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Purpose: The mult i funct ional  cytokine, t ransforming growth  factor 1~ 1 (TGF-1~), plays 
an impor tan t  role in the development  o f  injury-associated intimal hyperplasia ( IH) .  
Strategies to suppress local TGF-[~ activity may have a clinical potential  to  prevent 
restenosis caused by IH .  Pho todynamic  therapy (PDT)  involves the local generat ion 
o f  cytotoxic free radicals by light activation o f  photosensi t izer  dyes and has been 
shown to inhibit  experimental IH .  This s tudy investigated whether  PDT-genera ted  
free radicals can affect TGF-[~ activity in a biologic system using vascular smooth  
muscle cells (SMCs). 
Methods: The release and activation o f  TGF-~ by injured SMCs in culture was compared 
between mechanical injury and PDT. Mechanical injury was induced with a rubber 
policeman, and PDT was performed with the photosensitizer chloroaluminum sulfonated 
phthalocyanine (5 I-tg/ml) and 675 nm laser light at subtherapeutic 10 J / c m  2 and the in 
vivo therapeutic dose o f  100 J / c m  2. Cell viability was assessed by the tetrazolium salt 
conversion assay, and active and total (active + latent) TGF-[~ was determined by 
enzyme-linked immunosorbent  assay in the conditioned media o f  SMCs 24 hours after 
treatment. Functional TGF-I~ activity was assessed by inhibition o f  endothelial cell 
mitogenesis. 
Results: B o t h  forms o f  injury severely reduced (p < 0.0005) SMC viability to less than 
15%. In  untreated SMC conditioned media, only 14.5% of  the total TGF-[~ was active 
(27.7 + 8.7 pg per 1 x 10 s cells). However,  after mechanical injury and PDT with 10 
J / c m  2, there was a significant increase (p < 0.02) in active TGF-[~ (60.1 -+ 10.1 pg and 
48.6 --- 21.0 pg, respectively), despite a total reduction o f  approximately 50%. In  contrast 
to  this result, PDT with 100 J / c m  2 did not  result in increased levels o f  active TGF-[~ 
(8.1 - 3.5 pg), despite having similar levels o f  total TGF-I~. Consequently, the condi- 
t ioned media o f  SMCs that had 100 J / c m  2 PDT did not  inhibit endothelial ceU 
mitogenesis as compared with the conditioned media o f  SMCs with mechanical injury 
and 10 J / c m  2 PDT (p < 0.0002). 
Conclusions: This report  describes two novel findings: (1) injury to SMCs in vitro induces 
the conversion of  biologically latent TGF-[~ to active TGF-/3; and (2) the therapeutic 
PDT dose interferes with this injury activation process. This study substantiates the 
concept o f  local cytokine inhibition by PDT in a biologic system and provides new 
insights into the mechanisms of  PDT-mediated inhibition o f  experimental IH .  (J Vasc 
Surg 1997;25:1044-53.)  
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Cell migration and proliferation and enhanced 
production of  extracellular matrix are important 
events in the biologic repair processes that restore 
tissue integrity and physiologic function after injury.1 
However, failure to properly terminate this response 
may lead to progressive fibrosis and tissue damage. 2 
The repair process is to a large extent mediated by 
the release of cytokines and growth factors in re- 
sponse to injury) Several lines of  evidence point to 
transforming growth factor [31 (TGF-[3) as a key 
cytokine that regulates tissue repair and whose sus- 
tained production underlies the development of tis- 
sue fibrosis. 2,3 

One such fibrotic condition is intimal hyperplasia 
(IH) induced by vascular injury, which is a major 
cause of restenosis after invasive vascular interven- 
tions. 4 TGF-[3 has been shown to be involved in IH 
after balloon injury in experimental models, s,6 in 
human vascular restenosis lesions, 7 and in experi- 
mental vein graft IH. 8 The main effect of TGF-[3 in 
IH development is believed to be increased and sus- 
tained stimulation of matrix production and accumu- 
lation, which accounts for the bulk of  the intimal 
lesion. ~,6,9,1° Although all cells involved in IH, in- 
cluding smooth muscle cells (SMCs)) ~ endothelial 
cells (ECs), 11 platelets, 12 and monocytes, 13 are 
known to produce TGF-[3 in vitro, it is thought that 
neointimal SMCs are the major source of this cyto- 
kine during vascular repair. 5,1° 

