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1. INTRODUCTION

Consider the one dimensional flow of a polytropic gas through a homo-
geneous porous medium. Then the density « of the gas satisfies the nonlinear
diffusion equation

u = (um)zr (1)

whenever # > 0. Here, x denotes the space variable, ¢ time and m a constant
greater than 1 [16, 657].

Equation (1) is parabolic at any point (x, f) at which « > 0. However,
at points where u = 0, it is degenerate parabolic. Because of this degeneracy
(1) need not always have a classical solution. Classes of weak solutions for the
Cauchy problem and the Cauchy-Dirichlet problem of Eq.(1) were introduced
by Oleinik, Kalashnikov and Yuwi-Lin [11]. They proved existence and
uniqueness of such solutions and in addition, they showed that if at some
instant #{, a weak solution u(x, #,) has compact support, then u(x, ¢) has
compact support for any # > ;.

In this paper we shall study a class of similarity solutions of (1) in the
domain 0 < x < o0, 0 < t < T, where T is some positive constant. Let «
and r be real numbers. We shall seek solutions of the following three types:

L ow(n ) = E+00h0) 7= a4 niesons

for 7 > 0;

. wuy(x, t) = (v — t)* fon), n = x(r — t)"H+m-a}
for r > T;

I uy(x, £) = X7 fi(y), 1 = x exp{—4o(m — 1)}t 4+ 1)}
for any ~.

Substitution of #, , #, and u, into (1) leads to the following equations for
the functions f; , f, and f; :
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LA™+ #Hl 4+ (m — Dajnfy’ = ofy 0<ng<oo (2a)
IL (") —Hl+(m—Dodnfy’ = —af, 0<y<© (2b)
L (™) + delm — Dnfy’ = of 0 <y <. (2¢)
At the boundaries we impose the conditions
f0) =U(=0), flo)y=0 =123
Thus the solutions u,(x, #) satisfy the lateral boundary conditions
(0, 1) = (t + 70U,  uy(0,1) = (v — 1)U,  uy5(0, t) = et U

and
udx, 1)—>0 as X— 0 i=1,23
for fixed 2 € [0, T7.

It was Barenblatt [4], who first discussed the similarity solution % ; he
did this for « > 0. In a subsequent paper [6] he also investigated the solution
4y for « > 0 and m = 2. Later Marshak [10] also discussed solution w, ;
in addition he made a detailed, and partly numerical, study of solution », for
o = 4. For a number of values of a, explicit solutions were found by various
authors [1,4, 5,7, 9, 11, 12, 15, 16].

The studies mentioned above are all to a greater or lesser extent of a
heuristic nature, and it is only recently that a rigorous study of these similarity
solutions was begun. This was done by Atkinson and Peletier [2, 3] and by
Shampine [13, 14]. They considered the equation

RS +df =0 0<n < ©)]

in which &(s) is defined, real and continuous for s > 0, with £(0) > 0 and
k(s) > 0 if s > 0. Clearly, if we set a = 0, equation (2a) becomes a special
case of (3).

In the present paper we shall extend the analysis of [2] to the problem

(7Y +oof =¢f, 0<n <o, Q)

fO) =10, f(x) =0, &)

in which p and g are arbitrary real constants. Plainly, Eq. (4) incorporates
Equations (2a)—(2c).

As in [2] it will be necessary to consider weak solutions of problem (4), (5).
A function f will be said to be a weak solution of Eq. (4) if (a) f is bounded,
continuous and nonnegative on [0, o), (b) (f™)(x) has a continuous derivative
with respect 5 on (0, ), and (c) f satisfies the identity

[[#tm + oy an+ oo sran=0

for all ¢ € C,}(0, oo).
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We shall establish the following results:

(1) Let U > 0. Then problem (4), (5) has a weak solution with compact
support if and only if

p>0 and 2p+g>0.

This solution is unique.

(ii) Let U = 0. Then problem (4), (5) has a nontrivial weak solution
with compact support if and only if

p>0 and 2p+¢=0.

