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a b s t r a c t

This paper investigates a nonlinear inverse problem associated with the heat conduction
problem of identifying a Robin coefficient from boundary temperature measurement.
A Bayesian inference approach is presented for the solution of this problem. The prior
modeling is achieved via theMarkov random field (MRF). The use of a hierarchical Bayesian
method for automatic selection of the regularization parameter in the function estimation
inverse problem is discussed. The Markov chain Monte Carlo (MCMC) algorithm is used to
explore the posterior state space. Numerical results indicate thatMRF provides an effective
prior regularization, and the Bayesian inference approach can provide accurate estimates
as well as uncertainty quantification to the solution of the inverse problem.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Inverse heat transfer problems (IHTP) have numerous important applications in various branches of engineering and
science, including the determination of the boundary condition, thermal properties, unknown heat source, and unknown
heat transfer coefficients, etc. A typical feature of the IHTP compared to well-posed direct heat transfer problems is that the
existence, uniqueness and stability of their solutions are not always guaranteed, see e.g. [1]. For some discussion of inverse
techniques for heat transfer problems, one can consult Alifanov [2] and Beck et al. [3].
In this paper, we are interested in estimating the heat transfer coefficient, hereafter denoted as the Robin coefficient,

of a parabolic problem, which models the convection between the conduction body and the ambient environment, from
overspecified surface temperature. This inverse problem has recently received the attention of many mathematical studies.
Studies on the uniqueness and conditional stability can be found in [4–6]. Several numerical methods have been proposed
for determining the heat transfer coefficient. Masson et al. [7] have applied the iterative regularization to estimate the two-
dimensional heat transfer coefficient. Yang et al. [8] applied an iterative method, namely the conjugate gradient method, to
estimate the heat coefficient, while the finite difference method (FDM) was employed to discretize the parabolic equation.
Ling et al. [9] have applied a noniterative finite element-based inverse method to estimate the heat transfer coefficient. The
boundary element method with the overspecified data on the boundaries has been studied in [10,11]. Recently, Chen and
Wu [12] proposed a hybrid inverse method to predict the distribution of the heat transfer coefficient and surface heat flux
for two-dimensional heat transfer coefficient. Besides, the sequential function specification method [13,14] has also been
used in estimating the transient heat transfer coefficient.
The above deterministic inverse techniques based on exact matching or least-squares optimizations, yield only a point

estimate of unknowns without rigorously considering and analyzing stochastic nature of the measurement errors and
without quantifying the associated uncertainty in the inverse solution. However, in practical applications, uncertainties
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are ubiquitous since the data are always contaminated by the inherent measurement errors and only known with certain
confidence. Meanwhile, the forward model may be imperfect and imprecise due to the presence of unmodeled physics.
Hence, it is necessary to incorporate these uncertainties in the inverse methodology. Recently, several methods for the
inverse analysis under uncertainties have been proposed, e.g. sensitivity analysis [15], the extended maximum likelihood
method [16], the spectral stochastic method [17,18], and the Bayesian inference approach [19].
Among the solution methods considered, the Bayesian inference method has a number of distinctive attributes. In

Bayesian inference, a prior distribution model is combined with the likelihood to formulate the posterior probability
density function (PPDF). From this posterior distribution, one can estimatemeans,modes,marginal distribution and credible
intervals by averaging over the posterior. Even when seeking only a point estimate, the Bayesian method can provide more
flexible regularization in the sense that the nontrivial problem of selecting an appropriate regularization parameter is
resolved through hierarchical Bayesian models. With the recent propagation of Markov chain Monte Carlo (MCMC) [20]
methods, the Bayesian inference approach has attracted much interest in diverse applied inverse problems, including
geophysics [21], image processing [22], and heat conduction problems [23–25].
In this work, we extend the Bayesian inference method to reconstruct the Robin coefficient distribution on a boundary

surface in one-dimensional transient inverse heat transfer problems. More recently, Jin [26] employed the Bayesian
inference approach to recover the Robin coefficient in steady-state heat conduction problems. Parthasarathy and Balaji [27]
proposed the Bayesian inference approach to estimate scalar heat transfer coefficient from boundary measurement for
the unsteady-state heat conduction, but they only consider the heat transfer coefficients to be constants. Nevertheless,
publications have not been found so far to use this method for solving the inverse problem of determining the Robin
coefficient which is taken to be time-dependent in the parabolic equation.
The outline of the paper is as follows. Section 2 introduces the mathematical definition of the problem, and discusses

its finite difference discretization. Section 3 introduces the general framework of Bayesian inference with an emphasis on
hierarchical Bayesianmodels. The numerical exploration of the posterior state space via theMCMC is discussed in Section 4.
Several numerical examples are presented in Section 5 to illustrate the efficiency of the numerical algorithm. Finally, in
Section 6, some concluding remarks are given.

