={T,|we ).

Since the behavior of the degenerate cases discussed in the above remark is easily un-
derstood, for the clarity of presentation, we will exclude these degenerate cases from our

discussions, and make the following nondegeneracy condition as our standing assumption
unless otherwise pointed out.

(V) Nondegeneracy

pi(jw) #0 forallwe £2andl=0,1,2. (3.9)
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4. Stability crossing curves

In this section, we make some observations on the crossing shd the stability
crossing curve§ .

Proposition 4.1. The crossing se® consists of a finite number of intervals of finite length,
including the cases which may violg®9).

Proof. Obviously, the number of points if2 violating (3.9) is finite. Therefore, we only
need to show that the set of points satisfying (3.2) and (3.3) consists of a finite number
of intervals of finite size. First, we observe that there can only be a finite numher of
satisfying

ar(jw)| + |az(jw)| =1 (4.)

since all suchw’s are included in the solution set of the equation

la1(jw)|? + 2Jar(jw)az(jo)| + |azjo) | = 1

which are in turn included in the solution set of the equation
ar(joraz(jo) | = (1 |ar(jo)[* = |azje)|?)?,

which can be written as a polynomial equation of variabfe This implies that the set of
o satisfying (3.2) consists of a finite number of intervals. Similarly, we can show that the
set satisfying (3.3) also consists of a finite number of intervals since

a1(jw)| —[a2(jw)| =1 and (4.2)
|laz(jw)| — |ar(jw)| =1 (4.3)

can only have a finite number of solutions. The intersections are again a finite number of
intervals. Furthermore, due to (2.3), any sufficiently laggeiolates (3.2). Therefore, the
lengths of all intervals have to be finite

Let these intervals b&y, k = 1,2, ..., N, arranged in such an order that the left end
point of £2; increases with increasirig Then

N
Q= U .
k=1

Itis worth clarifying that 0z 2 by definition even itv = 0 satisfies (3.2) and (3.3). Indeed,
if (3.2) and (3.3) are satisfied fas = 0 and sufficiently small positive values &f then,
21 = (0, w;], and we will letw] = 0 in this case. Otherwise?; = [0}, )], @} # 0.
Fork > 2, 2 = [w,lc, w;]. We will subdivide the intervals if necessary so that for any
we (wf(, wy), none of the three equations (4.1), (4.2) and (4.3) is satisfied.
Let
-

w,u,v
weS2y

= {(tF (@), 35 (@) | w € 2},
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and
o o0
"= |J U @HurHnri= ] 7.
U=—00 V=—00 weS2y
Then,
N
T=J7*
k=1

Note that we allow part of;** or 7, % to be outside ofR? in some cases for the con-
venience of discussions. We should, however, keep in mind that the p@jtiobr 7, %
outside oﬂREr no longer represents the boundary of a meaningful change of the number of
RHP zeros o (s). As is well known,p(s) has an infinite number of RHP zerosifor to
assumes a negative value [1].

We will not restrict/a; (j w) to be within a range of2 but make it a continuous function
of w within eachg2,. This is always possible due to the wa; is defined. As a result,
for a fixed pair of integersu, v), eachZ,'* or 7,7k is a continuous curve. To study how
eachZ,"¥ or 7, ¥ is connected ifT * at the ends of2;, we make the following observation:
under our standing nondegenerate assumption (3.9), the end points of the in&é;,\lals,
2,3,...,andwy, k=1,2,..., must satisfy one and only one of the three equations (4.1),
(4.2) and (4.3). Accordingly, we can classify these end points into three types according to
which equationy = wi or w = wj, satisfies. The left end a®; may have an additional type
if a)ll = 0. A careful examination of Egs. (3.5) and (3.6) allows us to arrive at the following
list:

Type 1. (4.2) is satisfied. In this case, =0, 6> = 7, andTMﬁf‘ is connected Witl7 f 1
at this end.

Type 2. (4.3) is satisfied. In this case, = 7, 6, = 0, andT*" is connected wnh?;fl v
at this end.

Type3. (4.1) is satisfied. In this casey = 6, = 0, andZ,} is connected with7,  at this
end.

