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INTRODUCTION AND SUMMARY 

P = (pi,) shall denote an infinite matrix with constant elements, and 
P” = (pj;)) shall denote its powers, when they exist. Until Section VII, 
P will not be assumed stochastic. 

This paper generalizes to the nonrecurrent case Derman’s result [l] on the 
existence of an invariant measure for a recurrent Markov chain. The Cesaro- 
type limit ratio, li%,, X~l=,p~~‘/Z~=, $2, used by Derman cannot be the 
appropriate one for nonrecurrent chains since now limn+m xrZ, pi:’ < 0~ and 
thus the first terms exert a permanent effect as n -+ 00, whereas under any 
proper summability method the effect of individual terms should approach 
zero. Also, as seen in Section II, for nonrecurrent chains it is necessary to 
form the ratios from elements of a row of Pa rather than from the diagonal, 
as done by Derman. 

If the individual limit ratios limn+m pj,Tj)/pg’ do happen to exist, they will 
certainly suffice. In the general case, however, it is necessary to have a ratio 
summability method which “smoothes” when the individual limit ratios 
do not exist and which does not have the defect, discussed above, of the 
Cesaro-type for nonrecurrent chains. This motivates the introduction of a 
general type of limit-ratio: the K-limit of Section I. Some special K-limits 
are mentioned, of which the Euler-type E-limit will be subsequently the 
most useful. 

The concept of K-limit is applied to matrices in Section II, where the basic 
quantity A is defined. Theorem 2.1 is the main theorem of this paper. It is 
to be emphasized that Theorem 2.1 is valid for matrix P where the pij may be 
negative or even complex-valued; we have not yet specialized to stochastic 

* The main part of this paper forms a portion of the author’s Ph. D. dissertation at 
the University of Virginia (1961). The author wishes to express here his thanks to 
Dr. E. J. McShane, whose valuable advice was very helpful in the development of 
this thesis. 
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matrices. In fact, it can be seen from the proof that the theorem is actually 
valid for a “matrix” of uncountably many rows and columns; countability 
is not used. The example of Section III shows that something like our 
column-finiteness (Definition 2.1) is necessary for Theorem 2.1. 

Section IV presents lemmas involving binomial coefficients which will be 
crucial for Theorem 5.1. Theorem 5.1 will permit us to transform from the 
often convenient d-limits of Section V, which arise in a quite natural manner 
in Markov chains of period d to the more structural E-limits. The d-limit 
is not a K-limit, and Theorem 2.1 does not apply to d-limits, while it does 
to E-limits. The example of Section VI further brings out the “accidental” 
and nonstructural nature of the d-limit. 

Finally, we specialize to stochastic matrices in Section VII. The concept 
of h-invariant measure is here defined and seen to coincide with the ordinary 
invariant measure when h = 1. Intuitively, the h-invariant measure repre- 
sents a “pseudo-stationary” or “pseudo-equilibrium” distribution in the 
sense that if the states of the Markov chain were originally provided. with 
large numbers of particles in proportion to the values of the components of 
the X-invariant measure, and the particles then move from state to state, 
governed by the transition probabilities of the chain, then the ratios of the 
numbers of particles in the various states would remain constant, though 
there would be a constant “rate of decay” or drift of the particles to “outside,” 
which is measured by h. 

The theory of Section VII even applies in a significant manner to a tran- 
sient (nonessential) class of a finite Markov chain (the theory is trivial for a 
finite ergodic (essential) class, since in this case it is not necessary to take 
ratios as the limit probabilities are not zero). It is seen from its proof that 
Theorem 7.1 is actually valid for any substochastic matrix; nowhere is the 
condition cp,, = 1 used. For a finite chain, the d-limit vector can be shown 
to always exist. It then follows from Theorem 7.1 that the E-limit vector 
exists and is a h-invariant measure for the substochastic matrix corresponding 
to the finite transient class. h will be less than 1 in this case; the “outside” 
towards which the particles escape in the preceding discussion is simply the 
ergodic classes of states. 

Periodicity in Markov chains, without bringing in any essentially new 
structure, often proves to be quite a nuisance. As seen in Sections V-VII, 
the E-limit is useful in coping with periodicity. The assumption of the exist- 
ence of the d-limit vector amounts to assuming the existence of the limit 
ratios lim pc?)/pcnl 

03 0” 3 except for “phase shifts,” and the E-limit then smoothes 
correctly (which the d-limit cannot do) over the periodic positive and zero 
probabilities. 

