On a Class of Similarity Solutions of the Porous Media Equation

B. H. Gilding and L. A. Peletier
Department of Mathematics, Delft University of Technology, Delft, Netherlands Submitted by W.F. Ames

1. Introduction

Consider the one dimensional flow of a polytropic gas through a homogeneous porous medium. Then the density u of the gas satisfies the nonlinear diffusion equation

$$
\begin{equation*}
u_{t}=\left(u^{m}\right)_{x x} \tag{1}
\end{equation*}
$$

whenever $u>0$. Here, x denotes the space variable, t time and m a constant greater than $1[16,657]$.

Equation (1) is parabolic at any point (x, t) at which $u>0$. However, at points where $u=0$, it is degenerate parabolic. Because of this degeneracy (1) need not always have a classical solution. Classes of weak solutions for the Cauchy problem and the Cauchy-Dirichlet problem of Eq.(1) were introduced by Oleinik, Kalashnikov and Yui-Lin [11]. They proved existence and uniqueness of such solutions and in addition, they showed that if at some instant t_{0} a weak solution $u\left(x, t_{0}\right)$ has compact support, then $u(x, t)$ has compact support for any $t \geqslant t_{0}$.

In this paper we shall study a class of similarity solutions of (1) in the domain $0<x<\infty, 0<t \leqslant T$, where T is some positive constant. Let α and τ be real numbers. We shall seek solutions of the following three types:
I. $u_{1}(x, t)=(t+\tau)^{\alpha} f_{1}(\eta), \quad \eta=x(t+\tau)^{-\frac{1}{2}(1+(\eta-1) \alpha)}$
for $\tau>0$;
II. $u_{2}(x, t)=(\tau-t)^{\alpha} f_{2}(\eta), \quad \eta=x(\tau-t)^{-\frac{1}{2}(1+(m-1) \alpha\}}$
for $\tau>T$;

$$
\text { III. } \quad u_{3}(x, t)=e^{\alpha(t+\tau)} f_{3}(\eta), \quad \eta=x \exp \left\{-\frac{1}{2} \alpha(m-1)(t+\tau)\right\}
$$

for any τ.
Substitution of u_{1}, u_{2} and u_{3} into (1) leads to the following equations for the functions f_{1}, f_{2} and f_{3} :

$$
\begin{array}{rll}
\text { I. } \quad\left(f_{1}^{m}\right)^{\prime \prime}+\frac{1}{2}\{1+(m-1) \alpha\} \eta f_{1}^{\prime}=\alpha f_{1} & 0<\eta<\infty \\
\text { II. } & \left(f_{2}^{m}\right)^{\prime \prime}-\frac{1}{2}\{1+(m-1) \alpha\} \eta f_{2}^{\prime}=-\alpha f_{2} & 0<\eta<\infty \\
\text { III. } \quad\left(f_{3}^{m}\right)^{\prime \prime}+\frac{1}{2} \alpha(m-1) \eta f_{3}^{\prime}=\alpha f & 0<\eta<\infty . \tag{2c}
\end{array}
$$

At the boundaries we impose the conditions

$$
f_{i}(0)=U(\geqslant 0), \quad f_{i}(\infty)=0 \quad i=1,2,3 .
$$

Thus the solutions $u_{i}(x, t)$ satisfy the lateral boundary conditions

$$
u_{1}(0, t)=(t+\tau)^{\alpha} U, \quad u_{2}(0, t)=(\tau-t)^{\alpha} U, \quad u_{3}(0, t)=e^{\alpha(t+\tau)} U
$$

and

$$
u_{i}(x, t) \rightarrow 0 \quad \text { as } \quad x \rightarrow \infty \quad i=1,2,3
$$

for fixed $t \in[0, T]$.
It was Barenblatt [4], who first discussed the similarity solution u_{1}; he did this for $\alpha \geqslant 0$. In a subsequent paper [6] he also investigated the solution u_{3} for $\alpha>0$ and $m=2$. Later Marshak [10] also discussed solution u_{3}; in addition he made a detailed, and partly numerical, study of solution u_{1} for $\alpha=\frac{1}{5}$. For a number of values of α, explicit solutions were found by various authors $[1,4,5,7,9,11,12,15,16]$.