TypeO. a)f{ = 0. This requires thab = 0 satisfy (3.2) and (3.3). In this case,as~ 0,
ij" and Tujvk approachoo with asymptotes passing through the poits =+ 1,
ao F 67) with slopes of

oyE L Lax(0)+ (v — D F 62(0)

= 0= 7000) 1 @u — D £ 01(0)

wheref;(0) andd»(0) are evaluated by (3.7) and (3.8) usimg0) andaz(0), respec-

(4.4)

tively, and
N d .
a; = %[Zal(Jw)]wzo, (4.5)
A d
0 = ——0;(j w)|w=0- (4.6)

dow
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Correspondingly, we say an inteng}, is of typelr if the left end of$2; is of typel and
its right end is of type-. There are a total of 4 3= 12 possible types of such intervals.

Example 4.2. Consider a system with

25
== 4.7
a1{s) s2+201s+1 (4-7)
1
. — 4.8
az(s) 7160 11 (4.8)

wherez1 = 1/+/2, 2 = 0.1. Figure 4.1 plotsa1 (jw)| + la2(jw)| andlai(jw)| — |az(jw)|
againstw. The crossing seR can be easily identified from Fig. 4.1, it contains two inter-
vals:

21 =1[0.346,0.758 of type 11 £25,=[1.333 1.650] of type 13

Example4.3. Figure 4.2 plot$a; (jw)| + la2(jw)| and|a1(jw)| — |a2(jw)| againstw with

3
“O = B o1 (4-9)
95 +1
__Fre 4.10
)= o 1 (4.10)

In this case$2 contains two intervals:

£21 =1[0.188 0.453 of type 12 £, =1[8.5329.217] oftype 23

6 T T T T T T T

— I3, )Ha o)l
- — - la,G0)l*la o)l
st d

Fig. 4.1.|a1(jw)| £ |a2(jw)| versusw for system represented by (4.7) and (4.8).
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— la,G0)la o)l
— - la,Go)l*la o)

35 T T T T T

— la,G)lfa o)l
— — la,0)layGo)]

3r N

Fig. 4.3.la1(jw)| = laz(jw)| versusw for system represented by (4.11) and (4.12).

Example4.4. Figure 4.3 plot$a; (jw)| + la2(jw)| and|a1(jw)| — |a2(jw)| againstw with

2
a1(s) = ———, (4.11)
s24+2s+1
15
- 4.12
@)= a7 g 11 (4.12)

In this case$2 contains two intervals:

£21=(0,0.197] oftype 0] £22=1[0.898 1.079] of type 13
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According to the types aof2;, 7% may have different shapes, as specified in the follow-
ing proposition.

Proposition 4.5. Under the standing assumptidB.9), the stability crossing curveg*
corresponding ta2; must be an intersection dﬁi with a series of curves belonging to
one of the following categories

(A) A series of closed curves.

(B) A series of spiral-like curves with axes oriented either horizontally, vertically, or di-
agonally.

(C) A series of open ended curves with both ends approacking

The rest of this section will be devoted to showing the validity of the above proposition
by an exhaustive list, providing additional details as well as illustrative examples.

As an illustration of a series aflosed curveswe examineZ* corresponding ta2;
of type 11. In this case, for given and v, T+" and T‘ _, are connected on both ends
to form a closed curve. As andv vary, a series of deformed versions of such closed
curves are generated along the horizontal and vertical directidhis the intersection of
Ri with this series of closed curves. Plotted in Fig. 4.4 tsof the system described in
Example 4.2.

Itis easily shown that @* corresponding te2; of type 22 or type 33 also form a similar
series of closed curves. In the case of type 22, a closed curved is formed by connecting both
ends of7’+k and?;jrl For type 33, a closed curve is formed by connecting both ends of
7,4 andT, £,

To illustrate the case dfpiral-like curves with axes oriented diagonalt;pnsideer
corresponding ta2; of type 12. In this casefuf,j‘ is connected t&@ ¥, at wy, and the

u+1,v
40
35
30
25
N
& 20
15/

Fig. 4.4.7 ofthe system in Example 4.2.

/

N\
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/

) D)

0 L ! ! L L ! ! 1 I
0 10 20 30 40 50 60 70 80 90 100

Y

Fig. 4.5.71 of the system in Example 4.3.