On the other hand, even when d = 1, it is well known that the d-limit 
vector may not exist (see Chung [2, p. 551). In such cases, the E-limit can 
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play a deeper role in smoothing than merely to compensate for periodicity. 
It is conlectured that the E-limit may be powerful enough to guarantee the 
existence of E-limit vectors for all Markov chains. If this is actually false, 
however, it would still be desirable to know whether there exists any “uni- 
versal” K-limit, which will serve for all chains; or even if an appropriate 
K-limit may be found which may vary with the chain. 

For recurrent chains, it can be seen that the Cesaro-limit can be used (the 
critical equation (1.1) is automatically satisfied in this case), and that h will 
be 1; thus the present paper generalizes Derman [l]. The C-limit does not 
exist for transient chains, since (1.1) is not satisfied. 

The results are applied in Section VIII to sums of independent random 
variables. Illustrative examples for Theorem 8.1 are given in Section IX. 

The concluding section X generalizes the concept of time-reversed Markov 
chain to K-limits. 

D. Vere-Jones [3] has obtained some results of a related nature to those 
given here, by using the concept of geometric ergodicity. 

I. K-LIMITS 

For a sequence of fractions, the statement “the limit exists” shall mean that 
the fractions are defined for n large enough and that the limit of the sequence 
obtained by deleting the finite number with zero denominators exists. 

DEFINITION 1.1. Let x,,, y,,, tt = 0, 1,2, ***, be numbers and K(n, s) a 
function of the nonnegative integers n, s. Define 

provided that the limit exists and that, for every positive integer t 

lim ~ K(n’ ‘) x,+, = lim Z: K(n, ‘) ‘, 
n-+w 25 m 4 Ys+t *-K0 TX w, s) y, 

In most apphcations, it will be true that K(n, s) 2 0 and that K(n, s) = 0 
for s > n. 

DEFINITION 1.2. The Cesaro limit or C-lim is the K-limit, when 
K(n, s) = 1 for s < n and K(n, s) = 0 for s > tt. 

DEFINITION 1.3. The Euler limit or E-lim is the K-limit, when 
K(% s) = (3. 
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Note that when K(n, s) = 1 for s = tt and K(n, s) = 0 for s # n, we obtain 
the ordinary limit. 

II. K-LIMIT VECTORS 

DEFINITION 2.1. A matrix is column-finite if every column has a finite 
number of nonzero elements. 

DEFINITION 2.2. For a given K(n, s), the K-limit (row) vector of matrix P 
is u = (q), where ui = K-lint,,, (p:‘; pb;;‘), if it exists. 

DEFINITION 2 3 K-lim, . . (p!n+“* ,pi;‘), if it exists, will be denoted 
by hij. h, will be denoted sigply’by h, or sometimes by K-limit X when it is 
necessary to call attention to the specific K-limit used. 

LEMMA 2.1. Let P have K-limit vector u with ui # 0, uj # 0. Let hoi 
and /\sj exikt. Then h,, = hsj. 

PROOF OF LEMMA 2.1: 

z K(n, s) pr’ C K(n, s) P$-_ 
2 K(n s) p”!” 
r, K(]1, s) $’ 

= I: 0, s) ~2’ 2 K(n, s)pp’ z K(n, s)p&’ 
‘c K(n, s) prl’ X K(n, s) ~2’ C K(n, s) P,$’ 

x K(n, s) p$f” E Kh 4 P;) 

is true whenever the denominators are not 0. By hypothesis, the limits of each 
of the three factors on the right exist and are, in fact, Uj/U<, hi, and u&q, 
respectively. (Relation (l.l), with t = 1, must be used for the first factor.) 
Since &j is the limit of the left side, the lemma is proved. 

LEMMA 2.2. Let P be column-finite and have K-limit vector u with ui # 0 
for some i. Then A,,,i exists. 

PROOF OF LEMMA 2.2: 

2 K(n, s) P$+‘+~’ 
8=1 

3 K(n, s) 2 pF”‘pji 
s-1 i 

5 K(n, s) p;;t’ 
.S=l 

. 2 K(n, s) ~(2~’ 
a==1 

Since only a finite number of the pj, are not 0, for fixed i, by the hypothesis of 
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column-finiteness, the right side can be written as 

z K(n s)p(s+t’ 

L ItI:, K(% 4 Pz+t’ Pji- 
xc, K(n, ,p$+, 

_ 2 zsn: s)pi+I) 
j z K(n, s)pF,pft* 

x K(n, s) p&+t’ 

Now taking limits and again using the fact that there is only a finite number 
of nonzero terms in the summation because of the column-finiteness, the 
order of limit and summation can be interchanged, and we have 

proving the lemma. 

