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a b s t r a c t

We consider a product X of n finite intervals of integers, a map F from X to itself, the
asynchronous state transition graph Γ (F) on X that Thomas proposed as a model for
the dynamics of a network of n genes, and the interaction graph G(F) that describes
the topology of the system in terms of positive and negative interactions between its
n components. Then, we establish an upper bound on the number of fixed points for
F , and more generally on the number of attractors in Γ (F), which only depends on X
and on the topology of the positive circuits of G(F). This result generalizes the following
discrete version of Thomas’ conjecture recently proved by Richard and Comet: If G(F) has
no positive circuit, then Γ (F) has a unique attractor. This result also generalizes a result on
themaximal number of fixed points in Boolean networks obtained by Aracena, Demongeot
and Goles. The interest of this work in the context of gene network modeling is briefly
discussed.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We are interested in the number of fixed points, and more generally in the number of attractors, in discrete dynamical
systems used to model genetic regulatory networks. These networks are often symbolically described by biologists in terms
of interaction graphs. These are directed graphs where vertices correspond to genes andwhere edges are labeled with a sign:
a positive (resp. negative) edge from j to imeans that the protein encoded by gene j activates (resp. represses) the synthesis
of the protein encoded by gene i. These graphs are then used as a basis to generate dynamical models describing the temporal
evolution of the concentration of the encoded proteins; see [5] for a literature review. Unfortunately, these models require
information on the strength of the interactions that aremost often unavailable. One is thus facedwith the following difficult
problem:Which dynamical properties of a gene network can be inferred from its interaction graph (in the absence of information
on the strength of the interactions)?
The biologist René Thomas stated a well-known conjecture providing a partial answer to this question [30]: The presence

of a positive circuit in the interaction graph is a necessary condition for the presence of multiple stable states (a circuit is positive
if it contains an even number of negative edges). At this stage, it is worth noting that the number of stable states is a key
feature of gene network dynamics: according to an idea of Delbrück [7], the presence ofmultiple stable states is one possible
mechanism for biological differentiation.
Thomas’ conjecture has been proven in differential frameworks [13,10,24,4,27,28], and, more recently, in discrete

frameworks [17,15] in which the concentration level of each protein is assumed to evolve inside a finite interval of integers,
{0, 1} in the Boolean case. Such discrete frameworks are increasingly used to model gene networks because reliable
experimental data are mostly qualitative and the sigmoidal shape of genetic regulations leads to a natural discretization

∗ Fax: +33 4 92 94 28 98.
E-mail address: richard@i3s.unice.fr.

0166-218X/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2009.06.017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82628438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:richard@i3s.unice.fr
http://dx.doi.org/10.1016/j.dam.2009.06.017


3282 A. Richard / Discrete Applied Mathematics 157 (2009) 3281–3288

of concentrations [8,25,33,26,6]. Furthermore, discrete descriptions allow the use of powerful computational tools; see for
instance [3,9].
In this paper, we establish, in the general discrete framework proposed in [17], an upper bound on the number of

attractors that the dynamics of a network contain, according to the set of states of the network and the topology of
the positive circuits of its interaction graph. This result generalizes, and is proved with, the discrete version of Thomas’
conjecture established by Richard and Comet [17]. This result also generalizes a result, obtained by Aracena, Demongeot
and Goles [2,1], on the maximal number of fixed points in a particular class of Boolean networks.
The paper is organized as follows. In Section 2, we consider a product X of n finite intervals of integers, a map F from

X to itself, and the directed graph Γ (F) on X , called an asynchronous state transition graph of F , that Thomas proposed as
a model for the dynamics of a network of n genes. The fixed points of F then correspond to the stable states of the system
and are seen as particular attractors of Γ (F). In Section 3, we associate with F local interaction graphs based on the discrete
Jacobian matrix of F , and we define the global interaction graph G(F) of the system as the union of all the local interaction
graphs. In Section 4, we state and prove the main result (Theorem 2), and we successively derive from it: an upper bound
on the number of attractors in Γ (F) that only depends on X and on the positive circuits of the local interaction graphs
associated with F (Corollary 1); and a less accurate upper bound that only depends on X and on the positive circuits of
G(F) (Corollary 2). Final comments are provided in Section 5. These concern the influence of connections between positive
circuits and the interest of the established bounds in the context of Thomas’ logical method [33,31,32,34] which is one of the
most commonly used discrete modeling methods for gene networks.