2. Mathematical formulation of the problem

In this section, we start by discussing the mathematical model for the problem of determining the Robin coefficient of
the parabolic equation. The implementation of the forward problemwith a finite difference approximation is also discussed
in detail.

2.1. Mathematical model

Consider the following initial boundary value problem for the parabolic equation

∂u
∂t
(x, t) =

∂2u
∂x2

(x, t), (x, t) ∈ Q := (0, 1)× (0, tf ], (2.1)

u(x, 0) = g(x), x ∈ [0, 1], (2.2)

−
∂u
∂x
(0, t)+ ρ(t)u(0, t) = h0(t), t ∈ [0, tf ], (2.3)

∂u
∂x
(1, t)+ ρ(t)u(1, t) = h1(t), t ∈ [0, tf ], (2.4)

where tf > 0 is an arbitrary fixed time of interest, g, h0, h1 are given functions, and u represents the temperature. ρ(t) ≥ 0
is the time-dependent heat transfer coefficient representing the corrosion damage. Classically, it is interpreted as a Robin
coefficient of energy exchange and characterise the contribution that an interface makes to the overall thermal resistance
to the system and is defined in terms of the heat flux across the surface for a unit temperature gradient. Notice that if
ρ(t) is given, the problem (2.1)–(2.4) is a well-posed direct problem, which has been extensively studied. Unfortunately, in
many practical situations, the characteristics of the heat transfer coefficient are always unknown. Therefore, the problem
is mathematically under-determined and additional data must be supplied to fully determine the physical process. In this
paper, the overspecified condition is given by the following measurement data

Y (t) = u(1, t), t ∈ [0, tf ]. (2.5)
Let us denote with F(ρ) the vector of computed temperatures at the boundary x = 1, where the operator F is defined by

F : ρ 7→ u(1, t; ρ). Then the inverse problem is to solve the following nonlinear operator equation
F(ρ) = Y . (2.6)

Like most inverse problems, the inverse Robin problem is also ill-posed [8], i.e. the existence, uniqueness and stability
of its solution are not always guaranteed. In practice, the measurement data inevitably contaminated with errors that may
cause large deviations of the solution from the exact one. In this work, we use Bayesian inference approach to deal with the
instability of the inverse problem.
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2.2. Numerical implementation of the direct problem

Various techniques can be used to discretize the operator F. In this subsection, we employ the finite difference method
(FDM) to solve Eq. (2.6).
We discretize the coordinate xwithM uniformly spaced grid points xi = xi−1+ h, x0 = 0, xM = 1, i = 1, 2, . . . ,M, h =

1
M represents the discretization intoM subintervals of the space variables. LetN be a positive integer, and tn = tn−1+τ , t0 =
0, tN = tf , n = 1, 2, . . . ,N, τ =

tf
N . Denoting u

n
i as the approximate value of u(xi, tn), the FDM used to discretize equations

(2.1)–(2.4) is as follows [28]:
un+1i − u

n
i

τ
=
1
2h2

(uni−1 − 2u
n
i + u

n
i+1 + u

n+1
i−1 − 2u

n+1
i + u

n+1
i+1 ),

u1i = g(xi),
un2 − u

n
1

h
+
un+12 − u

n+1
1

h
= [ρ(tn)un1 + ρ(tn+1)u

n+1
1 ] − [h0(tn)+ h0(tn+1)] +

h
τ
(un+11 − u

n
1),

unM − u
n
M−1

h
+
un+1M − u

n+1
M−1

h
= −[ρ(tn)unM + ρ(tn+1)u

n+1
M ] + [h1(tn)+ h1(tn+1)] −

h
τ
(un+1M − u

n
M).

In matrix notation, the above equations can be written as:
AUn+1 = BUn + C,
U1 = G,

where the vectors
Un = [un1, u

n
2, . . . , u

n
M ]
T,

C =
τ

h
[h0(tn)+ h0(tn+1), 0, . . . , 0, h1(tn)+ h1(tn+1)]T,

G = [g(x1), g(x2), . . . , g(xM)]T,
and the matrices A and B are (M ×M) tridiagonal matrices with

A =



1+ r +
τ

h
ρ(tn+1) −r

−
r
2
1+ r −

r
2

. . .
. . .