Strategies to suppress TGF-[3 activity may have an 
enormous clinical potential to inhibit IH and other 
fibrotic conditions that are associated with overpro- 
duction of TGF-[3. In fact, antibodies against TGF-[3 
have been shown to inhibit IH 14 and several other 
experimental fibrotic conditions, such as glomerulo- 
sclerosis, !s and skin scarring. 16 The complex regula- 
tion of TGF-[3 production and activity offers a num- 
ber of targets for TGF-[3 suppression that may be 
more suitable than antibodies for use in human be- 
ings. One important aspect ofTGF-[3 regulation is its 
activation from its precursor latent form to elicit 
biologic activity. TGF-[3 is produced and secreted as 
an inactive precursor protein, latent TGF-[3, consist- 
ing of  a latency-associated peptide (LAP) bound to 
the active protein, is Although it is not clear how 
TGF-[3 becomes activated in vivo, it is thought that 
protease cleavage by plasmin represents a physiologic 
mechanism ofTGF-[3 activationY Interference with 
the TGF-[3 activation process or use of  LAP-like 
proteins that specifically bind to TGF-[3 are potential 
means to inhibit TGF-[3 activity. 18 However, because 
of the essential systemic physiologic function of 
TGF-[3,19 only local inhibition of TGF-[3 at the site 

of overproduction and intended inactivation may be 
feasible. 

An approach to locally interfere with the biologic 
activity of important proteins, such as TGF-[3, may 
be Ph0todynamic therapy (PDT). This technique 
uses wavelength-specific light to activate photosensi- 
tizer dyes, which are otherwise relatively biologically 
inert, for the production of free radical species. 2° As a 
result of the short half-life of  these reactive mole- 
cules, irradiation of laser light only over the area of 
interest provides a means to elicit a localized effect, 
and therefore spatial selectivity is maintained. The 
PDT-generated free radicals are highly cytotoxic, 
which has formed the basis for the application of  
PDT to treat neoplastic disorders 21 and other patho- 
logic states that are characterized by cellular prolifer- 
ation, such as experimental IH. 22-25 On the other 
hand, it is known that free radicals can chemically 
react with lipids and proteins, which may cause func- 
tional disturbance of biologic molecules. 26,27 In fact, 
it has been recently demonstrated that the photo- 
chemical reaction induced by PDT profoundly alters 
the biologic characteristics ofextracellular matrix de- 
posited by ECs in vitro. 2s Thus besides its cytotoxic 
effects, PDT-generated free radicals may represent a 
method to locally interfere with the biologic activity 
of cellular mediators centrally involved in the healing 
response after tissue injury. 

Because TGF-[3 is a key mediator of IH and other 
fibrotic states, this study concentrated on the effects 
of PDT on the biologic activity of TGF-[3. Using a 
defined in vitro model with vascular SMCs, this study 
examined the effects of SMC injury on the release 
and activation of TGF-[3 and whether this response 
could be modified by PDT. 

MATERIALS AND METHODS 

Cell culture. Primary bovine aortic SMC and 
EC cultures were established from the aortas of 
freshly slaughtered calves and characterized as previ- 
ously described. 2s Cells were kept in a 37 ° C, 5% 
CO2 incubator, refed every 42 to 72 hours with 
Dulbecco's modified Eagle's medium supplemented 
with 10% calf serum, 100 U / m l  penicillin, 100 
mg/ml  streptomycin, and 0.6 mol /L  L-glutamine 
(Gibco, Grand Island, N.Y.). Cells were passed at a 
ratio of 1:5 using 0.05% Trypsin/0.125% ethylenedi- 
amine tetraacetic acid (Gibco) on reaching conflu- 
ence and were used for experiments between the 
second and sixth subpassages for ECs and between 
the second and fourth subpassages for SMCs. 

PDT. To perform PDT of SMCs in culture, the 
cells were seeded in full medium at a density of 2.5 × 
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104 per cm 2 on tissue culture plates (Falcon, Becton 
Dickinson, Lincoln Park, N.J.) and allowed to attach 
for 24 hours. The photosensitizer chloroaluminum 
sulfonated phthalocyanine (CASPc), at a concentra- 
tion of  5 mg/ml ,  was subsequently added to the cells 
in serum-free medium and incubated for 2 hours. 
After two rinses with phosphate buffered saline solu- 
tion (PBS), the cells were irradiated with thermoneu- 
tral light delivered by an argon-pumped dye laser 
(Coherent Innova I and Coherent CR 599, Coher- 
ent, Palo Alto, Calif.) tuned at 675 nm for optimal 
absorption. The end-fiber irradiance was set at 100 
m W / c m  2 to avoid any thermal effects, and two dif- 
ferent fiuences (total light energies) were applied: a 
subtherapeutic dose of 10 [[/cm 2 and the in vivo 
therapeutic dose to inhibit IH of  100 J / c m  2. To 
confirm that PDT cytotoxicity was mediated by a 
photochemical reaction involving the activation of  
the photosensitizer by light, cells exposed to the 
photosensitizer only or light only served as control 
specimens. 