—k +k ! iR ; —k
other end of7, "y  is connected td"; ., ate;, which is again connected @ .,

atwf, and so on. According to Definition 2.2, with = 7,F U 7;;"1’1), it can be easily
verified that this forms a spiral-like curve with the axis

A= (1 () — (0 57 (@) — 5 (w})
. <2p 2p
o o}
forming a 45 from the horizontal. This spiral-like curve is repeated an infinite number of
times in a deformed form as the difference betweeandv changes. Shown in Fig. 4.5
is 71 for the system in Example 4.3.

We can observe thatB* corresponding t@2; of type 21 also form such a series spiral-
like curves with axes oriented diagonally. In this c&5g’ is connected td:;"l’v at )

. —k +k r
instead, andfwl’v is connected td;JrLerl atw;, and so on.

To illustrate the case afpiral-like curves with vertical axgsonsider7* corresponding
to £2; of type 13. In this case], ¥ is connected t@, * atw}, and the other end df, *

is connected tdﬂ‘ﬂ at a)f{, and so on. This forms a spiral-like curve with a vertical axis.
This spiral-like curve is repeated in deformed form along the horizontal direction as
changes. Shown in Fig. 4.6 % for the system in Example 4.2.

It is easily shown thaf * corresponding t@2, of type 31 is also in the form of a series
of vertically oriented spiral-like curves, with,"* and7, ¥ connected ab}, and7, * and

T+§+1 connected ab}, and so on.

u,
The curves ofT* corresponding ta2; of type 23 and 32 are in the form of a series

of spiral-like curves with horizontal axeEor type 237, is connected td;:-kl,v atowl,

and the other end ‘ﬂ;rkl,v is connected td;i"l,v atw(, and so on. For type 37,"* and

—k r —k +k [
’Tu+1’v are connected at;, andTuH’v andTuH’v are connected at; , and so on.

>, independent of; (or v),
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16
14+
12
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™~

120

100

-

20+

L
0 20 40 80 80 100 1
T

]

0

Fig. 4.7.71 of the system in Example 4.4.

Corresponding ta2; = (0, »f], T1is a series obpen-ended curve§or type OlT—1
andT+1 1 are connected af;. The otherend of, 1 extends to infinity with asymptote of
a slope:cu,v passing through the poirifi; — 61, as + 6,). The other end of'“ 1 extends
to infinity with asymptote of a slopleuferl passing through the poirié; + 01, do — 02).
This pattern is repeated in a deformed form in both horizontal and vertical directions. Note

also that the slopes also change for differeandv. Shown in Fig. 4.7 i€ * of the system
described in Example 4.4.
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It is easy to show thal corresponding ta@2; of type 02 and type 03 also forms open-
ended curves. For type 0Z;"} andTu;ll’v are connected af;. The other ends df,"! and
Tulll,v extend to infinity with slopes,’, andx,_ 1., lespectively. For type OEQT,} and
7, are connected at. The other ends of,"! and7,~! extend to infinity with slopes
«,F, andx,,, respectively.

Thus far, we have exhausted all 12 typesf Therefore, the proof of Proposition 4.5
is complete.

5. Tangentsand smoothness

In this section, for a givet, we will discuss the smoothness of the curve§hand
thus7 = |J;_, T*. We will understand & is given and will refer to7* without further
comments. In addition to the explicit formulas (3.5) and (3.6), we will also use an approach
similar to the one described in [10, Chapter 11] based on the implicit function theorem. For
this purpose, we considef andtz as implicit functions ofy = jw defined by (3.1). As
moves along the imaginary axig;,z2) = (rfi(a)), rz"i(a))) moves along’*. For a given
w € §2, let

Ro— Ref 4 946. 1. 72)
0 s as s=jo
1 ; .
= Re([a1(jo) — t1a1(jw)|e /™ + [a5(jw) — T2a2(jw) |e™/7?), (5.1)
In—1m iBa(S, 71, T2)
0 s s s=j
1 ; .
=- Im([a1(jw) — ria1(j®) e /™ + [a5(jo) — T2az(jw) e/ ™), (5.2)
and
10da(s, 11, _
R =— Re(—M) = Re(ax (jw)e %), (5.3)
s ATy s=jo
10 .
I =— Im<—M> =Im(ax(jw)e /™), (5.4)
N afk s=jw

for I = 1,2. Then, sincei(s, 71, T2) is an analytic function of, 71 and 1, the implicit
function theorem indicates that the tangenfdfcan be expressed as

d _
(d_:j)_(Rl Rz) 1<Ro>_¥ Rolz—loRz) (5.5)
% L D Io Rilz — R2I1 \ IpR1 — Rol1 )’ '
provided that