2. Asynchronous state transition graph and attractors

Let X =
∏n
i=1 Xi be a product of n finite intervals of integers, each of cardinality strictly greater than 1, and consider a

map F from X to itself,

x = (x1, . . . , xn) ∈ X 7→ F(x) = (f1(x), . . . , fn(x)) ∈ X .

In the following definition, we attach to F a directed graph on X , called asynchronous state transition graph of F . According to
Thomas [33,31,32,34], this state transition graph can be seen as a model for the dynamics of a network of n genes: the set
of vertices X is the set of possible states for the network (each interval Xi corresponds to the set of possible concentration
levels for the protein encoded by gene i), and each path corresponds to a possible evolution of the system. Asynchronous
state transition graphs can also be seen as discretizations of piecewise-linear differential systems; see for instance [25,33,26].

Definition 1. We call an asynchronous state transition graph of F , and we denote by Γ (F), the directed graph whose set of
vertices is X and that contains an edge from x to y if there exists i ∈ {1, . . . , n} such that

y = x+ ei and xi < fi(x) or y = x− ei and xi > fi(x),

where ei is the n-tuple whose components are all 0 except the ith, which is 1.

[fi(x) can be seen as the level toward which the concentration xi of the protein encoded by gene i evolves at state x: there
exists a transition starting from x that allows the ith component to increase (resp. decrease) if and only if xi < fi(x) (resp.
xi > fi(x)).]
The fixed points of F have no successor in Γ (F) and naturally correspond to the stable states of the system. In the next

definition, we introduce a notion of an attractor which extends, in a natural way, the notion of a stable state.

Definition 2. A trap domain of Γ (F) is a non-empty subset A ⊆ X such that, for all edges (x, y) of Γ (F), if x ∈ A then y ∈ A.
An attractor of Γ (F) is a smallest trap domain with respect to the inclusion relation.

In other words, the attractors of Γ (F) are the smallest subsets of states that the system cannot leave. They extend the
notion of a stable state in the sense that x is a fixed point of F if and only if {x} is an attractor of Γ (F). Note also that there
always exists at least one attractor (since X is a trap domain). Other basic observations follow: (i) from each state, there is a
path that leads to an attractor (this is why one can say that attractors perform, in a weak sense, an attraction); (ii) attractors
are strongly connected components; and (iii) attractors are mutually disjointed.

3. Discrete Jacobian matrix, interaction graph and positive circuit

In this section, we define the interaction graph of the network whose dynamics are described by Γ (F). We proceed as
in [17] by first introducing a discrete Jacobian matrix for F based on a notion of discrete directional derivative (the notion
of discrete Jacobian matrix was first considered by Robert [18–20] in the Boolean case, i.e. when X is the n-dimensional
hypercube {0, 1}n).
Let X ′ be the set of couples (x, v) such that x ∈ X , v ∈ {−1, 1}n and x+ v ∈ X .
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Definition 3. For all (x, v) ∈ X ′, we call Jacobian matrix of F evaluated at x along the directional vector v the n × nmatrix
F ′(x, v) = (f ′ij(x, v)) defined by

f ′ij(x, v) =
fi(x+ vjej)− fi(x)

vj
(i, j = 1, . . . , n).

[If vj is positive (resp. negative), then f ′ij(x, v)may be seen as the right (resp. left) partial derivative of fi with respect to
the jth variable evaluated at x. In both cases, f ′ij(x, v) is a natural discrete analogue of (∂ fi/∂xj)(x).]
An interaction graph is here a directed graph whose set of vertices is {1, . . . , n} and where each edge is provided with a

sign. More formally, each edge is characterized by a triple (j, s, i)where j (resp. i) is the initial (resp. final) vertex and where
s ∈ {−1, 1} is the sign of the edge. Let G and G′ be interaction graphs with edge sets E and E ′, respectively. G is a subgraph
of G′ if E ⊆ E ′. We denote by G ∪ G′ the interaction graph whose set of edges is E ∪ E ′.