In this case there exists a one parameter family of such solutions.

2. Tue MEgTHOD

Let f be a weak solution of problem (4), (5) with compact support in
[0, c0). Then, as we shall see later, f is positive in a right neighborhood of
n == 0. More specifically, there exists a number a > 0 such that

f>0 on (0,a); f=0 on [a o).

It was shown in [2] that in a neighborhood of any point where f >0, fis a
classical solution of equation (4). Thus we shall be mainly concerned with
proving the existence and uniqueness of a classical positive solution of (4)
on an interval (0, ) which satisfies the boundary conditions

) =1, (6)
f(@=0, (f")(a) =0. M

The condition at = a follows from the requirement that f and (f™)" be
continuous on (0, o).

The existence proof is based on a shooting technique. Let a be an arbitrary
positive number. Then we shall show that for suitable p and g, there exists a
unique positive solution of problem (4), (7) in a left neighborhood of 7 = 4,
and that this solution can be continued back to = 0. We then ask whether
a can be chosen so that condition (6) is satisfied.

Before turning to the question of existence we obtain a preliminary non-
existence result.

Lemma 1. The existence of a nontrivial weak solution of Eq. (4) with
compact support implies one of the following propositions. (i) p > 0 or (i1) p = 0
and q > 0.
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Proof. Suppose f is a nontrivial weak solution of equation (4) with
compact support. Then there exists an a > 0 such that f > 0 in (a — ¢, a)
for some € > 0 and f = 0 in [a, 00). Thus, in (a — ¢, a) f satisfies (4), and
at 1 = a, f satisfies (7). Integration of (4) from ne(a — ¢, a) to a vields

—(f7Y () = puf ) + (2 + ) [ F(&) d. ®)

“n

In view of the continuity of f and (f™) it is possible to find an 5, € (@ — ¢, a)
such that f'(n,) << 0. Hence p and p + ¢ cannot both be less than zero. Thus,
if p = 0, ¢ must be positive.

Suppose now that p << 0. Then, by (8), p + ¢ > 0 and hence ¢ > 0. It
follows from (4) that f cannot have a maximum in (@ — ¢, @) and hence,
that f* << 0 on (@ — ¢, a). Therefore

—mf"=H ) f'(n) — pn < (p + g)@ — )

for all pe (a — ¢, @). If we now let 5 tend to @, we obtain a contradiction.

3. SoLtTiONs NEAR 7 = a

Let a be an arbitrary positive number. It is clear from the proof of Lemma 1
that a necessary condition for the existence of a positive solution of problem
(4), (7) in a left neighborhood of % = a is that either p > 0 or p = 0 and
g > 0. The object of this section is to show that this condition is also sufficient.

We begin by assuming that p = 0 and ¢ > 0. Then we can solve problem
(4), (6), (7) uniquely. For it follows after an elementary computation that the
function

] —— 2 1/{m-1)
Fri ) = |

0<n<a 9
is the unique solution of problem (4), (7). Because f(0; a) is a continuous,
monotonically increasing function of a, such that f(0; 0) = 0 and f(0; c0)=0c0,
the equation f(0; @) = U is uniquely solvable for every U > 0. Let a(U)
be its solution. Then f = f(n; a(U)) is the unique solution of problem (4),
(6), (7).

Next, we turn to the case p > 0. We first prove a preparatory lemma.

LemMma 2. Let be (0, a), and let f be a positive solution of problem (4), (7)
on [b, a).
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(@) Ifp + g = 0then f'(n) <Oon b, a)
@) If p + q <O, and there exists an ny € [b, a) such that f'(n,) = 0,
then f has a maximum at n, , and n, < {(p + q)/q}a.

If f is a positive solution of problem (4), (7) on [0, a), then if p + g > 0,
0 <0; 4 p+¢=0,f(0) = 0; and if p + ¢ <0, f'(0) > 0.