The studies mentioned above are all to a greater or lesser extent of a heuristic nature, and it is only recently that a rigorous study of these similarity solutions was begun. This was done by Atkinson and Peletier [2, 3] and by Shampine [13, 14]. They considered the equation

$$
\begin{equation*}
\left(k(f) f^{\prime}\right)^{\prime}+\frac{1}{2} \eta f^{\prime}=0 \quad 0<\eta<\infty \tag{3}
\end{equation*}
$$

in which $k(s)$ is defined, real and continuous for $s \geqslant 0$, with $k(0) \geqslant 0$ and $k(s)>0$ if $s>0$. Clearly, if we set $\alpha=0$, equation (2a) becomes a special case of (3).

In the present paper we shall extend the analysis of [2] to the problem

$$
\begin{gather*}
\left(f^{m}\right)^{\prime \prime}+p \eta f^{\prime}=q f, \quad 0<\eta<\infty, \tag{4}\\
f(0)=U, \quad f(\infty)=0, \tag{5}
\end{gather*}
$$

in which p and q are arbitrary real constants. Plainly, Eq. (4) incorporates Equations (2a)-(2c).

As in [2] it will be necessary to consider weak solutions of problem (4), (5). A function f will be said to be a weak solution of Eq. (4) if (a) f is bounded, continuous and nonnegative on $[0, \infty)$, (b) $\left(f^{m}\right)(\eta)$ has a continuous derivative with respect η on ($0, \infty$), and (c) f satisfies the identity

$$
\int_{0}^{\infty} \phi^{\prime}\left\{\left(f^{m}\right)^{\prime}+p \eta f\right\} d \eta+(p+q) \int_{0}^{\infty} \phi f d \eta=0
$$

for all $\phi \in C_{0}{ }^{1}(0, \infty)$.

We shall establish the following results:
(i) Let $U>0$. Then problem (4), (5) has a weak solution with compact support if and only if

$$
p \geqslant 0 \quad \text { and } \quad 2 p+q>0
$$

This solution is unique.
(ii) Let $U=0$. Then problem (4), (5) has a nontrivial weak solution with compact support if and only if

$$
p>0 \quad \text { and } \quad 2 p+q=0 .
$$

In this case there exists a one parameter family of such solutions.

2. The Method

Let f be a weak solution of problem (4), (5) with compact support in $[0, \infty)$. Then, as we shall see later, f is positive in a right neighborhood of $\eta=0$. More specifically, there exists a number $a>0$ such that

$$
f>0 \quad \text { on }(0, a) ; \quad f=0 \quad \text { on }[a, \infty) .
$$

It was shown in [2] that in a neighborhood of any point where $f>0, f$ is a classical solution of equation (4). Thus we shall be mainly concerned with proving the existence and uniqueness of a classical positive solution of (4) on an interval $(0, a)$ which satisfies the boundary conditions

$$
\begin{gather*}
f(0)=U, \tag{6}\\
f(a)=0, \quad\left(f^{n}\right)^{\prime}(a)=0 . \tag{7}
\end{gather*}
$$

The condition at $\eta=a$ follows from the requirement that f and $\left(f^{m}\right)^{\prime}$ be continuous on ($0, \infty$).

The existence proof is based on a shooting technique. Let a be an arbitrary positive number. Then we shall show that for suitable p and q, there exists a unique positive solution of problem (4), (7) in a left neighborhood of $\eta=a$, and that this solution can be continued back to $\eta=0$. We then ask whether a can be chosen so that condition (6) is satisfied.
Before turning to the question of existence we obtain a preliminary nonexistence result.

Lemma 1. The existence of a nontrivial weak solution of Eq. (4) with compact support implies one of the following propositions. (i) $p>0$ or (ii) $p=0$ and $q>0$.