Definition 4. We call an interaction graph of F evaluated at (x, v) ∈ X ′, and we denoted by GF (x, v), the interaction graph
that contains a positive (resp. negative) edge from j to i if f ′ij(x, v) is positive (resp. negative).

[To illustrate this definition, assume that f ′ij(x, v) is positive and that vj = 1. Then, fi(x) < fi(x+ ej), and therefore we can
say that, at state x, an increase of xj induces an increase of fi, that is, an increase in the level toward which the ith component
of the system evolves. In other words, j acts as an activator of i, and we have a positive edge from j to i in GF (x, v).]
In the following definition, we characterize a subgraph GF (x, v) of GF (x, v)whose interest is twofold. First, this subgraph

will allow us to obtain stronger results (Remark 4). Secondly, this subgraph only depends on Γ (F) [17], and thanks to this
property, we will be able to: (i) define without possible ambiguity the interaction graph of the network whose dynamics
are described by Γ (F) (Definition 6 and Remark 2), and (ii) interpret the obtained results in the context of Thomas’
logical method (Sections 5.2 and 5.3). We refer the reader to [17] for an illustration of the definition of GF (x, v) and
further comments.

Definition 5. We call interaction graph of F evaluated at (x, v) ∈ X ′ with thresholds, and we denote by GF (x, v), the
interaction graph that contains a positive (resp. negative) edge from j to i if f ′ij(x, v) is positive (resp. negative) and if fi(x)
and fi(x+ vjej) are on both sides of the threshold t = xi + vi/2.

Here, we say that a and b are on both sides of c if a < c < b or b < c < a.

Remark 1. In the Boolean case, we have GF (x, v) = GF (x, v), but in the general discrete case, GF (x, v) is often a strict
subgraph of GF (x, v) since the additional condition ‘‘on both sides of the threshold’’ is rather strong.

As in [27,17,15], we define the global interaction graph of the system as the union of all the local interaction graphs.

Definition 6. We call global interaction graph of F , and we denote by G(F), the interaction graph defined by

G(F) =
⋃

(x,v)∈X ′
GF (x, v).

Remark 2. Since GF (x, v) only depends on Γ (F), the global interaction graph G(F) only depends on Γ (F) and can be seen
as the interaction graph of the network whose dynamics are described by Γ (F). The following basic property highlights
the fact that G(F) only depends on Γ (F) : G(F) has a positive (resp. negative) edge from j to i if and only if, for all maps
H : X → X such that Γ (H) = Γ (F), there exists (x, v) ∈ X ′ such that hij(x, v) is positive (resp. negative).

We now recall the notions of a positive circuit and of a positive feedback vertex set.

Definition 7. A positive circuit in an interaction graph G is a non-empty sequence of edges, say (j1, s1, i1), (j2, s2, i2), . . . ,
(jr , sr , ir), such that: ik = jk+1 for 1 ≤ k < r (the sequence is a path); ir = j1 (the path is a circuit); the vertices jk are
mutually distinct (the circuit is elementary); and the product of the signs sk is positive (even number of negative edges).

Definition 8 ([2]). A positive feedback vertex set of an interaction graph G is a subset I ⊆ {1, . . . , n} such that each positive
circuit of G has a vertex in I .

Note that: (i) the vertex set of G is always a positive feedback vertex set of G; (ii) the empty set is a positive feedback
vertex set of G if and only if G has no positive circuit; and (iii) if G is a subgraph of G′ then all the positive feedback vertex
sets of G′ are positive feedback vertex sets of G.
A last definition is needed to state the main result.

Definition 9. Let G be a map defined on X ′ and whose images are interaction graphs. For each i ∈ {1, . . . , n}, we denote
by Ti(G) the set of real numbers t such that i belongs to a positive circuit of G(x, v) for at least one (x, v) ∈ X ′ such that
t = xi + vi/2.