Proof. Integration of (4) from 7 € [, a) to a yields, as before, equation (8).
If p + ¢ = 0, this implies that (™) (y) < 0 and hence that f'(3) < 0 on
(B, a).

If p +¢ <0, we note that ¢ <0 and hence f'(n,) = 0 implies that
f"(ng) < 0. It follows that f has a maximum at n = 7., and f'(y) <0 on
(¢ , @). To estimate 7, , we set 7 = 7, in (8). Using the fact that f'(3) < 0
on (g, , @) we obtain

0 = prof(10) (o + ) [ F©)d > pmof(a) + (b +9) f " f(ne) de.

Hence
o+ (P + g)a — ) <O
or

(p+9)a—qgn <0.

Recalling that ¢ << 0, we obtain the desired upper bound for 7, .
Finally, if b = 0, (8) yields the relation

—( @ =(p+9) [ fe6)a

from which the sign of f'(0) follows,
We now turn to the question of existence.

Lemma 3. Let p > 0 and let q be arbitrary. Then given any a > 0, there
exists an € > O such that in (a — €, a) problem (4), (7) has a unique positive
solution.

Proof. As in [2] we reduce the problem to that of establishing the local
existence of a solution of an equivalent integral equation. To derive this
equation we assume that f is a positive solution in an interval (@ — e, a) for
some € > 0. By Lemma 2, it is possible to choose € such that f* <0 in
(2 — ¢, a). This allows us to formulate the problem in terms of the inverse
function n = o(f).

We write (8) in the form

(7Y o) =aufn) + (0 +0) [ €78 de.



356 GILDING AND PELETIER

Hence the function o f) satisfies the integrodifferential equation

‘_12 . mfm-—l
df — qfo(f)—(p +9) [Io(p)dp”

Integration from 0 to f yields

3 B 7 (mel dq)
== T D

or, when we write

7(f) =1 —a7lo(f)

=2l T
o L

(10)

The next step is to prove that (10) has a unique positive solution in a
right neighborhood of f = 0. Let v > 0, and let X be the set of bounded
functions 7(f) defined on [0, y] such that

_ P
PIESTEY DR

0<7(f)<p

We denote by || - || the supremum norm on X. Then X is a complete metric
space. On X we define the operator

B ﬂ f <pfm——l d(p
MON =3 ] T e =G+ D B

Suppose 7€ X. Then

p¢+q<pr(¢)—(p+q)fr(¢)d¢ S(p— (gl +1p+aDlrlle = bre.

Hence

2m ot 2m -
M) () < 525 [ o2 dp < (a7

Thus, M(7) is well defined on the whole of X. Clearly, if re X, M(+):
[0, ] = R is nonnegative and continuous; moreover there exists a v, > 0
such that if y <y, and re X, || M(7)|| < p. Thus, if y < y,, M maps X
into X.
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Let 7y, 7€ X, and let y <{ y;. Then
| M(ry) — M(rp)|

< [o (laloln—nl+1p+al [ In—rlds) dp

<G talel+ 1 ey in—nl.

Hence, there exists a y; € (0, y,] such that if y < y, M is a contraction on X.
Thus by the Banach—Cacciopoli contraction mapping principle ([8, 404])
M has a unique fixed point in X, and equation (10) has a unique solution.

It follows from a routine computation that this result implies the existence
and uniqueness of a positive solution of problem (4), (7) in a left neighborhood
ofn =a.

4. BACKWARD CONTINUATION

Let a > 0, and let f(n) be the solution of (4), (7) we constructed in the
previous section. Then f is defined and positive in a left neighborhood
of 7 = a. We now continue f backwards as a function of 7. By the standard
theory [8] this can be done uniquely so long as f remains positive and bounded.
There are now three possibilities:

(A) f(n)—> o asn | #, for some n, € [0, a);
(B) f(n) can be continued back to n = 0;
(C) f()— 0 as 5 | 5, for some 7, € (0, a).