Proof. Suppose f is a nontrivial weak solution of equation (4) with compact support. Then there exists an $a>0$ such that $f>0$ in ($a-\epsilon, a$) for some $\epsilon>0$ and $f=0$ in $[a, \infty)$. Thus, in ($a-\epsilon, a) f$ satisfies (4), and at $\eta=a$, f satisfies (7). Integration of (4) from $\eta \in(a-\epsilon, a)$ to a yields

$$
\begin{equation*}
-\left(f^{m}\right)^{\prime}(\eta)=p \eta f(\eta)+(p+q) \int_{\eta}^{a} f(\xi) d \xi \tag{8}
\end{equation*}
$$

In view of the continuity of f and $\left(f^{m}\right)^{\prime}$ it is possible to find an $\eta_{0} \in(a-\epsilon, a)$ such that $f^{\prime}\left(\eta_{0}\right)<0$. Hence p and $p+q$ cannot both be less than zero. Thus, if $p=0, q$ must be positive.

Suppose now that $p<0$. Then, by (8), $p+q>0$ and hence $q>0$. It follows from (4) that f cannot have a maximum in ($a-\epsilon, a$) and hence, that $f^{\prime}<0$ on $(a-\epsilon, a)$. Therefore

$$
-m f^{m-2}(\eta) f^{\prime}(\eta)-p \eta \leqslant(p+q)(a-\eta)
$$

for all $\eta \in(a-\epsilon, a)$. If we now let η tend to a, we obtain a contradiction.

3. Solltions Near $\eta=a$

Let a be an arbitrary positive number. It is clear from the proof of Lemma 1 that a necessary condition for the existence of a positive solution of problem (4), (7) in a left neighborhood of $\eta=a$ is that either $p>0$ or $p=0$ and $q>0$. The object of this section is to show that this condition is also sufficient.

We begin by assuming that $p=0$ and $q>0$. Then we can solve problem (4), (6), (7) uniquely. For it follows after an elementary computation that the function

$$
\begin{equation*}
f(\eta ; a)=\left\{\frac{q(m-1)^{2}}{2 m(m+1)}(a-\eta)^{2}\right\}^{1 / m-1)} \quad 0<\eta<a \tag{9}
\end{equation*}
$$

is the unique solution of problem (4), (7). Because $f(0 ; a)$ is a continuous, monotonically increasing function of a, such that $f(0 ; 0)=0$ and $f(0 ; \infty)=\infty$, the equation $f(0 ; a)=U$ is uniquely solvable for every $U \geqslant 0$. Let $a(U)$ be its solution. Then $f=f(\eta ; a(U))$ is the unique solution of problem (4), (6), (7).

Next, we turn to the case $p>0$. We first prove a preparatory lemma.

Lemma 2. Let $b \in(0, a)$, and let f be a positive solution of problem (4), (7) on $[b, a)$.
(i) If $p+q \geqslant 0$ then $f^{\prime}(\eta)<0$ on $[b, a)$.
(ii) If $p+q<0$, and there exists an $\eta_{0} \in[b, a)$ such that $f^{\prime}\left(\eta_{0}\right)=0$, then f has a maximum at η_{0}, and $\eta_{0}<\{(p+q) / q\}$ a.

If f is a positive solution of problem (4), (7) on $[0, a$), then if $p+q>0$, $f^{\prime}(0)<0$; if $p+q=0, f^{\prime}(0)=0$; and if $p+q<0, f^{\prime}(0)>0$.

Proof. Integration of (4) from $\eta \in[b, a)$ to a yields, as before, equation (8). If $p+q \geqslant 0$, this implies that $\left(f^{m}\right)^{\prime}(\eta)<0$ and hence that $f^{\prime}(\eta)<0$ on $[b, a)$.

If $p+q<0$, we note that $q<0$ and hence $f^{\prime}\left(\eta_{0}\right)=0$ implies that $f^{\prime \prime}\left(\eta_{0}\right)<0$. It follows that f has a maximum at $\eta=\eta_{0}$, and $f^{\prime}(\eta)<0$ on (η_{0}, a). To estimate η_{0}, we set $\eta=\eta_{0}$ in (8). Using the fact that $f^{\prime}(\eta)<0$ on $\left(\eta_{0}, a\right)$ we obtain

$$
0=p \eta_{0} f\left(\eta_{0}\right)+(p+q) \int_{\tau_{0}}^{a} f(\xi) d \xi>p \eta_{0} f\left(\eta_{0}\right)+(p+q) \int_{\eta_{0}}^{a} f\left(\eta_{0}\right) d \xi
$$