Observe that |Ti(G)| is always strictly less than |Xi|.
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4. Positive circuits and attractors

As before, let X =
∏n
i=1 Xi be a product of n finite intervals of integers, each of cardinality strictly greater than 1, and let

F be a map from X to itself.
We are interested in the relationships between the local interaction graphsGF (x, v) and the number of attractors inΓ (F).

The following discrete version of Thomas’ conjecture gives such a relation.

Theorem 1 ([17]). If GF (x, v) has no positive circuit for all (x, v) ∈ X ′, then Γ (F) has a unique attractor.

The next theorem extends the previous one by providing, without any condition on the local interaction graphs GF (x, v),
an upper bound on the number of attractors in Γ (F) that only depends on the map GF (defined on X ′).

Theorem 2. If I is a positive feedback vertex set of GF (x, v) for all (x, v) ∈ X ′, then the number of attractors in Γ (F) is at most∏
i∈I

(
|Ti(GF )| + 1

)
(with the usual convention that this product equals 1 if I is empty).

Proof. We reason by induction on I . Suppose I to be, for every (x, v) ∈ X ′, a positive feedback vertex set of GF (x, v).
Base case. If I = ∅, this means that there is no (x, v) ∈ X ′ such that GF (x, v) has a positive circuit. So, following Theorem 1,
Γ (F) has at most one attractor and the theorem holds.
Induction step. Suppose that I 6= ∅. The induction hypothesis is the following:

Induction hypothesis: Let F̃ be a map from X to itself. If Ĩ is a positive feedback vertex set of GF̃ (x, v) for all (x, v) ∈ X
′,

and if Ĩ is strictly included in I , then Γ (F̃) has at most
∏
i∈Ĩ(|Ti(GF̃ )| + 1) attractors.

Without loss of generality, suppose that 1 ∈ I . Let P be the partition of X1 whose elements Y are the maximal intervals
of X1 (with respect to the inclusion relation) verifying

∀t ∈ T1(GF ), t < min(Y ) or max(Y ) < t. (1)

Note that, by definition,

|P| = |T1(GF )| + 1. (2)

Let Y be any interval of P, and consider the map F̃ = (f̃1, . . . , f̃n) : X → X defined by f̃i = fi for i > 1 and by

∀x ∈ X, f̃1(x) =

{min(Y ) if f1(x) < min(Y )
f1(x) if f1(x) ∈ Y
max(Y ) if f1(x) > max(Y ).

Then, for all x, y ∈ X ,

f̃i(x) < f̃i(y)⇒ fi(x) ≤ f̃i(x) < f̃i(y) ≤ fi(y) (i = 1, . . . , n). (3)

Indeed, this is obvious for i > 1, and for i = 1 it is sufficient to note that:

f̃1(x) < f̃1(y)⇒ f̃1(x) < max(Y )⇒ f1(x) ≤ f̃1(x);

f̃1(x) < f̃1(y)⇒ min(Y ) < f̃1(y)⇒ f̃1(y) ≤ f1(y).

Now, we prove that, for all (x, v) ∈ X ′,

GF̃ (x, v) is a subgraph of GF (x, v). (4)

Let (x, v) ∈ X ′ and suppose (j, s, i) to be an edge of GF̃ (x, v). According to (3), f̃
′

ij(x, v) and f
′

ij(x, v) have the same sign (here
s), and fi(x) and fi(x+ vjej) are on both sides of xi + vi/2 since f̃i(x) and f̃i(x+ vjej) are. In other words, (j, s, i) is an edge of
GF (x, v). So (4) is proved and, as an immediate consequence,

Ti(GF̃ ) ⊆ Ti(GF ) (i = 1, . . . , n). (5)

Then, for all (x, v) ∈ X ′, we have the following:

GF̃ (x, v) has no positive circuit involving vertex 1. (6)

Indeed, suppose, by contradiction, that vertex 1 belongs to a positive circuit of GF̃ (x, v). Let j be the predecessor of 1 in this
circuit, and let t = x1 + v1/2. By definition, t ∈ T1(GF̃ ), and from (5) it follows that t ∈ T1(GF ). We then deduce, from (1)
and the fact that the images of f̃1 are in Y , that f̃1(x) and f̃1(x + vjej) are not on both sides of t . In other words, there is no
edge from j to 1 in GF̃ (x, v), a contradiction.