Cell viability assay. SMC viability was deter- 
mined 24 hours after PDT treatment and mechanical 
injury using a colorimetric assay based on the uptake 
of 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra- 
zolium bromide salt (MTT, Sigma Chemicals, St. 
Louis) by viable cells. 29 In brief, the MTT solution 
(0.5 mg/ml)  was added to the cells and incubated at 
37 ° C to allow cleavage of  the tetrazolium ring by 
mitochondrial dehydrogenases and formation of  
blue formazan crystals. After 3 hours, the residual 
MTT was carefully removed and the crystals were 
dissolved by incubation with dimethyl sulfoxide (Sig- 
ma) for 30 minutes. The intensity of the developed 
color in each well was read by an enzyme-linked 
immunosorbent assay (ELISA) reader at 570 nm. 
The optical density of  untreated cells represented 
100% viable cells, and background color formation of  
MTT with dimethyl sulfoxide added to an empty 
plate represented 0% viable cells. The optical density 
from the treatment groups were fitted into a linear 
regression line obtained from the control groups to 
calculate percent viability. 

Preparat ion o f  condi t ioned media. Condi- 
tioned media was collected from SMCs that were 
PDT-treated or mechanically injured. Control speci- 
mens included media from untreated SMCs and 
SMCs that were exposed to the photosensitizer only. 
To induce mechanical injury, SMCs were vigorously 
scraped from the well with a rubber policeman. 3° 
Cell scraping with a rubber policeman represents a 
form of barotrauma, which resembles in vivo me- 
chanical injury and causes cell membrane damage 

that could lead to either cell death or recuperation of  
cell integrity and survival. 3° This form of cell injury 
was used to compare an in vivo, relevant method of  
cell trauma with PDT-induced cytotoxicity and to 
compare how these different forms of  injury affect the 
release and activation of  TGF-[3. After PDT or me- 
chanical injury, the cells were allowed to condition 
the medium for 24 hours at 37°C  in serum-free 
medium supplemented with 0.1% bovine serum al- 
bumin (Sigma). The medium was then collected and 
clarified by centrifugation at 2000 rpm for 15 min- 
utes for TGF-[3 assay. There were two reasons why 
the conditioned media was collected after 24 hours. 
It enables cells to recover or die, and some time was 
needed for the lethally-injured cells to release their 
cell-associated factors to the environment. Prelimi- 
nary experiments at earlier time points after mechan- 
ical SMC disruption (data not  shown) demonstrate 
the presence of  TGF-[3 in the media acutely after 
mechanical cell disruption. This supports the theory 
that there is a store of  TGF-[3 in the cells that is 
released to the environment immediately after injury. 

Determinat ion o f  TGF-[3 protein levels. The 
concentration of  TGF-[3 was measured in the condi- 
tioned media with a commercially available ELISA 
kit (Promega, Madison, Wis.), which uses the "sand- 
wich" immunoassay technique. For measurement of  
TGF-[3 levels, the conditioned media was divided 
into two fractions. One fraction was exposed to acid 
(20 ml of  1 Normal HC1, pH 1.5 to 2.5) treatment 
for 30 minutes before neutralization with 20 ml of 1 
Normal NaOH to activate latent TGF-[3 and obtain 
total TGF-[3 concentrations. The other fraction re- 
mained untreated to measure only the active TGF-[3 
portion in the conditioned media. 

Mitogenesis assay. To assess functional TGF-[3 
activity in the conditioned media of  PDT-treated or 
mechanically injured SMCs, an EC mitogenesis assay 
was used. EC mitogenesis is known to be strongly 
inhibited by TGF-[3. 3z For this purpose, [3H]-thymi- 
dine incorporation in ECs was determined as an 
indicator of  DNA replication. 32 ECs were seeded in 
full medium at a density of  10 × 103 per cm 2 and 
were allowed to attach for 24 hours. To overcome 
any depletion of  the essential nutrients, the serum- 
free SMC-conditioned media was supplemented 
with calf serum to make a 10% calf serum-condi- 
tioned media solution. This composite medium was 
subsequently added and incubated with the ECs for 
24 hours. In separate experiments, the conditioned 
media of mechanically injured SMCs was pretreated 
wifla a neutralizing antibody against TGF-[31 (R & D 
Systems, Minneapolis, Minn.) or a nonimmune con- 
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Fig. 1. Effect of PDT and mechanical injury on SMC 
viability. Viability (as determined by the tetrazolium salt 
conversion assay) of PDT-treated SMCs with total fluences 
of 10 J / c m  2 and 100 ~/cm 2, SMCs exposed to either the 
photosensitizer (DO) or light (LO) only, and mechanically 
injured (INJ) SMCs are compared with nontreated (NT) 
SMC viability, which represents 100% viable cells. Values 
are mean _+ SD. *p < 0.0005 versus NT, DO, and LO 
(analysis of variance; n = 6). 
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Fig. 2. Effect of mechanical SMC injury on release and 
activation of TGF-[3. Concentration of active and total 
TGF-[3, as measured by ELISA, in the conditioned media 
of SMCs is plotted for nontreated SMCs, mechanically 
injured SMCs (injury), and SMCs that were mechanically 
injured in the presence of the plasmin inhibitor, aprotinin 
(100 mg/ml). Values are mean + SD. *p < 0.0005 
versus active no treatment. #p < 0.0005 versus active 
injury. ##p < 0.01 versus total no treatment (analysis of 
variance; n = 9 for no treatment and injury; n = 6 for 
active injury and aprotinin; and n = 3 for total injury 
and aprotinin). 