Hence

$$
p \eta_{0}+(p+q)\left(a-\eta_{0}\right)<0
$$

or

$$
(p+q) a-q \eta_{0}<0
$$

Recalling that $q<0$, we obtain the desired upper bound for η_{0}.
Finally, if $b=0$, (8) yields the relation

$$
-\left(f^{m}\right)^{\prime}(0)=(p+q) \int_{0}^{a} f(\xi) d \xi
$$

from which the sign of $f^{\prime}(0)$ follows.
We now turn to the question of existence.
Lemma 3. Let $p>0$ and let q be arbitrary. Then given any $a>0$, there exists an $\epsilon>0$ such that in ($a-\epsilon, a$) problem (4), (7) has a unique positive solution.

Proof. As in [2] we reduce the problem to that of establishing the local existence of a solution of an equivalent integral equation. To derive this equation we assume that f is a positive solution in an interval $(a-\epsilon, a)$ for some $\epsilon>0$. By Lemma 2, it is possible to choose ϵ such that $f^{\prime}<0$ in ($a-\epsilon, a$). This allows us to formulate the problem in terms of the inverse function $\eta=\sigma(f)$.

We write (8) in the form

$$
\left(f^{m}\right)^{\prime}(\eta)=q \eta f(\eta)+(p+q) \int_{\eta}^{a} \xi f^{\prime}(\xi) d \xi
$$

Hence the function $\sigma(f)$ satisfies the integrodifferential equation

$$
\frac{d \sigma}{d f}=\frac{m f^{m-1}}{q f \sigma(f)-(p+q) \int_{0}^{f} \sigma(\varphi) d \varphi} .
$$

Integration from 0 to f yields

$$
\sigma(f)-a=m \int_{0}^{f} \frac{\varphi^{m-1} d \varphi}{q \varphi \sigma(\varphi)-(p+q) \int_{0}^{\phi} \sigma(\psi) d \psi}
$$

or, when we write

$$
\begin{align*}
\tau(f) & =1-a^{-1} \sigma(f) \tag{10}\\
\tau(f) & =\frac{m}{a^{2}} \int_{0}^{f} \frac{\varphi^{m-1} d \varphi}{p \varphi+q \varphi \tau(\varphi)-(p+q) \int_{0}^{\varphi} \tau(\psi) d \psi}
\end{align*}
$$

The next step is to prove that (10) has a unique positive solution in a right neighborhood of $f=0$. Let $\gamma>0$, and let X be the sct of bounded functions $\tau(f)$ defined on $[0, \gamma]$ such that

$$
0 \leqslant \tau(f) \leqslant \rho=\frac{p}{2(|q|+|p+q|)} .
$$

We denote by $\|\cdot\|$ the supremum norm on X. Then X is a complete metric space. On X we define the operator

$$
M(\tau)(f)=\frac{m}{a^{2}} \int_{0}^{f} \frac{\varphi^{m-1} d \varphi}{p \varphi+q \varphi \tau(\varphi)-(p+q) \int_{0}^{\varphi} \tau(\psi) d \psi}
$$

Suppose $\tau \in X$. Then
$p \varphi+q \varphi \tau(\varphi)-(p+q) \int_{0}^{\infty} \tau(\psi) d \psi \geqslant\{p-(|q|+|p+q|) \| \tau \mid\} \varphi \geqslant \frac{1}{2} p \varphi$.
Hence

$$
M(\tau)(f) \leqslant \frac{2 m}{p a^{2}} \int_{0}^{f} \psi^{m-2} d \varphi \leqslant \frac{2 m}{(m-1) p a^{2}} \gamma^{m-1} .
$$

Thus, $M(\tau)$ is well defined on the whole of X. Clearly, if $\tau \in X, M(\tau)$: $[0, \gamma] \rightarrow R$ is nonnegative and continuous; moreover there exists a $\gamma_{0}>0$ such that if $\gamma \leqslant \gamma_{0}$ and $\tau \in X,\|M(\tau)\| \leqslant \rho$. Thus, if $\gamma \leqslant \gamma_{0}, M$ maps X into X.