A. Richard / Discrete Applied Mathematics 157 (2009) 3281–3288 3285

Let Ã be the set of attractors of Γ (F̃), and let

Ĩ = I \ {1}. (7)

Let (x, v) be any element of X ′. Since I is a positive feedback vertex set ofGF (x, v), and sinceGF̃ (x, v) is a subgraph ofGF (x, v),
I is also a positive feedback vertex set of GF̃ (x, v). We then deduce from (6) that Ĩ is a positive feedback vertex set of GF̃ (x, v).
Since this holds for all (x, v) ∈ X ′, and since Ĩ is strictly included in I , by induction hypothesis, we have

|Ã| ≤
∏
i∈Ĩ

(
|Ti(GF̃ )| + 1

)
,

and from (5) we obtain:

|Ã| ≤
∏
i∈Ĩ

(
|Ti(GF )| + 1

)
. (8)

Now, let A be the set of attractors of Γ (F), and let AY be the set of A ∈ A containing a point x such that x1 ∈ Y . We claim
that:

∀A ∈ AY , there exists Ã ∈ Ã such that Ã ⊆ A. (9)

So let A ∈ AY , and consider the set Ā of x ∈ A such that x1 ∈ Y . We prove that Ā is a trap domain of Γ (F̃). Suppose (x, y) to
be an edge of Γ (F̃) such that x ∈ Ā. By definition, there exists an index i such that y = x + ei and xi < f̃i(x), or y = x − ei
and xi > f̃i(x). We consider two cases:

(1) Case i > 1. Then, y1 = x1 ∈ Y . Moreover, f̃i(x) = fi(x) so (x, y) is an edge of Γ (F). Hence y ∈ A (since x ∈ A), and we
deduce that y ∈ Ā.

(2) Case i = 1. Suppose that x1 < f̃1(x) (the proof is similar if x1 > f̃1(x)). Then, x1 < y1 ≤ f̃1(x), and since x1 and f̃1(x) are
in Y , we have y1 ∈ Y . Moreover, min(Y ) ≤ x1 < f̃1(x) so x1 < f̃1(x) ≤ f1(x). Thus, (x, y) is an edge of Γ (F). Hence y ∈ A
(since x ∈ A), and we deduce that y ∈ Ā.

Since y ∈ Ā in both cases, Ā is trap domain of Γ (F̃). Thus, there exists at least one attractor Ã ∈ Ã such that Ã ⊆ Ā, and (9)
holds, since Ā ⊆ A.
Following (9), there exists amapH : AY → Ã such thatH(A) ⊆ A for all A ∈ AY . Since the attractors ofΓ (F) aremutually

disjointed, the elements of AY are mutually disjointed, and we deduce that the images of H are also mutually disjointed.
Consequently, H is an injection. So |AY | ≤ |Ã| and we deduce from (8) that

|AY | ≤
∏
i∈Ĩ

(
|Ti(GF )| + 1

)
.

Since this inequality holds for all Y ∈ P, and since A =
⋃
Y∈P AY , we have:

|A| ≤
∑
Y∈P

|AY | ≤
∑
Y∈P

(∏
i∈Ĩ

(
|Ti(GF )| + 1

))
= |P|

∏
i∈Ĩ

(
|Ti(GF )| + 1

)
.

Using (2) and (7), we obtain:

|A| ≤
(
|T1(GF )| + 1

)∏
i∈Ĩ

(
|Ti(GF )| + 1

)
=

∏
i∈I

(
|Ti(GF )| + 1

)
. �

From the bound of Theorem 2 (which only depends on GF ) we now state: a less accurate bound, which only depends on
X and on the images of GF , and which still generalizes Theorem 1 (Corollary 1); a bound, again less accurate, which only
depends on X and G(F) (Corollary 2).

Corollary 1. If I is a positive feedback vertex set of GF (x, v) for every (x, v) ∈ X ′, then Γ (F) has at most
∏
i∈I |Xi| attractors.

Proof. Straightforward from Theorem 2 and the fact that |Ti(GF )| < |Xi|. �

Corollary 2. If I is a positive feedback vertex set of G(F), then Γ (F) has at most
∏
i∈I |Xi| attractors.