We begin by ruling out possibility (A).
Lemma 4. Let be [0, a), and let f be a positive solution of problem (4), (7)
on (b7 a)- Then, lfP >0,
sup f() < [((m — 1)[2m) a® max{p, 2p + g}J+/m-D,

Proof. (i) Assume p + ¢ = 0. Then, by Lemma 2, f' << 0 on (b, a).
Using this in (8) we obtain:

—m(f™") (1) < pnf(n) + (p + @) f(n)a — n)
or

—mf" ) f' <(Pp+ga—qg bd<y<a

Integration from 7 to a yields

[m(m — D)) <{pa +q(a—n)}(@a—n) b<n<a (1)



358 GILDING AND PELETIER

and hence
suplm/(m — 1)) ") < 4(2p -+ g) a°. (12)

(ii) Assume p + g < 0. Then it follows from (8) that

=(f") () < pnf(m)-
If we divide by f and integrate from 7 to @ we obtain the inequality:
[mj(m — DIf" ) < $p(@® —7%), b<n<a (13)
Thus
sup(mi(m — 1)] f-(n) < }pa. (14

Because the bound of Lemma 4 is uniform in b, f(») can never become
unbounded as 7 decreases.

The estimates (11) and (13) are of some interest in their own right in that
they provide upper bounds for f(n) which also tend to zero as » — a. Lower
bounds can be derived in exactly the same way; one finds:

(i) fp+q=0,
[mi(m — D] f7¥n) > bpla® — %) b<n<a (15)
) ifp+g<0,
[mi(m — D] f"(n) > {pa + dqla — m)} (@ — ), max{b, 7} <7 <a
> 42 +9) (@ — 7). (16)

The following Lemma distinguishes between the possibilities (B) and (C).

Lemma 5. Let f be the positive solution of problem (4), (7) in a left neigh-
borhood of y = a. Assume that p > 0. Then:
(@) #2p+¢>0,f(n) >00n][0, a);
(i) #2p+q=0,f(n) >00n(0,a)and f(0) = 0;
(i) #f 2p + ¢ <O, there exists an n* €(0, a) such that f(n) >0 on
(n*, a) and f(n*) = 0.
Proof. Integration of (8) from 7 to a yields the following integral equation
for f:

fre) = [ f©d+ @ o [ € —ni@dE  an

Lemma 5 now follows at once.
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Suppose 2p - ¢ > 0. Then, by the previous Lemma we may continue
f(n) back to 5 == 0, and f(0) > 0. However, using the bounds for f we
obtained earlier, we can actually give upper and lower bounds for f(0).
This will be done in the following Proposition. It will be convenient to
define the quantities:

A=+, p=1—[p+9MkP A=/{(m—1)2m]paj/ "D
ProrositionN 1. Let p > 0 and 2p + g > 0. Then:
G fp+a=00=1)
AUmA < f(0) < AYm-D A,
(i) fp+g<0(0<A<L)
(A /-1 A <L fO) < AV A,
Both estimates are sharp for p - q = 0.

Proof. (i) The upper bound follows at once from (11). To obtain the
lower bound we use (15) in (17),

/") =@p+9) [ " ef(9) de. (18)

The result follows after an elementary computation.

(ii) In this case we only have a bound for f on the interval [»,, a),
where 7, is the value of  for which f reaches its maximum value. By (13)

and (16)
NAODALL — (gfaf 0 < for) < AL — @l m D g <o <a. (19)

However, f(n) < f(no) on [0, n] and therefore (19) holds for 0 <5 < a.
Using this estimate in (18) we obtain the desired upper bound.
To obtain the lower bound, we note that by (18)

0> @r+a) [ @, (20)

where a* = {(p + ¢)/q}a. Because, by Lemma 2, 5, < a* we can use (19)
in (20) to estimate f(0).

We conclude this section with a result about the dependence of f on the
choice of a.

ProposITION 2. Let p > 0 and 2p + q = 0. Suppose f(n; a,) and f(n; a,)
are solutions of problem (4), (7) on, respectively, (0, a;) and (0, a,). Then, if
a; > a,, f(n; @) > f(n; a,) everywhere on (0, a,).