Let $\tau_{1}, \tau_{2} \in X$, and let $\gamma \leqslant \gamma_{0}$. Then

$$
\begin{aligned}
& \left\|M\left(\tau_{1}\right)-M\left(\tau_{2}\right)\right\| \\
& \quad \leqslant \frac{4 m}{a^{2} p^{2}} \int_{0}^{f} \varphi^{m-3}\left(|q| \varphi\left\|\tau_{1}-\tau_{2}\right\|+|p+q| \int_{0}^{\varphi}\left\|\tau_{1}-\tau_{2}\right\| d \psi\right) d \varphi \\
& \quad \leqslant \frac{4 m}{(m-1) p^{2} a^{2}}(|q|+|p+q|) \gamma^{m-1}\left\|\tau_{1}-\tau_{2}\right\| .
\end{aligned}
$$

Hence, there exists a $\gamma_{1} \in\left(0, \gamma_{0}\right]$ such that if $\gamma \leqslant \gamma_{1} M$ is a contraction on X. Thus by the Banach-Cacciopoli contraction mapping principle ($[8,404]$) M has a unique fixed point in X, and equation (10) has a unique solution.

It follows from a routine computation that this result implies the existence and uniqueness of a positive solution of problem (4), (7) in a left neighborhood of $\eta=a$.

4. Backward Continuation

Let $a>0$, and let $f(\eta)$ be the solution of (4), (7) we constructed in the previous section. Then f is defined and positive in a left neighborhood of $\eta=a$. We now continue f backwards as a function of η. By the standard theory [8] this can be done uniquely so long as f remains positive and bounded. There are now three possibilities:
(A) $f(\eta) \rightarrow \infty$ as $\eta \downarrow \eta_{1}$ for some $\eta_{1} \in[0, a)$;
(B) $f(\eta)$ can be continued back to $\eta=0$;
(C) $f(\eta) \rightarrow 0$ as $\eta \downarrow \eta_{2}$ for some $\eta_{2} \in(0, a)$.

Wc begin by ruling out possibility (A).
Lemma 4. Let $b \in[0, a)$, and let f be a positive solution of problem (4), (7) on (b, a). Then, if $p>0$,

$$
\sup _{(b, a)} f(\eta) \leqslant\left[((m-1) / 2 m) a^{2} \max \{p, 2 p+q\}\right]^{1 /(m-1)}
$$

Proof. (i) Assume $p+q \geqslant 0$. Then, by Lemma $2, f^{\prime}<0$ on (b, a). Using this in (8) we obtain:

$$
-m\left(f^{m}\right)^{\prime}(\eta) \leqslant p \eta f(\eta)+(p+q) f(\eta)(a-\eta)
$$

or

$$
-m f^{m-2}(\eta) f^{\prime}(\eta) \leqslant(p+q) a-q \eta, \quad b \leqslant \eta<a
$$

Integration from η to a yields

$$
\begin{equation*}
[m /(m-1)] f^{m-1}(\eta) \leqslant\left\{p a+\frac{1}{2} q(a-\eta)\right\}(a-\eta) \quad b \leqslant \eta \leqslant a \tag{11}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\sup _{(b, a)}[m /(m-1)] \int^{m-1}(\eta) \leqslant \frac{1}{2}(2 p+q) a^{2} \tag{12}
\end{equation*}
$$

(ii) Assume $p+q<0$. Then it follows from (8) that

$$
-\left(f^{n_{1}}\right)^{\prime}(\eta) \leqslant p \eta f(\eta)
$$

If we divide by f and integrate from η to a we obtain the inequality:

$$
\begin{equation*}
[m /(m-1)] f^{m-1}(\eta) \leqslant \frac{1}{2} p\left(a^{2}-\eta^{2}\right), \quad b \leqslant \eta \leqslant a \tag{13}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\sup _{(b, a)}[m /(m-1)] f^{m-1}(\eta) \leqslant \frac{1}{2} p a^{2} \tag{14}
\end{equation*}
$$

Because the bound of Lemma 4 is uniform in $b, f(\eta)$ can never become unbounded as η decreases.