THEOREM 2.1. Let matrix P be column-jkite and let its K-limit vector u 
exist. Then, fw every i, & ujpjr = Au*, with h as in Definition 2.3. 

PROOF OF THEOREM 2.1. Since us = 1 # 0, Lemma 2.2 guarantees the 
existence of A,,,, = A. Now if ui # 0, Aai = X by Lemma 2.1. Thus 

and 

If, however, ui = 0, then Au< = 0. We have 

lim ~ K(n, s) p::+l’ = lim ~ K(n, s) Pdi”“’ lim ~ K(n, s) Pi” 
n+m r, K(n, s) p$’ n+co r, K(n, s)pp) n-so3 x K(n, s) ~(2 ’ 

But the first factor on the right is Ui (using here relation (1.1), with t = 1). 
The product is then O(h) = 0, proving that (2.1) is valid whether or not 
UC = 0. 

Now 

? UfPf{ = 
lim ~:21 K(n, ‘) Pan’ 
n-m C:$(n, s) pg) 1 Pfr = *im 

n-m2 2 C, K(n, 4 P:;’ ~9, 
j lZ,K(n, 4 P&’ 

E K(n, s) P::+~’ 
= i&i 2: K(n, s)p$ ’ 

since by column-finiteness, for any fixed i, only a finite number of the p,.< 
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will be nonzero, thereby permitting interchange of order of limit and summa- 
tion. Thus we have proved 

(2.2) 

Comparing (2.1) and (2.2) now proves the theorem. 

III. EXAMPLE. THEROLEOFCOLUMN-FINITENESSINTHEOREM 2.1 

We shall consider below a certain nonrecurrent stochastic renewal-type 
matrix which is not column-finite. We shall prove that P has a K-limit 
vector u (in fact, the K-limit here will be simply the ordinary limit). However, 
u will not satisfy UP = Au; indeed, there will be no positive vector v what- 
soever, such that VP = av, for any a. This generalizes Derman [4], who 
considered only the case a = 1. 

Let P = (pij), i,j = 0, 1, *“, be a nonrecurrent, irreducible renewal-type 
stochastic matrix, so that, denoting p,,,,, by qk, we have 0 < qk < 1, 

i&=1-qQk,andp,,=Owhenj#O,j#k+l. 
Suppose that, for some a > 0, and some vector v = (vi), with v0 = 1 

and vi > 0 for all i, it is true that 

auk = 2 Vjpjk, for every k. 
j 

From (3.1), letting k = 0, we obtain 

and, for k > 0, 
4041 a** 4k-1 

vk=----2--. 

Substituting now from (3.3) in (3.2), 

(3.3) 

a = (1 _ qo) + Qo(l - 41) + wh(1 - Qe) + . . . 
a a2 

or 

0 = (1 - a) (1 + $ + ‘9 + ***) 

But since 0 < qt < 1 and a > 0, this is not possible unless a = 1. However, 
according to Derman [4], for a = 1, there exists a positive vector satisfying 
(3.1) only if P represents a recurrent chain. Thus, if P is renewal-type and 
not recurrent, there exists no positive vector satisfying (3.1) for any a > 0. 
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We consider now the following specific choice for P. Let q. = 213, 
qwl = (4qk - 1)/3q, for k = 0, 1, *a.. We shall prove that 

(3.4) 

Using the probability f g) of first return to 0 after n steps, we have 

= PO&r *.* Pm-1.&w-1(1 - !InY(l - h-1). 