trol antibody (normal rabbit immunoglobulin G, R 
& D Systems) to determine whether the functional 
effect o f  the conditioned media was mediated by 
TGF-[3. For the last 5 hours of  the incubation time, 
2.5 mCi of  [3H]-thymidine (New England Nuclear, 
Boston, Mass.) was included in the medium. The 
cells were then washed three times with PBS, dis- 
solved in 0.5 N NaOH,  and then placed in ready gel 
scintillation fluid (Beckman Instrument, Inc., Fuller- 
ton, Calif.). The cell-incorporated radioactivity of  
the SMCs was counted with a scintillation counter 
(Beckman Instrument). 

Statistical analysis. All data are expressed as 
mean -+ SD. For comparison of  means between mul- 
tiple groups, an one-way analysis of  variance and 
Tukey's honest significant difference post hoc test for 
multiple comparisons was applied (Statistica, Star- 
soft, Tulsa, Olda.). p values less than 0.05 were con- 
sidered significant. 

R E S U L T S  

SMC viability. To study the relationship be- 
tween SMC injury and the release and activation of  
TGF-[3, SMC viability was assessed after PDT and 
mechanical injury. There was no SMC survival after 
PDT with both 10 and 100 J / c m  2 (0.9% + 1.2% and 
0.0 + 1.8%, respectively), whereas exposure o f  SMC 
to either light (100 J / c m  2) or photosensitizer only 

did not  affect cell viability (Fig. 1). Mechanical SMC 
disruption was also associated with a substantial de- 
crease in SMC viability to 10.9% _+ 5.6% (Fig. 1). 

SMC injury-associated release and  activation 
o f  TG F -~ .  To determine whether SMC injury is 
associated with specific effects on the release or acti- 
vation of  TGF-[3, the concentration o f  both active 
and total TGF-[3 was measured in the conditioned 
media o f  untreated and mechanically injured SMCs 
(Fig. 2). The level of  active TGF-[3 in the condi- 
tioned media o f  untreated SMCs was low (27.7 _+ 
8.7 pg per 1 × 105 cells) as compared with the total 
amount  (191.1 + 26.7 pg per 1 × l0  s cells). Al- 
though mechanical injury of  SMCs resulted in a 
decrease in the total amount  of  TGF-[3 released 
(86.9 _+ 39.97 pg per 1 × 105 cells), this was associ- 
ated with a significant (p < 0.001) increase in the 
level of  active TGF-[3 (60.1 +- 10.1 pg per 1 × 105 
cells). 

To examine whether the increased levels of  active 
TGF-[3 after SMC injury could be mediated by plas- 
min-mediated activation of  latent TGF-[3, the spe- 
cific plasmin inhibitor aprotinin was used to block 
plasmin activity. Surprisingly, the presence of  aproti- 
nin (100 m g /m l )  in the medium at the time of  injury 
resulted in a significant (p < 0.005) increase in the 
amount  of  active TGF-[3, as compared with mechan- 
ical SMC injury without aprotinin (Fig. 2). 
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Fig. 3. Effect of PDT on SMC release and activation of 
TGF-IB. Concentration of active and total TGF-I3, as mea- 
sured by ELISA, in the conditioned media of SMCs is 
plotted for SMCs that were treated with the photosensi- 
tizer drug only and PDT-treated SMCs with total fluences 
of 10 J/cm 2 and 100 J/cm 2. Values are mean -+ SD. *p < 
0.02 versus active drug only and active PDT 100 J/cm 2. 
#p < 0.005 versus total drug only (analysis of variance; n = 
6). 

P D T  effects on  SMC release and activation o f  
TGF-B.  To study the effects of  PDT on SMC re- 
lease and activation of  TGF-I3, the concentration o f  
TGF-[3 was measured at different dosimetry in the 
conditioned media of  PDT-treated SMCs. Exposure 
of  SMCs with CASPc only, which did not  affect SMC 
viability, served as a control to correct for any inter- 
ference of  CASPc with TGF-[3 release or measure- 
ments. Similar to mechanical injury, PDT-mediated 
cytotoxicity with 10 J / c m  2 was associated with a 
significant increase (p < 0.02) in the level o f  active 
TGF-[3 (44.4 + 22.4 pg per 1 x 10 s cells), despite a 
decrease in the total amount (Fig. 3). In contrast, at 
higher doses of  PDT (100 J/cm2),  there was no 
increased level of  active TGF-[3 (8.1 + 3.5 pg per 
1 × 10 s cells) despite an equivalent level o f  total 
TGF-[B (Fig. 3). 