The estimates (11) and (13) are of some interest in their own right in that they provide upper bounds for $f(\eta)$ which also tend to zero as $\eta \rightarrow a$. Lower bounds can be derived in exactly the same way; one finds:
(i) if $p+q \geqslant 0$,

$$
\begin{equation*}
[m /(m-1)] f^{m-1}(\eta) \geqslant \frac{1}{2} p\left(a^{2}-\eta^{2}\right) \quad b \leqslant \eta \leqslant a ; \tag{15}
\end{equation*}
$$

(ii) if $p+q<0$,

$$
\begin{align*}
{[m /(m-1)] f^{m-1}(\eta) } & \geqslant\left\{p a+\frac{1}{2} q(a-\eta)\right\}(a-\eta), \quad \max \left\{b, \eta_{0}\right\} \leqslant \eta \leqslant a \\
& \geqslant \frac{1}{2}(2 p+q)\left(a^{2}-\eta^{2}\right) \tag{16}
\end{align*}
$$

The following Lemma distinguishes between the possibilities (B) and (C).
Lemma 5. Let f be the positive solution of problem (4), (7) in a left neighborhood of $\eta=a$. Assume that $p>0$. Then:
(i) if $2 p+q>0, f(\eta)>0$ on $[0, a)$;
(ii) if $2 p+q=0, f(\eta)>0$ on $(0, a)$ and $f(0)=0$;
(iii) if $2 p+q<0$, there exists an $\eta^{*} \in(0, a)$ such that $f(\eta)>0$ on $\left(\eta^{*}, a\right)$ and $f\left(\eta^{*}\right)=0$.

Proof. Integration of (8) from η to a yields the following integral equation for f :

$$
\begin{equation*}
f^{m}(\eta)=p \eta \int_{n}^{a} f(\xi) d \xi+(2 p+q) \int_{n}^{a}(\xi-\eta) f(\xi) d \xi \tag{17}
\end{equation*}
$$

Lemma 5 now follows at once.

Suppose $2 p+q>0$. Then, by the previous Lemma we may continue $f(\eta)$ back to $\eta-0$, and $f(0)>0$. However, using the bounds for f we obtained earlier, we can actually give upper and lower bounds for $f(0)$. This will be done in the following Proposition. It will be convenient to define the quantities:
$\lambda=(2 p+q) / p, \quad \mu=1-[(p+q) / q]^{2}, \quad A=\left\{[(m-1) / 2 m] p a^{2}\right\}^{1 /(m-1)}$.
Proposition 1. Let $p>0$ and $2 p+q>0$. Then:
(i) if $p+q \geqslant 0(\lambda \geqslant 1)$

$$
\lambda^{1 / m} A \leqslant f(0) \leqslant \lambda^{1 /(m-1)} A
$$

(ii) if $p+q \leqslant 0(0<\lambda \leqslant 1)$

$$
(\mu \lambda)^{1 /(m-1)} A \leqslant f(0) \leqslant \lambda^{1 / m} A
$$

Both estimates are sharp for $p \mid q=0$.
Proof. (i) The upper bound follows at once from (11). To obtain the lower bound we use (15) in (17),

$$
\begin{equation*}
f^{r}(0)=(2 p+q) \int_{0}^{a} \xi f(\xi) d \xi \tag{18}
\end{equation*}
$$

The result follows after an elementary computation.
(ii) In this case we only have a bound for f on the interval $\left[\eta_{0}, a\right)$, where η_{0} is the value of η for which f reaches its maximum value. By (13) and (16)
$\lambda^{1 /(m-1)} A\left\{1-(\eta / a)^{2 \eta 1 /(m-1)} \leqslant f(\eta) \leqslant A\left\{1-(\eta / a)^{2}\right\}^{1 /(m-1)} \eta_{0} \leqslant \eta \leqslant a\right.$.
However, $f(\eta) \leqslant f\left(\eta_{0}\right)$ on $\left[0, \eta_{0}\right]$ and therefore (19) holds for $0 \leqslant \eta \leqslant a$. Using this estimate in (18) we obtain the desired upper bound.

To obtain the lower bound, we note that by (18)

$$
\begin{equation*}
f^{m}(0) \geqslant(2 p+q) \int_{a^{*}}^{a} \xi f(\xi) d \xi \tag{20}
\end{equation*}
$$

where $a^{*}=\{(p+q) / q\} a$. Because, by Lemma $2, \eta_{0} \leqslant a^{*}$ we can use (19) in (20) to estimate $f(0)$.