360 GILDING AND PELETIER

Proof. Denote f(y; a;) by fi(n) for i = 1, 2. Suppose the Proposition is
not true. Then there exists an 4 € (0, a,) such that fi() = fo(%) and fi(n) >
f2(n) on (7, ay). It follows from (17) that for{ =1, 2,

Fr) =1 | A€ e+ Qo+ ) [ (€~ DA &
Hence
[ = Fde £ p g [ (€~ —f)de

p7 [ fide+@p ) [ (€= DfdE=0.

The second and the fourth term of this expression are nonnegative, whilst
the other two are positive. We therefore have a contradiction.

5. Tug MaiN Resurt

We begin by proving the existence and uniqueness of a solution of problem
(4), (6), (7) which is positive on (0, a). By Lemma 1 a necessary condition
for the existence of such a solution is that p > 0.

Let p > 0. Then, by Lemma 3, for each 2 > 0 there exists a unique
positive solution f(y; @) of (4), (7) in a left neighborhood of » = a. By
Lemma 5 this solution can be continued back to n = 0 if and only if
2p + ¢ = 0. Thus the boundary condition at n = 0 is satisfied if we can
find an @ > 0 such that

f(0;a) = U. (21

If only one such an a exists, the solution 1is unique.
We distinguish two cases:

(i) U =0. Then by Lemma 5, Eq. (21) can only be satisfied if
2p + g = 0. Moreover (21) is then satisfied for any a > 0.

(ii) U > 0. It follows from Lemma 5 that now a necessary condition
for (21) to have a solution is that 2p -+ ¢ > 0. To prove that it is also sufficient
we use an observation due to Barenblatt [4].

Let f(%; a) be a solution of problem (4), (7) on (0, a). Then for any u >0
the function p=2/"-Uf(un; ua) is a solution of problem (4), (7) on (0, ua).
Thus, choosing p = a7

f(0; @) = a?/'"-1 £(0; 1).
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Equation (21) can therefore be written as
a?m-1 f(0; 1) = U. (22)

Because 2p + ¢ >0, f(0; 1) > 0. It follows that for each U > 0, Eq. (22)
has a unique solution ¢(U). The function f(n; a(U)) now satisfies (4), (6) and
(7). Moreover, in view of the uniqueness of a(U’) it is the only function which
does so. Remembering the solution we constructed for p = 0, we have
proved the following result.

Turorem 1. (i) Let U > 0. Then there exists a unique a >0 and a
unique solution of problem (4), (6), (7) which is positive on (0, a) if and only
ifp=0and2p +q>0.

(it} Let U = 0. Then for every a > O there exists a solution of problem
(4), (6), (7) which is positive on (0, a) if and only if p > 0 and 2p 4+ ¢ = 0.

It is easy to see that the function

_ﬂf(’%“); 0 <7 <aq,
f(n)—loy a<7}<w’

is a weak solution of Eq. (4) which satisfies the boundary conditions (5).
Hence, it remains to show that if U > 0, this is the only solution of problem
(4), (5) with compact support, and that if U = 0, this is the only family
of nontrivial solutions of problem (4), (5) with compact support.

Let f(5) be a weak solution of problem (4), (5) with compact support.
It follows from Lemma 5 that if U > 0, problem (4), (5) only has such a
solution if 2p -+ g > 0, and that this solution is of the form:

J >0 on [0,
fy =0 on [a, ),

for some a > 0. That is, f must be of the type discussed above, and by
Theorem 1 there exists only one such solution.

If U = 0, one might expect, besides the family of solutions discussed
above, nontrivial solutions which are zero on a disconnected subset of
(0, o). However, we shall show that such solutions cannot exist.