Funct ional  effect o f  cell injury-associated in- 
crease in active TGF-[~. The biologic activity of  
TGF-fB in the conditioned media was determined 
using an EC mitogenesis assay (Fig. 4). For this 
purpose, EC mitogenesis incubated with 10% calf 
serum medium served as control. The conditioned 
media of  untreated SMCs resulted in a significant 
decrease (77.6% __ 10.3%; p < 0.005) in EC mito- 
genesis as compared with control (100% -+ 6.4%). 
However, there was significantly (p < 0.0002) more 
inhibition of  EC mitogenesis with the conditioned 
media o f  mechanically injured SMCs (32.3% + 
13.8%) and PDT with 10 J / c m  2 (35.2% + 9.6%), a 
fact that correlates with the increase in the level of  
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Fig. 4. InhibitionofECmitogenesisbySMCinjury-asso- 
ciated increase in active TGF-[3: reversal by PDT with 100 
J/cm 2. Nontreated (NT) SMCs, mechanically injured 
(INJ) SMCs, and SMCs that were PDT-treated with 10 
J/cm 2 and 100 J/cm 2 were allowed to condition their 
media for 24 hours. This conditioned media was used to 
assess TGF-[3 growth-inhibitory effect (3H-thymidine in- 
corporation) on ECs. Medium with 10% calf serum served 
as control (CTL). Values are mean --- SD. *p < 0.0002 
versus CTL, NT, and PDT 100 J/cm 2. #p < 0.005 
versus CTL (analysis of variance; n = 12 for CTL; n = 
10 for INJ; and n = 6 for NT, PDT 10 J /cm 2 and 100 
J/cm2). 

active TGF-[3 after SMC injury. Furthermore, the 
conditioned media of  mechanical SMC injury in the 
presence of  aprotinin, which was associated with the 
highest level of  active TGF-[3, resulted in the greatest 
inhibition of  EC mitogenesis (14.8% _+ 5.6%; p < 
0.02 versus injury without aprotinin). Aprotinin 
added to control medium did not  affect EC mitogen- 
esis (data not  shown). 

To confirm that the inhibition of  EC mitogenesis 
was mediated by active TGF-[3, a neutralizing anti- 
body against active TGF-I3 was preincubated with 
the conditioned media of  mechanically injured 
SMCs. Addition of  the TGF-[3 antibody (90 m g /m l )  
significantly (p < 0.0005) reversed the EC-inhibi- 
tory effects of  the injured SMC-conditioned media 
(Fig. 5), whereas presence of  the antibody in control 
medium had little effect on EC mitogenesis (110.7% 
_+ 1 3 % ; n = 4 ) .  

Because PDT-mediated cytotoxicity with 100 
J / c m  2 was not  accompanied by increased levels of  
active TGF-~,  it was postulated that the conditioned 
media from this group would not  affect EC mitogen- 
esis. As shown in Fig. 4, the SMC-conditioned media 
o f  PDT with 100 J / c m  2 did not  significantly affect 
EC mitogenesis (88.1% _+ 11.4%), as compared with 
control media. This finding strongly indicate that 
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with this dose, PDT-mcdiated cytotoxicity does not  
result in increased TGF-[3 activity. 

DISCUSSION 

Several studies have now documented that PDT 
of  the vascular wall in vivo is an effective method to 
inhibit injury-associated IH in experimental mod- 
els. 222s The rationale of  PDT as a means to prevent 
IH has been the local eradication of  SMCs in the 
vessel wall responsible for the fibroprolifcrative pro- 
cess. The free radicals produced by PDT are highly 
cytotoxic, thus on wavelength-specific light illumina- 
tion over an area of  interest, vascular cclls that have 
takcn up the administered photosensitizer arc lc- 
thally injured. However, it seems paradoxical to as- 
sume that mcrc eradication of  SMCs in the vessel 
wall could explain the effective inhibition of  injury- 
associated IH  by PDT. This assumption is unfitting 
because it is wcll documented that IH develops as a 
response of  the vessel wall to many forms of  injury. 4 
In fact, it has been demonstrated that the extent of  
IH is related to the degree of  injury-induced SMC 
death in the medial laycr of  the vessel wall. 33,34 
With appropriate doses of PDT, there is eradication of 
SMCs in the vessel wall, and yet this is not followed by 
an inflammatory or fibroproliferative response. 22~2s 
Instead, the vascular healing response after PDT is 
characterized by rapid and complete EC regrowth 
but minimal repopulation of  the medial layer with 
SMC. a3 This consistent histologic finding after 
vascular PDT opened a new line of  investigation to 
examine whether,  besides cytotoxicity, free radi- 
cals produced by PDT could affect important  bio- 
logic mediators, such as TGF-[3, and thereby pro- 
foundly modify the vascular healing response to 
injury. 