R1I2 — R2I1 #0. (5.6)



K. Gu et al. / J. Math. Anal. Appl. 311 (2005) 231-253 247

It follows from a well-known result [4,15] thal * is smooth everywhere except possibly
at the points where either (5.6) is not satisfied, or when

dtr1  dto

do  do
A careful examination of these cases allows us to conclude that

(5.7)

Proposition 5.1. Under the standing assumptions includi(®9), the curves in7* are
smooth everywhere except possibly at the degenerate points correspondiirgany one
of the following three cases

Casel. s = jwis a multiple solution ofi(s) = 0.
Case2. wis atype3end point of2;, and %(Wl(jw” + laz2(jw)|) = 0.
Case 3. wis atypel or type2 end point of2;, and %(Ial(jwﬂ —laz(jw)|) =0.

Furthermore, if the point is not among the three cases, then the tangents of the curves
in 7% can be expressed as

1/tangp—1/tang !
J 1/ tan<pg—l/ tanrp_;’ w € (W, @p),
2 _ ] _lage) ; ;
d ol w is atype 3 end point af2, (5.8)
laa(jw)l : .
‘a;(jw)‘, w is a type 1 or 2 end point a;,
where

po=L([ay(jo) — Ta1(jw)|e ™ + [as(jo) — T2a2(jw)|e~T2?),
o = Lax(joye I™?), k=12

Proof. Itis sufficient to show that

() If (5.7) is satisfied, then = jw is a multiple solution ofi(s) = 0.
(I) Condition (5.6) is satisfied for alh € (wi’ wy). Furthermore, the tangent can be writ-
ten as the first expression of (5.8) if it is not case 1.
(1 1If (5.6) is not satisfied, but it is not among the three cases, then the curves are still
smooth at these points, the tangent still exists and can be written as the second or the
third expression of (5.8).

To show (I), we observe that (5.7) can be true onlRdf= Iop = 0. This means that

da(s, 1, T2)

o =0, (5.9)

s=jw
in view of the expression aRg andIp. But (5.9) andz(jw, 11, t2) = 0 implies thatjw is
a multiple solution of:(jw) = 0.

Now consider (Il). Lets = jwg satisfy

Ri1Ib — Ry[1 =0. (5.10)
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From the definition ofR, and I, k = 1,2, (5.10) means thati(jwo)e /™0 and
as(jwp)e /™20 are either in the same or opposite directions. But these two vectors have
to add up to—1 in order to satisfyi(jwo, 71, 2) = 0, and therefore, they are both real and
satisfy one and only one of the relations expressed by (4.1)—(4.3}¢.€s,an end point

of 2, of type 1, 2 or 3. Thus, we have shown that (5.6) is satisfied fap ml(wf{, wp).
Furthermore, according to (5.5), we can express the tangent as

dra _ IoR1—Rol1 _ <ﬁ) <R1/11 - R0/10>
dt1  Rolo—IoR2 \I2)\ Ro/lo— R2/I2)’

which can be written as the first expression of (5.8) in view of
tangy = Iy /Ry, k=0,1,2,

and the fact that (3.1) implies
I1=—1.

Thus we have proven (11).

To show (lll), since (5.6) is not satisfied, it has to be an end poin®pbf type 1, 2,
or 3. To be specific, lebg = wf{ be a type 3 left end point a2;. For a sufficiently small
e >0, Ril; — RoI1 # 0 for w € (wo, wp + €). Since it is not a point of Case 1, either
Ro(jwo) # 0 or Ip(jwo) # 0. Without loss of generality, assume thatjwg) #~ 0. Then
for w € (wo, wo + ¢),

drp  1/tango — 1/tang;

dr1  1/tangg — 1/tang,’

and

Iim+ 1/tangg < oo.