We conclude this section with a result about the dependence of f on the choice of a.

Proposition 2. Let $p>0$ and $2 p+q \geqslant 0$. Suppose $f\left(\eta ; a_{1}\right)$ and $f\left(\eta ; a_{2}\right)$ are solutions of problem (4), (7) on, respectively, ($0, a_{1}$) and ($0, a_{2}$). Then, if $a_{1}>a_{2}, f\left(\eta ; a_{1}\right)>f\left(\eta ; a_{2}\right)$ everywhere on $\left(0, a_{2}\right)$.

Proof. Denote $f\left(\eta ; a_{i}\right)$ by $f_{i}(\eta)$ for $i=1,2$. Suppose the Proposition is not true. Then there exists an $\bar{\eta} \in\left(0, a_{2}\right)$ such that $f_{1}(\bar{\eta})=f_{2}(\bar{\eta})$ and $f_{1}(\eta)>$ $f_{2}(\eta)$ on ($\bar{\eta}, a_{2}$). It follows from (17) that for $i=1,2$,

$$
f_{i}^{m}(\bar{\eta})=p \bar{\eta} \int_{\bar{\eta}}^{a_{i}} f_{i}(\xi) d \xi+(2 p+q) \int_{\bar{\eta}}^{a_{i}}(\xi-\bar{\eta}) f_{i}(\xi) d \xi
$$

Hence

$$
\begin{aligned}
p \bar{\eta} \int_{\bar{\eta}}^{a_{2}}\left(f_{1}-f_{2}\right) d \xi & +(2 p+q) \int_{\bar{\eta}}^{a_{2}}(\xi-\bar{\eta})\left(f_{1}-f_{2}\right) d \xi \\
& +p \bar{\eta} \int_{a_{2}}^{a_{1}} f_{1} d \xi+(2 p+q) \int_{a_{2}}^{a_{1}}(\xi-\bar{\eta}) f_{1} d \xi=0
\end{aligned}
$$

The second and the fourth term of this expression are nonnegative, whilst the other two are positive. We therefore have a contradiction.

5. The Main Result

We begin by proving the existence and uniqueness of a solution of problem (4), (6), (7) which is positive on (0,a). By Lemma 1 a necessary condition for the existence of such a solution is that $p \geqslant 0$.

Let $p>0$. Then, by Lemma 3, for each $a>0$ there exists a unique positive solution $f(\eta ; a)$ of (4), (7) in a left neighborhood of $\eta=a$. By Lemma 5 this solution can be continued back to $\eta=0$ if and only if $2 p+q \geqslant 0$. Thus the boundary condition at $\eta=0$ is satisfied if we can find an $a>0$ such that

$$
\begin{equation*}
f(0 ; a)=U \tag{21}
\end{equation*}
$$

If only one such an a exists, the solution is unique.
We distinguish two cases:
(i) $U=0$. Then by Lemma 5, Eq. (21) can only be satisfied if $2 p+q=0$. Moreover (21) is then satisfied for any $a>0$.
(ii) $U>0$. It follows from Lemma 5 that now a necessary condition for (21) to have a solution is that $2 p+q>0$. To prove that it is also sufficient we use an observation due to Barenblatt [4].

Let $f(\eta ; a)$ be a solution of problem (4), (7) on ($0, a$). Then for any $\mu>0$ the function $\mu^{-2 /(m-1)} f(\mu \eta ; \mu a)$ is a solution of problem (4), (7) on ($0, \mu a$). Thus, choosing $\mu=a^{-1}$:

$$
f(0 ; a)=a^{2 /(m-1)} f(0 ; 1)
$$

Equation (21) can therefore be written as

$$
\begin{equation*}
a^{2 /(m-1)} f(0 ; 1)=U . \tag{22}
\end{equation*}
$$

Because $2 p+q>0, f(0 ; 1)>0$. It follows that for each $U>0$, Eq. (22) has a unique solution $a(U)$. The function $f(\eta ; a(U))$ now satisfies (4), (6) and (7). Moreover, in view of the uniqueness of $a(U)$ it is the only function which does so. Remembering the solution we constructed for $p=0$, we have proved the following result.