The findings presented in this study demonstrate 
that lethal SMC injury under culture conditions re- 
suits in increased biologic TGF-[3 activity. The in- 
crease in TGF-~ activity associated with SMC injury 
can be prevented if the cells are treated with an 
adequate dose of  PDT. Considering the important 
role of  TGF-[3 in the vascular repair process after 
injury, these fndings may help explain why PDT- 
mediated SMC eradication is not followed by an 
exaggerated fibroproliferative response. By interfer- 
ing with biologic TGF-[3 activity, PDT may represent 
a method to inhibit fibrotic conditions associated 
with local overproduction of  TGF-~. Because 
TGF-[3 strongly autoinduces its own synthesis, 35 
acute inhibition of  TGF-J3 activity by PDT may dis- 
turb this positive feedback loop and therefore inter- 
fere with the overproduction of  TGF-[3. In addition, 
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Fig. 5. Effect of neutralizing antibody against TGF-{3 on 
SMC injury-associated TGF-[~ activity. The conditioned 
media of mechanically injured SMCs (INJ) was pretreated 
with an anti-active TGF-[3 neutralizing antibody (90 mg/  
ml) or a normal rabbit immunoglobulin G control (90 
mg/ml) and was used to assess the TGF-[3 growth-inhibi- 
tory effect (3H-thymidine incorporation) on ECs. CTL and 
NTas in Fig. 4. Values are mean _+ SD. *p < 0.0005 versus 
CTL, NT, and INJ + TGF-[3 Ab. #p < 0.005 versus CTL 
(analysis of variance; n = 4 for antibody groups). 

because TGF-[3 has been implicated to have an inhib- 
itory effect on EC regrowth, 12,36 PDT inhibition of  
TGF-[3 activity may be a mechanism to explain the 
rapid EC recovery observed after experimental vascu- 
lar PDT. This conjecture is supported by the func- 
tional assay performed in this study that demon- 
strated that, unlike mechanical SMC injury that 
promoted TGF-[3 activity and inhibited EC mitogen- 
esis, with therapeutic PDT dosimetry, there was no 
inhibitory effect on EC mitogenesis. Of  special inter- 
est in this regard is the finding of  a recent in vivo 
study that showed that the extent of  EC recoverage 
after denudation injury is dependent on the degree of  
medial wall injury and SMC necrosis27 One could 
envision that under these circumstances there is in- 
creased local activation of  TGF-[3 and inhibition of  
EC growth. 

The precise mechanism by which PDT with 100 
J / c m  2 inhibited TGF-[3 activity associated with SMC 
injury in this in vitro model is not  known. The data 
clearly indicate that the effect on TGF-[3 activity is 
not  related to the degree of  PDT-mediated cytotox- 
icity. PDT of  SMCs with the subtherapeutic dose of  
10 J / c m  2, which reduced cell viability to the same 
extent as PDT with therapeutic 100 J / c m  2, was 
associated with a significant increase in active TGF-[3. 
Likewise, vigorous mechanical SMC injury consider- 
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ably affected cell viability, which was also accompa- 
nied by an increase in TGF-[3 activity. The finding in 
the present study, and supported by others, n,38 that 
untreated bovine SMCs predominantly produce and 
secrete TGF-[3 in a larger latent complex, strongly 
suggests that with SMC injury a significant portion 
of  the latent TGF-[3 becomes activated. Although it 
has been demonstrated that TGF-[3 plays a role in the 
development of  IH using experimental vascular in- 
jury models, it is not  known how active TGF-[~ is 
generated from the latent complex under these con- 
ditions. For the first time it is demonstrated that 
SMC injury under a defined in vitro condition leads 
to increased TGF-[3 activity, which potentially repre- 
sents a pathway of  TGF-[3 activation after vascular 
injury. A possible mechanism to explain this may be 
that cell injury results in the release of  proteolytic 
enzymes 39 that could cleave the latent complex and 
liberate active TGF-[3. Because plasmin is known to 
activate the latent TGF-[3 propeptide, 17 a plasmin 
inhibitor was used to block its activity. However, the 
addition of  the plasmin inhibitor, aprotinin , did not 
affect the increased levels of TGF-[3 associated with 
SMC injury. The finding that there was in fact a 
slight increase in active TGF-[3 when the cells were 
injured in the presence of  aprotinin is not under- 
stood. Possibly, this broad serine protease inhibitor 
may prevent enzymatic degradation of  either active 
TGF-[3 or factors involved in TGF-[3 activation after 
cell injury. It remains to be determined which factors 
are involved in the activation of  TGF-[3 after cell 
injury, but this may be a formidable task considering 
the abundance ofproteolytic enzymes and other fac- 
tors that could be released with cell injury. Because 
after PDT of  SMCs with 100 J / c m  2 there was, albeit 
decreased, measurable levels of  latent TGF-[3 in the 
conditioned media, it could be speculated that this 
PDT dose inactivated the critical factors involved in 
the activation process. This is a likely assumption, 
because it has been demonstrated that in a dose- 
dependent way PDT inactivates several enzymes, in- 
cluding plasmin, lysozyme, and pepsin. 27 