Substituting now q,, = (4q,+r - 1)/3q,-, from the inductive definition of qn 
and simplifying, we obtain 

proving inductively that f g' = 3-” for n > 0, since f g) = 1 - q. = l/3. 
Now using the relation 

,g+1, = f$"' +fg'pl$ + *a. +f$p$' 

together with f o. c-1 = 3-n, (3.4) can be proven by induction. 
Since now Z,pg’ < 00 follows from (3.4), P is nonrecurrent. 
It is Seen from (3.4) that pC$)/pc~oo, is independent of n, for fixed i. Since 

it follows that p w /p (” ) (&,I is independent of n, and that therefore 

(fl) 
Pot jiia - = ill p(n) 

00 

certainly exists, and U( > 0. It can similarly be seen that 

(n+l) 

lim - = PO0 
P$’ 

h n-+03 

exists and, in fact, h = 213. 
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IV. SOME LEMMAS INVOLVING BINOMIAL COEFFICIENTS 

For later application to the Euler limit, we state two lemmas, the second 
of which is a generalization of Grossman [5]. Grossman considered only the 
special case where x,, = 1, for all n. Proofs will not be given here, but can be 
found in the author’s doctoral dissertation at the University of Virginia (1961). 
The first is quite simple and straightforward. The second is extremely long 
and cumbersome; it would be interesting to know if a shorter proof could be 
found. 

It is understood that, in the binomial symbol (3, a and b are integers with 
a > 0, and (3 = 0 if b < 0, or if b > Q. 

LEMMA 4.1. Let d be a positive integer and let X~ be a sequence of non- 
negative numbers, with itzjkitely many not zero. Let M be a nonnegative integer 
and a be any integer. Then 

LEMMA 4.2. Let x,, be a sequence of nonnegative numbers, onb$nitely many 
of which are zero, such that lim,,, xn+Jx,, = X exists and X # 0. Let d be a 
positive integer and a be uny integer. Then 

lim 3 (sd ; a) x’ 
n+cc m n 

= X-0. 

a 1 s=o sd ” 

V. d-LIMITS 

DEFINITION 5.1. Let d be a positive integer and let x,,, y,, be numbers 
such that x, = 0 except possibly for n = a (mod d) and y,, = 0 except 
possibly for n = b (mod d), with 0 < a < d, 0 < b < d. Define the 
d-limit+,,m (xn; y,J as lim,,, JC~~+JY~~+~, s = 0, 1,2, ..., provided that the 
fractions are defined for large s, and that the limit exists. 

T-REM 5.1. Let x,, y,, be sequences of nonnegative numbers as in the 
abwe d&t&n. Let d-lim (x,,; y,J and d-lim (x,,,; x,,) both exist. Denote 
d-lim (x”+d; x,,) by X and let X > 0. Let r be any integer. Then E-lim (x,,; y,,) 
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cd E-lim (xf&+r; x+J exist rind, in fuct, 

and 
E-lim (x~ ; yJ = X ca-ar/a(&lim (x,; yJ) 

Slim (+,; xJ = Xrld. 

PROOF OF THEOREM 5.1. Let # be any positive integer. By Lemma 4.1, 

(0 d 
2 0 lim P-d--+ ’ xJ+r+ t 

n+m m n - 1. 

ZO 
X 

s s+r+t 
r-0 

Therefore 

x8+ t 

m 

W 
n 

s+d--r 
= lim ‘--O ~ n 

1 %+a+ t 

n-sm 

30 s x8+ t 
J=. 

= x(++)/dX = XW, 

using Lemmas 4.1 and 4.2. Also, 

n a> 
lim ’ ’ 

Jc, z L ; .I Xd+a 
= lim ‘.’ 

n-m 

I)0 * 
; YJ n-rm z dd “+ J Ysd+b 

= Xcb-d)ld(d-lim (SW; y=)), 

using Lemmas 4.1 and 4.2. Finally, it can be easily verified that Eq. (1.1) 
is again satisfied here. 
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VI. EXAMPLE ILLUSTRATING THE VARIOUS TYPES OF LIMIT RATIOS 

Let 

and 
x, = l/2,0, l/8,0, l/32,0, --* 

y,, = 0, l/4,0, l/16,0, l/64, a**. 

The ordinary limih.+m (x%/m) does not exist because of 
denominators. The C-lim (x,; y,J does not exist, since 

the alternating zero 

j$% 

lim s-0 = 2, 
n-vx 

2 YS 
s=o 

while 

i %+1 

lim s-4 - 1 
n-+m 

2 

21 
Ys+1 

s-0 

violating (1.1). The d-lim( JF,; y%) does exist and is 2. The quantity X of 
Theorem 5.1 is here l/4; a = 0, b = 1, and d = 2. Hence, by that theorem, 
E-lim (x,; y,J = * (2) = 1. Note that if the sequences JC,, y,, are altered 
by deleting just the first term of each, the d-limit changes from 2 to l/2, 
while the E-limit remains 1. 