. . .

−
r
2
1+ r −

r
2

−r 1+ r +
τ

h
ρ(tn+1)


,

B =



1− r −
τ

h
ρ(tn) r
r
2
1− r

r
2

. . .
. . .

. . .
r
2

1− r
r
2

r 1− r −
τ

h
ρ(tn)


,

where r = τ

h2
. The solution can be obtained using the method of Gaussian elimination.

In the remaining part of this paper, the following system relationship is assumed
Y = F(ρ)+ ω, (2.7)

where ω denotes the random error and contains both the random measurement error and the numerical error. Then the
inverse problem is stated as follows: find an estimate ρ̂(t) of the real Robin coefficient ρ(t) such that the computed
temperatures with this estimate can match Y in some sense.

3. Bayesian inference approach

The Bayesian inference approach has recently been used with great success to solve a variety of engineering problems
[21–25]. For detailed theoretical grounds of the method, we refer to the monograph [19]. Motivated by the encouraging
results reported in these works, we aim to adapt this method for an inverse problem of estimating the heat coefficient in 1D
parabolic equations in the current investigation.
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In the Bayesian statistical inverse approach, all the variables included in the model are modeled as random variables.
In contrast to the traditional formulation of the inverse problem, the solution of the Bayesian statistical inverse problem is
the conditional probability density function of the unknown parameters given the measurement. This conditional density
function is called the posterior probability density function (PPDF) and can be derived according to Bayes’ formula:

p(ρ|Y ) ∝ p(Y |ρ)p(ρ), (3.1)

where p(ρ|Y ) is the PPDF, the function p(Y |ρ) and p(ρ) are known as the likelihood and the prior density function, respec-
tively.
The construction of the likelihood function is often the most straightforward part in the Bayesian statistical inversion. A

most common and simple model assumes that the random errors in Eq. (2.7) are independent identically distributed (i.i.d.)
Gauss random noise with zero mean and standard deviation σ . Then the likelihood p(Y |ρ) can be written as

p(Y |ρ) ∝ (σ 2)−ny/2 exp
(
−
(F(ρ)− Y )T(F(ρ)− Y )

2σ 2

)
, (3.2)

where ny is the dimension of the vector Y .
In the Bayesian inference approach to inverse problems, the construction of the a priori density is the most crucial step.

A useful tool for prior modeling is Markov random field (MRF). The MRF model has been shown to perform well in several
application areas. For a further insight, one may refer to [23,25]. In the current study, the following simple MRF is taken:

p(ρ) ∝ λm/2 exp
(
−
1
2
λρTWρ

)
, (3.3)

where m is the dimension of the vector ρ, λ is a scaling parameter. The entries of the m × m symmetric matrix W are
determined as Wij = ni if i = j, Wij = −1 if i and j are adjacent, and 0 otherwise. Here, ni is the number of neighbors
adjacent to site i.
With likelihood (3.2) and the prior model (3.3), the PPDF p(ρ|Y ) can be evaluated as

p(ρ|Y ) ∝ exp
(
−
(F(ρ)− Y )T(F(ρ)− Y )

2σ 2

)
exp

(
−
1
2
λρTWρ

)
. (3.4)

From the PPDF, various point estimators can be computed such as the posterior conditional mean (CM) estimator

ρ̂CM = E(ρ|Y ) (3.5)

and the maximum a posteriori (MAP) estimator

ρ̂MAP = argmaxρp(ρ|Y ). (3.6)

The MAP estimate of ρ can then be derived as:

ρ̂MAP = argminρ{(F(ρ)− Y )
T(F(ρ)− Y )+ λσ 2ρTWρ}, (3.7)

which is exactly similar to the Tikhonov regularization method. Therefore, the prior distribution provides regularization
to the inverse problem and λ assumes the role of a regularization parameter. However, the selection of the regularization
parameter has never been trivial in almost all deterministic inverse techniques. The Bayesian inference approach addresses
the issue flexibly by letting the data determine an appropriate regularization parameter and thus provides an elegant
approach to choose λ automatically. The parameter λ in (3.3) can be treated as random variables in Bayesian inference,
which is often termed as hyper-parameter. A hierarchical Bayesian PPDF is then formulated as follows:

p(ρ, λ|Y ) ∝ p(Y |ρ, λ)p(ρ|λ)p(λ). (3.8)