The observed decrease in total TGF-[3 at 24 
hours after both doses of  PDT and mechanical injury 
is likely mediated by the substantial loss of  cell viabil- 
ity, resulting in decreased production of TGF-[3. 
However, direct effects of PDT on cell-associated 
TGF-[3 cannot be excluded. The present study con- 
centrated on the relationship between cell injury and 
its effects on TGF-[3 release and activation over a 
period of  24 hours but did not  assess whether PDT 
could affect intracellular TGF-[3 directly. Because af- 
ter both doses of  PDT there was essentially no SMC 

survival but still measurable levels of  total TGF-[3, it 
can be reasoned that some TGF-[3 is stored in the 
cells and is released after cytotoxic injury. This no- 
tion is supported by a recent in vivo study that 
demonstrated histochemically that there is some 
TGF-[3 present in untreated medial SMCs of  the rat 
carotid artery, s Because of  the complex regulation of  
TGF-[3 activity and the difficulty of  conventional 
immunohistochemical methods to monitor TGF-[3 
activation in vivo, the present study did not assess the 
effects of  PDT on TGF-[~ in the vessel wall. The 
significance of  cell-associated TGF-[3 and whether it 
can be targeted directly by PDT remains to be inves- 
tigated. 

The reduction in TGF-[3 activity after PDT of  
vascular SMCs in the model described is not  a spe- 
cific isolated effect. First, after PDT there is consider- 
able reduction in SMC viability. Second, free radicals 
produced by PDT do not specifically affect enzymes 
that are involved in TGF-~ activation or TGF-[3 
itself. Free radicals react with sensitive amino acids, 
such as histidine, methionine, tyrosine, and trypto- 
phan, and thus a myriad of  proteins could be affected 
by the photodynamic effect. 26 This study examined 
the effects of  PDT on TGF-[3 activity in a biologic 
system with vascular SMCs in an attempt to mimic 
the in vivo situation in which SMCs are eradicatcd by 
PDT. Because free radicals travel a short distance of 
only nanometers to micromcters, the chemical char- 
acteristics and cellular distribution of  photosensitiz- 
ers and the laser light parameters will intrinsically 
determine whether certain biologic molecules will be 
affected by the PDT effect. 2° The present study ex- 
amined the effects of  PDT with the photosensitizer 
CASPc, which is lmown to bind to proteins, 4° but 
whether other photoscnsitizers with different chemi- 
cal characteristics could elicit the same effects is not 
known and requires further study. 

The determination that PDT-mediated SMC cy- 
totoxicity is accompanied by specific effects on bio- 
logic active molecules such as TGF-[3 may be appeal- 
ing for the clinical application of PDT to prevent 
restenosis after invasive vascular procedures. The 
pathogenesis of  this clinical condition is multifacto- 
rial, which may mandate a therapeutic approach that 
targets more than one pathobiologic factor. This 
may have contributed to the clinical failure of  several 
pharmacologic attempts to prevent restenosis, 
monothcrapies, that primarily affect one component 
involved in the pathogcnesis of  restenosis, such as 
anticoagulants, platelet antagonists, and angiotensin- 
converting enzyme (ACE)-inhibitors. 41 Vascular PDT 
represents a multifactorial approach in that, besides 
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eliminating the effector cells responsible for IH, it 
may affect other critical biologic mediators that reg- 
ulate the excessive healing response associated with 
vascular injury. Furthermore, a recent in vitro study 
demonstrated that PDT-mediated changes of  the 
extracellular matrix results in differential effects on 
vascular cell function in contact with the matrix, 
resulting in inhibition of  SMCs but enhancement of  
EC proliferation and migration. 28 On the other 
hand, it was clearly demonstrated in the present 
study that, similar to mechanical injury, PDT-medi- 
ated cytotoxicity with a subtherapeutic dose results 
in increased TGF-~ activity. In this way, inadequate 
PDT could be an additional injurious insult to the 
vessel wall with all the sequence of  events that lead to 
injury-associated IH. This finding has important im- 
plications concerning the dosimetry of  PDT to in- 
h int  IH. In fact, a recent experimental in vivo study 
indicated that with subtherapeutic doses o f  PDT 
there is eradication of  medial SMCs, but with subse- 
quent delayed IH development. 22 Taken together, it 
is conceivable that besides SMC eradication, PDT- 
mediated inactivation of  key cellular mediators is 
pivotal for the successful application of  PDT to pre- 
vent restenosis. Identification of  PDT parameters to 
achieve this effect will allow refinement of  PDT for 
application in human beings to prevent restenosis. 

C O N C L U S I O N  

This study describes PDT-effects on the biologic 
activity of  TGF-[3 associated with SMC injury. 
Whereas mechanical SMC injury or subtherapeutic 
doses of  PDT results in increased TGF-[3 activity, 
with optimal PDT dosimetry, this injury-associated 
increase in TGF-~ activity does not occur. Besides 
providing novel insights into possible mechanisms by 
which PDT inhibits experimental IH and promotes 
intimal EC regrowth, this study offers a new concept 
for the application of  PDT as a means to locally 
interfere with the aberrant activity of  biologic pep- 
tides involved in the development of  other fibrotic 
conditions, such as chronic arthritis and skin scar- 
ring. 
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D I S C U S S I O N  
Dr. Gary Nackman (New Brunswick, N.J.). I enjoyed 

your talk very much. When I was at Dartmouth, we too 
were very interested in the role of TGF-13 in the interac- 
tions between ECs and SMCs. I have some questions 
about the methods in your paper. 