VII. STOCHASTIC MATRICES 

Let P be now a stochastic matrix corresponding to an irreducible Markov 
chain with an infinite number of states, having stationary transition proba- 
bilities and period d. For d = 1, we have the aperiodic case. 

See Feller [6] or Chung [2] for the terminology and the facts stated below 
without proof. 

DEFINITION 7.1. Denote by aij the unique integer such that 0 < aij < d, 
and 9:: = 0 if 7t + aij(d). 

Note that aii = 0. 

DEFINITION 7.2. The d-limit (row) vector of P is the vector u = (uJ 
where uj = d-li%,, (pg); pb;l)), if this limit exists. 
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Using the fact that pi;’ > 0 for it G au(d) and tt large enough, we see 
that the denominators of the fractions involved in the definition of the 
d-limit vector will ultimately be nonzero. 

DEFINITION 7.3. A nonnegative vector u which satisfies Zj Ujpjd = hui 
for every i will be called a X-invariant measure for P. 

THEQREM 7.1. Let P be a column-jkite irreducible stochastic matrix of 
period d 2 1 for which the d-limit row vector exists. Then the d-limit vector 
is positive and the quantity X of Theorem 5.1 exists and is positive, so that this 
theorem can be applied. Hence the E-limit row vector and E-limit h exist and are 
positive, and by Theorem 2.1, the E-limit vector is a A-invariant measure of P. 

PROOF OF THEORRM 7.1. We prove first that the d-limit row vector is 
positive. Denote a,, simply by o. Then 

Since P is irreducible, there exists an integer N such that pp’ = (I > 0. 
Then 

and 

p$d+Nd+o, 2 p$d)p;‘Idso) = ,@.$U 

tsd+Nd+a’ 
P0i 

pw, 2 ‘y, for all s. 
00 

(7-l) 

Assume now the only other possibility: that d-lim (&);&)) = 0. Then 
there exists an integer M > N such that p$d+“‘/p$’ < OT for s = M = N + t 

or Pw (td+Nd+a)/p$d) < a, contradicting (7.1) and thus proving the positivity 
of the d-limit vector. 

We can now prove the existence and positivity of X as follows. 

(ad) (d) 
(sd+d) 

PO0 
PO, PjO 

-= 
(ad) 

PO0 
(sd) ’ 

PO0 

the summation being taken over all indices (states). As previously remarked, 

PO0 (sd) > 0 for s large enough. We take now the limit of both sides as s -+=. 
Since P and hence Pa is column-finite, there are only a finite number of 
nonzero terms in the summation, and we can interchange the order of limit 
and sum, giving 

(sd+d) 
PO0 lim - = (d) 

s+m pCsd1 2. [ P lim ~ 
j” 8-m 1 . 

00 .* PO0 
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Now lims+m pr’/p&‘:” exists for all j and is either 0, if as, # 0, or 
d-lim (p$’ ; p$)) which exists by hypothesis, if asj = 0. This proves the 
existence of lims+oo p$d+d’/p@l, which is X = d-lim (P($‘~‘; p(g). 

To prove X > 0, we proceed as follows. 
There exists an integer k such that aOIc = 0 and pit’ # 0, since otherwise, 

for every j, either asj # 0 or pje - (d) - 0 For any s and any j, it would then be . 
true that pi:d)pjf) = 0, since psd’ = 0 if aai # 0. But then 

P (sd+d) 
00 

= Zp$d’p;;’ = 0, 
j 

and this is false for large s; so such a k must exist. 
Now 

(sd+d) 
PO0 > PEPici? 

p(sd) - 0’ 
00 PO0 

Since aOk = 0, then 

di&(p$);P$)) =~L~‘~. pw 
00 

But we have already proved that the d-limit vector is positive, and 

(sd+d) 

lim &!E-- 
( sd) 

8’rn pg’ 
2 lim A!?!- m-rm p&d”’ 1 p$ > 0, 

completing the proof of the theorem. 