A standard way to select priors for the hyper-parameters is to use the conjugate priors [29]. For Eq. (3.8), Gamma
distribution is chosen as a prior for λ

p(λ) ∝ λα−1e−βλ. (3.9)

With the hyper-priors defined above, a hierarchical Bayesian posterior distribution can be computed as follows:

p(ρ, λ|Y ) ∝ exp
(
−
(F(ρ)− Y )T(F(ρ)− Y )

2σ 2

)
λm/2 exp

(
−
1
2
λρTWρ

)
λα−1e−βλ. (3.10)

4. Posterior state space exploration

In most of the cases, the PPDF (3.10) is nonstandard and implicit, and the dimension of the posterior state space may be
high. Due to the above reasons, statistical sampling algorithms such as MCMC simulation must be introduced to explore the
posterior state space. In the following of this section, ρ denotes the unknown random vector, p(ρ) denotes any probability
density function of ρ.



844 L. Yan et al. / Journal of Computational and Applied Mathematics 231 (2009) 840–850

The idea of general Monte Carlo simulation is to draw a set of i.i.d. samples {ρ(i)}Li=1 from the target distribution p(ρ),
where L is the size of the sample set. For the PPDF (3.10), the key step in Monte Carlo simulation is to draw the sample set
from this high dimensional and implicit distribution function. Among various sampling strategies, the MCMC is the most
powerful and popular one.
The essence ofMCMC algorithms is to explore the state space of a randomparameter using theMarkov chainmechanism.

The literature onMCMCmethods is extensive. For a complete discussion of this algorithm,we refer to Ref. [20]. In this paper,
the PPDF p(ρ, λ|Y ) is sampled using the following hybrid of the Metropolis–Hastings algorithm and the Gibbs algorithm:

1. Initialize ρ(0), λ(0)
2. For i = 0 : Nmcmc − 1
sample ρ(∗) ∼ q (ρ|ρ(i))
sample u ∼ U(0, 1)
if u < A(ρ(∗), ρ(i))
ρ(i+1) = ρ(∗)

else ρ(i+1) = ρ(i)

sample λ(i+1) ∼ p(λ(i)|ρ(i+1))

where A(ρ(∗), ρ(i)) = min{1, p(ρ
(∗),λ(i)|Y )q (ρ(i)|ρ(∗))

p(ρ(i),λ(i)|Y )q (ρ(∗)|ρ(i))
}.

In the above algorithm,Nmcmc is the length of theMarkov chain, and ρ(i), λ(i) are the samples generated in the ith iteration
for ρ, λ, respectively. u is a random number generated from the standard uniform distribution U(0, 1) and q (ρ|ρ(i)) is the
easy-to-sample proposal distribution for ρ. The full conditional p(λ|ρ) can be derived as

p(λ|ρ) ∝ λm/2+α−1 exp
(
−
1
2
(ρTWρ + β)λ

)
.

Once the designed Markov chain converges, the samples recorded thereafter are from the target posterior distribution
Eq. (3.10). The posterior condition mean estimates can then be computed using these samples.

5. Numerical experiments

In this sectionwe illustrate the efficiency and accuracy of the Bayesian inference approachby several numerical examples.
For simplicity, we always set tf = 1 and g(x) = x2 + 1, h0(t) = t(2t + 1), h1(t) = 2+ 2t(t + 1).
For the test cases examined, the problems were numerically solved by using MATLAB software. The initial guess for ρ, λ

in the hybrid algorithm is taken to be 0 and 10, respectively. The length Nmcmc of the Markov chain is taken to be 10000, and
the last 5000 realizations are used to compute the estimates. For the results presented below, we consider h = τ = 0.1 for
Example 1, and h = τ = 0.05 for Examples 2 and 3. Unless otherwise specified, the values of α and β chosen are α = 50,
β = 0.1 following [26]. The proposal distribution q(ρ|ρ(∗)) is a randomwalk sampler q(ρ|ρ(∗)) ∼ N(ρ(∗), σ 2ρ )with the scale
parameter σρ = 0.04. The synthetic noisy data are generated by

Yi = (F(ρ))i + max
16i6ny
{|(F(ρ))i|}εω, i = 1, . . . , ny (5.1)

where ε dictates the relative noise level and ω is a Gaussian random variable with zero mean and unit standard deviation.
In our computations, ω is realized using the Matlab function randn.
To measure the accuracy of the numerical solution ρ(t), we use the following relative error rel(ρ) defined as

rel(ρ) =

√
m∑
i=1
(ρi − ρ̂i)2√
m∑
i=1
(ρi)2

(5.2)

where ρ̂i and ρi are the numerical and exact solutions evaluated at a point ti, respectively.