Let f be a weak solution such that f > 0 on (g, , 4,), where 0 < a; < a, < ©
and f = O at% = g, and at o == a, . Then, for f to be a weak solution of (4),
we must require

fla) =0, () (@)=0 i=12
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On (a, , a,) f is a classical solution of (4), and hence we obtain by integrating
(4) from a; to a, :

0=(p o) f(Erde.

ay

Because p + ¢ =(2p + ¢q) —p <0 and f> 0 on (4, , a,) we have arrived
at a contradiction.

It follows that if U = 0, any weak solution of problem (4), (5) with compact
support must belong to the family of solutions discussed above.

THEOREM 2. (i) Let U > 0. Then there exists a unique weak solution
with compact support of problem (4), (5) if and only if p = 0 and 2p -~ ¢ > 0.

(i) Let U = Q. Then there exists a nontrivial weak solution with compact
support of problem (4), (5) if and only if p > 0 and 2p - ¢ = 0. For every
a > ( there exists one such solution f with the property f > 0 on (0, a) and
J=0on[a, ).

6. ExampLEs

We conclude with a discussion of the implications of Theorems | and 2
for the similarity solutions of Eq. (1)

(a) Stmilarity Solutions of Type I.
In this case, p = H{1 4+ (m — 1)a} and ¢ = o. Hence

prg=Hl+m+ 1Dy, 2p+g=1+m

It follows from Theorem 2 that there exists a non trivial similarity solution
with compact support if and only if « == —1/m.

Below we tabulate those solutions which may be derived explicitly from
Eq. (2a)

(i) o = —1/m. This yields the so called ‘“‘dipole type solution”
[7, 16]. Because 2p 4 ¢ = O in this case, equation (17) becomes

170 =g || 1€ .

m

Putting g(n) = f:j(f) d§¢, we can write this as

1/m
L ) , g(a) =0.

&)=~ (2—,” ng
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After a routine computation this yields for f:

. 1 m 1/{im-1)
) (a(m+1)/m — .’7(m+1)/m) 0

f(n) = nt/m ’(m

VAN

=3

N
8

Returning to the variables x and ¢ we obtain

; (t + T) l/mf(x(t 7.)—1/(2ml), 0 \ X < a(t + T)l/(2m)
ll1(~7€ ) 10 a(t + 7)1/(2m> <X < W
(i) o« = —1/(m -+ 1). This solution is often called the ‘“‘instantaneous

point source solution” [1, 4, 12, 15, 16]. Eq. (2a) can now easily be integrated
to yield

‘ ll/(m—l)
fn) = W( )\ 0<9<a
and hence
uy(x, t) \(t - ) 1/im+1) f(;g(l -+ .,-) 1/(m +1)) La < a(t + .,.)1/(m+1)y
L ==

a(t 4 ry/m+l) < x < oo,

(i) o = 1/(m — 1). This yields the wave solution [5, 11]. The function
f() = {[(m — 1)/m] aa — i 0<n<a

satisfies (4) and (7), and gives

(v, 1) = {[m — 1)/m] ala(t + 7) — P00 0 < x < alt + 1),
B E 0, a(t 4+ 7) < & < .

(b) Similarity Solutions of Type IT

An application of Theorem 2 to Eq. (2b) yields the existence of a non-
trivial similarity solution of type u, with compact support if and only if
a <L —1f(m — 1). In all cases u,(0, ¢) is positive on (0, T).

When « = —1/(m — 1), Eq. (2b) is the special case of (4) with p =0
and ¢ = 1/(m — 1). It therefore has an exact solution given by expression (9)
with ¢ = 1/(m — 1). We derive that

‘; m—1 (a® — x2))Vim-1 0
uy(x, 1) = 11 2m(m +1) (r — 1)\ <x<a
0, a<{x <<

(cf. [9]).

400/55/2-8
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(c) Stmilarity Solutions of Type II1

By Theorem 2 now applied to Eq. (2c), there are nontrivial similarity

solutions of type u, with compact support if and only if « > 0. In every
case the lateral boundary data must be positive.

10.

12

13.

14.

15.

16.
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