Proof. Straightforward from Corollary 1 and the fact that each local interaction graph GF (x, v) is a subgraph of G(F). �

Remark 3. Since the number of fixed points for F is less than or equal to the number of attractors in Γ (F), we have the
following: If I is a positive feedback vertex set of G(F), then F has at most

∏
i∈I |Xi| fixed points. This property has been proved

by Aracena, Demongeot and Goles [2,1] in the Boolean case and under the rather strong hypothesis that G(F) does not
contain both a positive and a negative edge from one vertex to another (i.e. the entries of the Jacobian matrix of F are either
everywhere≥ 0 or everywhere≤ 0).
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Remark 4. Since GF (x, v) is a subgraph of GF (x, v), Theorem 2 and Corollary 1 remain true but become less strong when
stated with GF instead of GF (and for the same reasons, Corollary 2 remains true but becomes less strong when stated with
G (F) =

⋃
(x,v)∈X ′ GF (x, v) instead ofG(F)). To illustrate this, suppose thatX = {0, 1, 2, . . . , b}

n and that fi(x) = min(xi+1, b)
for i = 1, . . . , n. Then, f ′ii(x, v) = 1 if xi < b and xi + vi < b, and f

′

ii(x, v) = 0 otherwise. In other words, GF (x, v) has a
positive edge from i to itself, and hence a positive circuit of length 1 on i, whenever xi and xi + vi are< b. We deduce that
|Ti(GF )| = b − 1, and that there is no strict subset of {1, . . . , n} that has the property to be, for all (x, v) ∈ X ′, a positive
feedback vertex set of GF (x, v). Consequently, the smallest upper bound given by Theorem 2when stated with GF is bn. Now,
it is easy to see that GF (x, v) has no edge for every (x, v) ∈ X ′. So the smallest upper bound given by Theorem 2 is only 1.

5. Comments

5.1. Influence of connections between positive circuits

Corollary 2 is sufficient to highlight the fact that: ‘‘A high level of connection between positive circuits leads to a small number
of attractors’’. Suppose, for the sake of simplicity, that all the intervals Xi are of cardinality q, and let r be the smallest number
of vertices that a positive feedback vertex set ofG(F) can contain. Then, the smallest upper bound on the number of attractors
in Γ (F) given by Corollary 2 is qr , and the more the positive circuits of G(F) are connected, the smaller r is. Indeed, let us
say that a vertex represents a circuit when it belongs to this circuit. Then, r is the smallest number of vertices allowing the
representation of each positive circuit. Therefore, the more the positive circuits are connected, the more it is possible to
choose vertices representing a number of positive circuits, and the smaller r is. For instance, r is always ≤ the number p
of positive circuits that G(F) contains, but r < p whenever G(F) has connected positive circuits, and in the extremal case
where all the positive circuits of G(F) share the same vertex, we have r = 1.

5.2. Thomas’ logical method

In practice, the dynamics of a gene network are often modeled from its interaction graph G, typically by using Thomas’
logical method [33,32,34]. Basically, Thomas associates with G a finite state space X and describes the behavior of the
interactions of G by logical parameters. Then, he deduces from the value of these parameters a map F from X to itself whose
asynchronous state transition graph describes possible dynamics for the network; see [3] for a formal presentation.
This modeling method is coherent with our notion of interaction graph in the sense that, for all parameters values, the

resulting map F has the property to be such that G(F) is a subgraph of G [16]. So, thanks to Corollary 2, we can say, in the
total absence of information on the value of the parameters, that following Thomas’ logicalmethod, the number of attractors
in the dynamics of the network is at most

µ(G, X) = min
I∈I(G)

∏
i∈I

|Xi|,

where I(G) is the set of positive feedback vertex sets ofG. This result is of practical interest since the value of the parameters
is most often unknown and difficult to estimate, and since the number of attractors is an important feature of the dynamics
of the network. For instance, if the network is known to control a differentiation process into k cell types, one often considers
that the dynamics of the network have to contain at least k attractors. The boundµ(G, X) can then be used to checkwhether
the data of G and X are consistent with the presence of k attractors (there is inconsistency whenever µ(G, X) < k).