5.1. Smooth solution

Example 1. The Robin coefficient ρ(t) is a smooth function

ρ(t) = t, 0 ≤ t ≤ 1. (5.3)

This example is a typical benchmark problem considered in Refs. [8,10,11] and it is investigated here for comparison
purpose. In this example, the direct problem (2.1)–(2.4) has an analytical solution

u(x, t) = x2 + 2t + 1. (5.4)



L. Yan et al. / Journal of Computational and Applied Mathematics 231 (2009) 840–850 845

a b

Fig. 1. (a) The trace plot of ρ6 and (b) its posterior density for Example 1 with 5% noise added into the data.

a b

Fig. 2. The numerical results for Example 1 with (a) 1% and (b) 5% noise added into the data.

It is important to check the convergence and mixing of the chain before analyzing the result. The simplest way is by
visualizing the trace plots of the chain. As a typical sample, we display the trace plot of the Markov chain for the component
ρ6 in Fig. 1(a). From this figure, we can see that the chainmixes, i.e. moveswith in the support of the PPDF, rapidly. A distinct
feature of theMCMC estimation is the ease of extractingmarginal distributions for the components of interest. In this paper,
we use the kernel density estimation [30] to approximate the density of a sample {ρj}mj=1

p(ρ) =
1
m

m∑
j=1

K(ρ|ρj). (5.5)

Here we use K(ρ|ρj) = N(ρj, σ 2k ) with σk = 0.5. The posterior density p(ρ6|Y ) is shown in Fig. 1(b), and the posterior
condition mean is 0.4914, which represents an excellent approximation of the exact value 0.5.
The numerical results for Example 1 with 1 and 5% noise in the data are shown in Fig. 2. In the figure, the vertical bar

denotes the 95% credible interval, which quantifies the uncertainty of the mean. From this figure, we can see that the
posterior conditional mean ρ̂ is in excellent agreement with the exact solution and the credible interval shrinks as the
noise level ε decreases. Furthermore, the results presented in Fig. 2 show clearly that our method also produces comparable
accuracy as Ref. [8]. Hence the Bayesian inference approach provides stable numerical solutions to the inverse Robin problem
associated with parabolic problem.
The numerical results for Example 1with various levels of noise added into the data are presented in Table 1. In the table,

the notation λ̂ denotes the conditional mean of the regularization parameter λ. The hierarchical model (3.10) is flexible in
handling the hyper-parameter λ. To show this, we consider Example 1 with 3% noise in the data. The prior density and
the corresponding posterior density of the parameter λ are shown in Fig. 3. From this figure, the conditioning on the data
greatly refines the distribution of the regularization parameter λ compared with its prior. Numerical results indicate that
the automatically determined λ is rather optimal.
The numerical approximations of the boundary temperature u(0, t) and u(1, t), heat fluxes q(0, t) and q(1, t) are

shown in Figs. 4 and 5, respectively. From these figures, we can see that with up to 5% noise in the data, the numerical
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a b

Fig. 3. (a) The prior density and (b) the posterior density of the scaling parameter λ for Example 1 with 3% noise added into the data.

a b

Fig. 4. The analytical and noisy boundary temperatures (a) u(0, t) and (b) u(1, t) for Example 1, with various amounts of noise added into the data.

Table 1
Numerical results for Example 1.

ε (%) σ λ̂ rel (ρ)

1 0.04 12.07 0.0384
3 0.12 14.19 0.0807
5 0.20 15.05 0.0843

approximations are still in excellent agreement with the analytical solution. It should be mentioned that these numerical
results are more accurate than the one reported in [10], where the approximation deviate from the exact solution when the
noise is larger than 1%.

5.2. Nonsmooth solution

In this subsection, we consider two more challenging case of reconstructing a nonsmooth solution.

Example 2. The Robin coefficient ρ(t) is a nonsmooth but continuous function

ρ(t) =
{
2t, 0 ≤ t ≤ 0.5,
2− 2t, 0.5 < t ≤ 1. (5.6)

Example 3. The Robin coefficient ρ(t) is a discontinuous function

ρ(t) =
{
1, 0.25 < t < 0.75,
0, otherwise. (5.7)



L. Yan et al. / Journal of Computational and Applied Mathematics 231 (2009) 840–850 847

a b

Fig. 5. The analytical and numerical heat fluxes (a) q(0, t) and (b) q(1, t) for Example 1 with various amounts of noise added into the data.

a b

Fig. 6. The numerical results for Example 2 with (a) 1% and (b) 5% noise added into the data.