Did you normalize the amount of active TGF-13 to 
the amount of viable DNA present at the end of the 
24-hour period after intervention? And did you consider 
measuring some of the other described activators of 
TGF-13 such as cathepsin D which is present in SMCs 
that might be released, or thrombospondin, which has 
been described as an additional method of a nonproteo- 
lytic activation of the TGF-13? 

Dr. Randolph G. Statius van Eps. Thank you, Dr. 
Nackman. We performed the mitogenesis assay 24 hours 
after adding the condition medium, and we did not correct 
for DNA content for EC mitogenesis, but other experi- 

ments from our laboratory have shown that there is no 
difference at this time point in cell number. 

Thank you for your comments regarding the other 
pathways that could be involved in the activation after 
SMC injury. Until now we have not performed these 
experiments. We only looked at plasmin, and it does not 
seem that plasmin is indeed the factor involved in the 
activation of TGF-13 in these experiments, but other factors 
such as thrombospondin might well be involved because 
this molecule is indeed associated with SMCs and can 
activate TGF-[~. 

Dr. K. Craig Kent (Boston, Mass.). I want to con- 
gratulate you on your work in this study. It is very exciting. 
In fact, I have followed with interest over the last several 
years the many manuscripts about PDT that have ema- 
nated from your laboratory. 

I have three questions. The first is a question about 
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your technique. You compared PDT with an injury model 
that you created in vitro, but your injury model was one in 
which you used a rubber policeman to scrape the bottom 
of  a plastic dish. Now some people do that just to remove 
their cells from the dish. How do you l~ow that you have 
injured and not completely eliminated the cells with this 
technique? 

Second, do you have any insight as to why PDT, which 
I think is a cytotoxic therapy, kills cells in a different way 
than does your injury model. Because both methods are 
cytotoxic, why does just one of  them reduce the amount of  
active TGF-[3 and the other not? 

My third question is about the application of  this 
technique. I have been very impressed from what I have 
read. I t  sounds like photodynamic therapy has great poten- 
tiai, at least in animals. Has this technique been applied to 
human beings? Is this the next step? 

Dr. Statius van Eps. Thank you, Dr. Kent. The an- 
swer to the first question, we use mechanical injury to 
SMCs because it has been described by a research group 
from the Children's Hospital that mechanical injuries to 
SMCs mimic the injury that occurs in cells in vivo. There is 
disruption of plasma membrane, and if severe, it will cause 
lethal injury. So it was based on a method that was used in 
the literature to injure cells, but I presume that other ways 
of  injuring the cells could also be applied. 

The second question is regarding the mechanism by 
which we think PDT might be influencing growth factors. 
Well, PDT generates free radicals, and free radicals are 
highly reactive molecules. Besides free radical effects on 
cells that yields cytotoxicity, we hypothesize that free radi- 
cals may also chemically react with proteins. This might be 
possible, that factors that are involved in the activation of  

TGF-[3 might be affected. It may also be the case that free 
radicals alter TGF-[3 itself; however, this was not addressed 
directly in this study. 

To address your last question, PDT has not yet been 
used in human beings to inhibit restenosis. There have 
been some investigations with larger animals, with variable 
results, and we are moving towards larger animal studies. 
We believe that really understanding how we affect t h e  
vascular wall with PDT in a little more detail could improve 
the PDT parameters that we are going to use in larger 
animals and in human beings, that is, the class ofphotosen- 
sitizer, the amount of  light that we have to give, and how 
we are going to give the light. 

Dr.  Richard Powell  (New Haven, Conn.). Could you 
comment on the TGF-I3 that you are measuring? Do you 
think it is from increased SMC expression or an increase in 
release from the extracellular matrix? 

Dr. Statius van Eps. We measured TGF-J3 24 hours 
after treatment. After PDT and, actually, also after me- 
chanical injury there is almost no cell viability, so we were 
actually surprised to still be able to measure TGF-J3 after 24 
hours when all cells died. So we now think that a large 
portion of  the TGF-I3 we are measuring is coming directly 
from the cells when the cells are injured and killed. In other 
words , we believe that there is some TGF-J3 stored in the 
ceils that gets released after the cell membrane has been 
damaged, so we do not  think that this has to do with 
expression of TGF-[3. That might explain the decrease in 
the total amount after injury as compared with nontreated 
cells, because the nontreated cells are still able to mai~e 
their TGE-[3, whereas the injured cells are dead and cannot 
produce TGF-I3. 