L()A)L()O

We will show that
lim @
w—of dT1
exists and approaches the second expression of (5.8). Since
p1="L[ar(jw)e /7] = —(2u - D F 01,

92 = L[az(jw)e ] = —(2v — D £ 63,

and
lim tang; =0,
w—> w0
we have
. do . tangs 02
lim — = Ilim Y2 _ _ —.
w%wé dTl w%war tan(ﬂl w%a)ar 91

Forw € (wg, wg + ¢), let
lar(jo)| = |ak(jowo)| + 8, k=12
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Then we can show from (3.7) and (3.8) that

_ laz-x(jwo)
lak (jwo)|
Since itis not Case 2§1 +82) is an infinitesimal of the same orderas- wg, and therefore

o(]81] + |82]) is indeed higher order infinitesimal th&sy + 32). On the other hand, using
Taylor expansion, we have
. 0f 2
cost(jo) = 1= — + 0(67).
This allows us to conclude that

costr(jw) =1 (81+82)+0(|81|+|82|).

02 laz_i(jwo)|

K

— = ————(81+682) + o(|81] + 182]).
2 lak (jwo) ( )

From the above equation and the fact thaand6, are of the same sign, we conclude that

i 02 laGeo)
w—wo by |az(jwo)|

We have thus concluded the proof of (ll1) for the casevpfbeing a type 3 left end point.
The idea is very similar for the other cases, and the details are omitted here.

From the proof, we see that an alternative expressicgﬁ—l%i‘s

dto _ IoR1 — Rol1
dty - Rol> — IgR>’

which is still valid even when (5.10) is satisfied. The above proposition indicates that,
except for the three degenerate cases, the closed curves, the spiral-like curves, or the open
ended curves are all smooth curves even though the parameterization in tarmevefses
direction at each end &, or 7,*. Another interesting observation from the second and

the third expression of (5.8) is that, corresponding to the same efyy,dhe tangents of

all the curvesTuj“f (or Tujlf‘) have the identical slope, i.e., they are independentaifv, as

long as it does not approach (type 0), i.e., as long as it is connected with another section

of curve?;,‘f}, for someu’ andv’ (type 1, 2, or 3). This strongly suggests thataift,f‘ (or

Tufj‘) have similar topological structure for allandv. The extent of such similarity, such

as the intersections between different sections representggand7, ¥ for differentu
andv is an interesting topic of further investigation, and has important implications on the
stability analysis.

(5.11)

6. Direction of crossing

Next, we will discuss the direction in which the solutions of (3.1) cross the imaginary
axis as(t1, T2) deviates from a curve ifi*. We will call the direction of the curve that
corresponds to increasingthe positive directionNotice, as the curve passes through the
points corresponding to the end pointsf, the positive direction is reversed. We will



250 K. Gu et al. / J. Math. Anal. Appl. 311 (2005) 231-253

also call the region on the left-hand side as we head in the positive direction of thelwairve
region on the leftAgain, due to the possible reversion of parameterization, the same region
may be considered on the left with respect to one point of the curve, and be considered as
on the right on another point of the curve.

For the purpose of discussing the direction of crossing, we need to conset, as
functions ofs = o + jw, i.e., functions of two real variablesandw, and partial derivative
notation needs to be adopted instead. Since the tang@talbng the positive direction is
(911/0w, 812/dw), the normal ta7 * pointing to the left-hand side of the positive direction
is (—d12/0w, d71/dw). Also, as a pair of complex conjugate solutions of (3.1) cross the
imaginary axis to the RHR;1, 72) moves along the directio®t1/d0, d12/00). We can
therefore conclude that if the inner product of these two vectors are positive, i.e.,

Indr dwinl 4 (6.1)
dw do dw do s=jw

the region on the left of * atw has two more solutions on the RHP. On the other hand, if
the inequality in (6.1) is reversed, then the region on the leffohas two fewer solutions
on the right-hand side of the complex plane. We can very easily express, parallel to (5.5),

that,
d _
(5) =0 %) (%)
5 =
3—22 s=jw Il IZ _RO
1 < RoR> + Ipl> )

B R1l2 — RoIh \ —RoRy — Iolh

whereR; andl;, [ =0, 1, 2, are defined in (5.1) to (5.4). This allows us to arrive at the
following proposition.

(6.2)

Proposition 6.1. Letw € (a)i, wp) and (1, 12) € T* such thatjw is a simple solution of
a(jw, 11, 72) =0, and

a(jo',11,12) A0 foranye >0, o' #w. (6.3)

Then as(t1, 2) moves from the region on the right to the region on the left of the corre-
sponding curve irf ¥, a pair of solutions 0f(3.1) cross the imaginary axis to the right if

Im(a1(jw)az(—jw)e!* ™) = Ryly — R1l > O. (6.4)

The crossing is in the opposite direction if the inequality is reversed.