Table 2
Numerical results for Example 2.

ε (%) σ λ̂ rel (ρ)

1 0.0537 20.85 0.0787
3 0.1611 21.08 0.1048
5 0.2686 21.77 0.1491

It should be mentioned that in Examples 2 and 3, the direct problem does not have an analytical solution. Thus the
boundary temperature Y is obtained by solving the direct problem on a finer mesh in order to avoid the notorious ‘inverse
crime’ [31].
The numerical results for Example 2 with 1% and 5% noise in the data are shown in Fig. 6. The posterior conditional mean

ρ̂ agrees reasonably well with the exact solution, and the credible interval shrinks as the noise level ε decreases from 5% to
1% albeit more slowly. Note that the probability bound is also adversely affected and not so sharp as for smooth solutions.
The posterior densities of the hyper-parameter λ for Example 2with 3% noise added into the data is shown in Fig. 7, whereas
the posterior conditional means are presented in Table 2. The numerical results indicate that the posterior conditional mean
λ̂ is rather optimal.
Careful design of the proposal distribution q(ρ|ρ∗) significantly affects the quality of the samples from the chain [32]. To

illustrate this point, we plot γ (s), the empirical autocovariance at lag s, in Fig. 8 for several random walk samples, varying
the scale parameter of the proposal distribution σρ . If σρ is too large, e.g. σρ = 1, themoves are large, butmost proposals are
rejected and the chain does move often. If σρ is too small, e.g. σρ = 0.001, most proposed moves will be accepted but the
chain will move slowly through the posterior support. Both of these situations are reflected in long correlations and poor
mixing. With σρ = 0.04, however, it exhibits short correlation length and good mixing.
Accurate reconstruction of discontinuous Robin coefficient is numerically very challenging. To illustrate this point we

consider Example 3. The numerical results for Example 3 with 1% and 5% noise added into the data are presented in Fig. 9.
From this figure, we can see that the numerical results are less accurate than those of Examples 1 and 2. It is not difficult to
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Fig. 7. The posterior density of the scaling parameter λ for Example 2 with 3% noise added into the data.

Fig. 8. The autocorrelation of ρ11 for Example 2 with 3% noise added into the data.

Table 3
Numerical results for Example 3.

ε (%) σ λ̂ rel (ρ)

1 0.0568 34.03 0.1925
3 0.1136 36.89 0.2102
5 0.2840 31.99 0.3107

see that the recovered solution near the discontinuity points is not accurate. The total-variation prior [19] may be employed
to circumvent the undesirable smoothing effect. Taking into consideration the ill-posedness of the problems, the results
presented here are quite satisfactory. The posterior density of the regularization parameter λ for Example 3 with 3% noise
added into the data is shown in Fig. 10. The posterior conditional mean λ̂ of λ in this case is 36.89, see Table 3. Numerical
results indicate that the automatically determined regularization parameter λ is rather optimal.
The foregoing numerical verifications indicate that the proposedmethod, i.e. the Bayesian inference approach, is efficient

and accurate for reconstructing smooth Robin coefficients and also yields acceptable results for nonsmooth coefficients.

6. Conclusions

In this paper, a Bayesian statistical inferencemethod is presented to identify a Robin coefficient in parabolic problems. The
posterior distribution of an unknown Robin coefficient is computed from boundary temperaturemeasurement bymodeling
themeasurement errors as i.i.d. Gauss random variables. TheMCMC algorithmwas used to explore the posterior state space,
and a MRF model was used to regularize the ill-posed inverse problem. The numerical results indicate that the Bayesian
inference approach can yield an accurate solution with its uncertainty quantified and the hierarchical Bayesian formulation
is capable of automatically determining an appropriate regularization parameter.
There are several potential extensions of the present method. Firstly, the extension of this approach to the two-

dimensional case is straightforward, thoughmore expensive. In particular, the required discretization of the domain implies
a higher computational effort. Secondly, the proposed scheme can provide good estimates of the noise level [25,26].
However, these are deferred to future work.
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a b

Fig. 9. The numerical results for Example 3 with (a) 1% and (b) 5% noise added into the data.

Fig. 10. The posterior density of the scaling parameter λ for Example 3 with 3% noise added into the data.
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