VIII. APPLICATION TO SUMS OFINDEPENDENT RANLWM VARIABLES 

Let S, be the sum of n independent identically distributed integer-valued 
random variables, which take on values a, with probability pt. Using 
the notation of Kemeny [7], we define f(s) = zpisDi, g(s) = sf’(s)/f(s), 
and h(t) = g-‘(t). Th en, without any essential change in the proof, 
equation (2) of Kemeny can be extended to the case where the Markov 
chain corresponding to S, is irreducible and has arbitrary period d and 
becomes, taking t = 0, Q = i, and a’ = 0, 

lim WSn+b = ;I WH” 
n-m Pr[S, = 0] = [f(h(O))]-” ’ (8-l) 

where now n is restricted by n = 0 (mod d) and b = aoi (mod d), with sod as in 
Definition 7.1. The quantity on the left is then seen to be a d-limit ratio, and 
changing the notation slightly, we have, for b = aoi> 
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and, for i = 0 and b = d, 

If now the chain is column-finite, which means that only a finite number 
of the a, correspond to nonzero pr, then Theorems 7.1 and 5.1 can be applied, 
and we have 

X = d-lim (p$+d); p$) = [ f(h(O))]” 

/\ = E-lim (pg+l); pg)) = X1ld = f(h(0) 

ut = E-lim (~2’ ; &‘) = X-%*‘d[d-lim (&’ ; &‘)] 

We have thus proved : 

THEOREM 8. I. For an irreducible chain of per&d d determined by the sum 
of independent identically distributed integer valued random variables w&h 
take art only a finite number of distinct values v&h nonzero probabilities, the 
E-limit row vector and E-limit h exist and are given by u( = [h(O)]-{ and 
A = f(h(0)). The E-limit vector (a geometric sequence) is then a A-invariunt 
measure, by Theorem 2.1. 

IX. EXAMPLES OF ~-INVARIANT MEASUFU 

A. Example where h < 1: Consider the one-dimensional generalized 
random walk where the particle moves either one step to the left or two steps 
to the right each time, with equal probabilities of l/2. Applying Theorem 8.1, 
we have here 

d = 3, P-1=Pz=& f(s) = q/ , 
2.9-l 

g(s) = s(s’ + 1) ’ 

so that h(0) = g-l(O) is obtained by solving 29 - 1 = 0. Thus h(0) = 2-ljs, 
u( = 2flS, and h = (3/2)‘j/” ( 1. 

B. Example where h = 1 even though chain is nonrecurrent: Consider 
the symmetric random walk in three dimensions. By equation (12), p. 153 
of Polya [8], limn+oo n31zpg) = c with c a constant. Thus 

lim n+l “*pa’ 
(4 

1 
n po=’ 

00 
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(‘an+2) 

lim !?E-- 
n-tm pbl) = d-lim (pg+a); pg)) = 1. 

M) 

Hence by Theorem 8.1, 

E-lim (pp) ;p;q = h = 1. 

It can be also easily seen that Us = 1 is the h-invariant measure. 

X. REVERSE MATRIX 

DEFINITION 10.1. Consider a Markov chain given by stochastic matrix P 
and starting, at time 0, in state 0. The K-limit conditional probability of state j 
given state i after the next step is defined to be K-lim (p$)p,i; p$+“), if it 
exists, and will be denoted by fitj. 

Note that p$‘p,/p~+” is, if the denominator is not zero, the ordinary 
conditional probability of state j after the nth transition, given state i after the 
(n + 1)st. 

THEOREM 10.1. Let P be stochastic. Let the K-limit row vector u and the 
K-limit X exist and let II > 0, h > 0. Then, for all i, j, $ij exists and equals 
u*PjJtl<h. If, in addition, u is a X-invariant measure for P, then P = (&) is 
stochastic. 

PROOF OF THEOREM 10.1. 

jij = Z$lim (pi;‘pji ; pi;+l)) = pjt K,-mm (PA;); pA:+l)) 

= pji lim ;I: K(% 4 P2 Tz K(% 4 Ps”,’ 
n+m x K(n > s)p’? #Jt x a 4 P$“) 

Is K(n, 4 P f 

= Pji(%l”i) (l/h)~ since ui # 0 and h # 0. 

If now xujpji = Au< for all i, then 

and P is stochastic. 
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COROLLARY. Let P be a column-jinite stochastic matrix which has K-limit 
row vector u with u > 0. Then P is stochastic. 

PROOF OF COROLLARY. The existence of h and the h-invariance of u follow 
from Theorem 2.1. The fact that X > 0 also follows from 2, u,pji = Aui 
since Ui > 0 for all i and pji 2 0. 

REMARK. Under the conditions of Theorem 10.1 or its Corollary, P is 
stochastic and thus again defines a Markov chain. This new chain may be 
considered as the time-reversed chain, and generalizes the usual concept of 
time-reversal (see Feller [6]). 
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