Proof. Direct calculation shows that

—tt = = (R§+ I§)(RaI1 — R1I)/(R1l> — Ral1).
|:8w do  Jdw do ]s=jw

Therefore, (6.1) can be written as
RoI1 — R112 > 0O,

whichis (6.4). O
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The condition (6.3) means th&t, t2) is not an intersection point of two curves or
different sections of a single curve 1. It can be verified that the expression on the left
hand side of (6.4) reaches zeraageaches an end point &, of type 1, 2 or 3. From there
on, as the curve continuas reverses direction, and the left hand side of (6.4) changes sign.
This is expected since for the same region, the “left-hand side” becomes “right-hand side”
as the curve goes through this point.

Any given direction,(d1, d»), is to the left-hand side of the curve if its inner product
with the left-hand side norm&l-0dt2/dw, dt1/dw) IS positive, i.e.,

—d1012/9w + d29711/0w > 0, (6.5)

from which we have the following result.

Corollary 6.2. Let w, 1 and t2 satisfy the same condition as Propositiéri. Then as
(11, T2) crosses the curve along the directigh, d2), a pair of solutions of(3.1) cross the
imaginary axis to the right if

d1(Rol1 — IoR1) + d2(Rol2 — IoR2) > 0. (6.6)
The crossing is in the opposite direction if the inequality is reversed.

Proof. Writing out the left-hand side, then (6.5) becomes
[d1(RoI1 — IoR1) + d2(Rol2 — IoR2)]/(R2I1 — R1l2) > 0. (6.7)

If (d1,d?) is in the same side as the left-hand side normal, then, as we move along the
(d1, do) direction, the crossing is from the LHP to the RHP if the left-hand sides of (6.7)
and (6.4) have the same sign, i.e., their product is positive.

7. Conclusions and discussions

A detailed study is conducted regarding the details of the stability crossing curves in the
delay parameter space for the two-delay case. The set of frequencies with possible crossing
can be expressed by three constraints. This set forms a finite number of infeyyals=
1,2,..., N, of finite length. Other than a few degenerate cases, the set of delay parameters
form a series of smooth curves. These curves may be closed, open ended, and spiral-like
with axis in the horizontal, vertical, or diagonal directions. The category of curves are
determined by which constraints are violated at the two end®,0fThe invariance of
tangents in different curves or different parts of spiral-like curves strongly suggests similar
topological structure of these series of curves. The condition for each direction of crossing
is explicitly expressed, and found to be invariant in some special directions for all curves
in the series.

Based on the results, an algorithm to calculate the maximum deviation of delays without
changing the number of RHP zeros of characteristic quasipolynomial can be devised as
discussed in detail in [14].

There are a number of interesting topics worth further investigation. The topological
structure of the series of curves can be further studied. The details of the cases with more
than two delays remains challenging for practical calculation.
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It is interesting to look at all the degenerate cases, listed as follows:

. po(jw) =0, |p1(jw)| =|p2(jw)| #0;

- p1(jw) =0, |po(jw)| = |p2(jw)| #0;

. p2(jw) =0, |po(jw)| = |p1(jw)| #0;

a(jw,11,72) =0,d (jw, 11, T2) = 0 (Multiple solution case);
cNar(jo)| + laz(jw)| =1, % (lar(jw)| + |a2(jw)]) = 0;
Nar(jo)| — la2(jw)|| = 1, % (lar1(jw)| — |a2(jw)]) = 0.

oA wWNPE

The first three cases represent three equations and one vasiakie fourth case rep-
resents 4 equations with three variablesr; and t2. The last two cases represent two
equations with one variable. Therefore, all the cases are generically not present since the
number of equations exceeds the number of variables. They typically represent points of
bifurcation. Also, the fourth to the sixth case have codimension 1. In other words, if the
system depends on one parameter in addition to the two delays, then we generically should
expect these degenerate points to appear, and the geom&rghainges as the parameter
passes through these points. The first three cases are of codimension 2, it requires at least
two additional parameters for them to appear generically.

There are other structural changes which are not represented by these conditions, for
example, the intersection of curves from different brancheg;ofThese bifurcation of
global nature cannot be detected using local analysis adopted here.
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