5.3. Feedback circuit functionality

Finally, Theorem 2 is related to one of the main concepts raised by Thomas’ logical method: the concept of feedback
circuit functionality [26,32,34,35]. Roughly speaking, it has been observed that some inequality constraints on the logical
parameters describing the behavior of the interactions of a positive (resp. negative) circuit of G often lead to dynamics
that contain several attractors (resp. that describe oscillations). For that reason, when these constraints are satisfied, the
corresponding circuit is said to be functional. Even if this notion is not well understood and often informally stated, it is
often used in practice to establish the value of the logical parameters; see for instance [29,12,23,11,21,22].
A natural formalization of the notion of functional circuit, also proposed in [16,14], is the following: given amap F from X

to itself whose interaction graph G(F) is a subgraph of G, a circuit C of G is functional at (x, v) ∈ X ′ if C is a circuit of GF (x, v).
It is then easy to see that the upper bound on the number of attractors given by Theorem 2 depends only on the localization
(inside X ′) and on the connections of the functional positive circuits of the system. To our knowledge, this is one of the first
mathematical results relating the functional circuits of the system to its global dynamical properties (for relations between
functional circuits and local dynamical properties, see the recent paper [14]).
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Appendix. Example

This Appendix illustrates Theorem 2 for a very simple class of Boolean networks for which the computation of the bound
of Theorem 2 is straightforward, in the sense that it can be computed by regarding only the global interaction graph of the
network.
First observe that, in the Boolean case, Theorem 2 and Corollary 1 are equivalent: they have the same conditions, and if I

is a smallest subset of {1, . . . , n} verifying these conditions, then |Ti(GF )| + 1 = |Xi| = 2 for all i ∈ I , so that the conclusions
are identical.
Now, let G be an interaction graph that does not have both a positive and a negative edge from one vertex to another. For

each vertex i, let G+i (resp. G
−

i ) be the set of positive (resp. negative) predecessors of i in G, i.e. the set of vertices j such that
G has a positive (resp. negative) edge from j to i. Let X = {0, 1}n, and let F be the map from X to itself defined from G by

fi(x) = min
(
{xj | j ∈ G+i } ∪ {1− xj | j ∈ G−i } ∪ {1}

)
(i = 1, . . . , n).

So fi(x) = 1 if and only if, at state x, all the positive predecessors j of i are present (xj = 1) and all the negative predecessors
j of i are absent (xj = 0). Observe that G(F) = G.
Let C be a circuit of G. We say that a vertex j of G is a bad vertex for C if G has a positive edge e and a negative edge e′,

both starting from j, such that e and e′ do not belong to C and such that the final vertices of e and e′ are distinct vertices of
C . It is easy to see that C is a circuit of GF (x, v) for at least one (x, v) ∈ X ′ if and only if C has no bad vertex. In this context,
Corollary 1 can thus be reformulated as follows:

If I is a set of vertices such that each positive circuit of G without a bad vertex has a node in I , then Γ (F)
has at most 2|I| attractors. (A.1)

For instance, suppose that G is as follows (arrows→ correspond to positive edges, and T-end arrows correspond to
negative edges):

Then, G has 46 positive circuits (and no negative circuit), and a positive feedback vertex sets of G of minimal cardinality is,
for instance, {1, 3, 5, 6, 9}. So the smallest upper bound on the number of attractors in Γ (F) given by Corollary 2 is 25 = 32.
Now, in order to use (A.1), consider the positive circuits of G that do not involve vertex 6. There are four such circuits, and
each of these has a bad vertex (given in brackets):

1 2 1 (5)
3→ 4 7 3 (6)
5 8 5 (6)
9 10 9 (7)

We deduce that each positive circuit of G without a bad vertex has a node in {6}. So according to the reformulation
(A.1) of Corollary 1, Γ (F) has at most 21 = 2 attractors. This bound is reached since (1, 0, 0, 0, 0, 0, 1, 1, 1, 0) and
(0, 1, 1, 1, 1, 1, 0, 0, 0, 1) are fixed points of F .
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