Theorem 1. (i) Let $U>0$. Then there exists a unique $a>0$ and a unique solution of problem (4), (6), (7) which is positive on (0, a) if and only if $p \geqslant 0$ and $2 p+q>0$.
(ii) Let $U=0$. Then for every $a>0$ there exists a solution of problem (4), (6), (7) which is positive on (0, a) if and only if $p>0$ and $2 p+q=0$.

It is easy to see that the function

$$
f(\eta)= \begin{cases}f(\eta ; a), & 0 \leqslant \eta<a, \\ 0, & a \leqslant \eta<\infty,\end{cases}
$$

is a weak solution of Eq. (4) which satisfies the boundary conditions (5). Hence, it remains to show that if $U>0$, this is the only solution of problem (4), (5) with compact support, and that if $U=0$, this is the only family of nontrivial solutions of problem (4), (5) with compact support.
Let $f(\eta)$ be a weak solution of problem (4), (5) with compact support. It follows from Lemma 5 that if $U>0$, problem (4), (5) only has such a solution if $2 p+q>0$, and that this solution is of the form:

$$
\begin{array}{ll}
f(\eta)>0 & \text { on }[0, a), \\
f(\eta)=0 & \text { on }[a, \infty),
\end{array}
$$

for some $a>0$. That is, f must be of the type discussed above, and by Theorem 1 there exists only one such solution.
If $U=0$, one might expect, besides the family of solutions discussed above, nontrivial solutions which are zero on a disconnected subset of $(0, \infty)$. However, we shall show that such solutions cannot exist.
Let f be a weak solution such that $f>0$ on $\left(a_{1}, a_{2}\right)$, where $0<a_{1}<a_{2}<\infty$ and $f=0$ at $\eta=a_{1}$ and at $\eta=a_{2}$. Then, for f to be a weak solution of (4), we must require

$$
f\left(a_{i}\right)=0, \quad\left(f^{m}\right)^{\prime}\left(a_{i}\right)=0 \quad i=1,2 .
$$

On (a_{1}, a_{2}) f is a classical solution of (4), and hence we obtain by integrating (4) from a_{1} to a_{2} :

$$
0=(p+q) \int_{a_{1}}^{u_{2}} f(\xi) d \xi
$$

Because $p+q=(2 p+q)-p<0$ and $f>0$ on $\left(a_{1}, a_{2}\right)$ we have arrived at a contradiction.

It follows that if $U=0$, any weak solution of problem (4), (5) with compact support must belong to the family of solutions discussed above.

Theorem 2. (i) Let $U>0$. Then there exists a unique weak solution with compact support of problem (4), (5) if and only if $p \geqslant 0$ and $2 p+q>0$.
(ii) Let $U=0$. Then there exists a nontrivial weak solution with compact support of problem (4), (5) if and only if $p>0$ and $2 p+q=0$. For every $a>0$ there exists one such solution f with the property $f>0$ on ($0, a$) and $f=0$ on $[a, \infty)$.

6. Examples

We conclude with a discussion of the implications of Theorems 1 and 2 for the similarity solutions of Eq. (1)
(a) Similarity Solutions of Type I.

In this case, $p=\frac{1}{2}\{1+(m-1) \alpha\}$ and $q=\alpha$. Hence

$$
p+q-\frac{1}{2}\{1+(m+1) \alpha\}, \quad 2 p+q-1+m \alpha
$$

It follows from Theorem 2 that there exists a non trivial similarity solution with compact support if and only if $\alpha \geqslant-1 / m$.

Below we tabulate those solutions which may be derived explicitly from Eq. (2a)
(i) $\alpha=-1 / m$. This yields the so called "dipole type solution" [7, 16]. Because $2 p+q=0$ in this case, equation (17) becomes

$$
f^{m}(\eta)=\frac{1}{2 m} \eta \int_{n}^{a} f(\xi) d \xi
$$

Putting $g(\eta)=\int_{\eta}^{a} f(\xi) d \xi$, we can write this as

$$
g^{\prime}(\eta)=-\left(\frac{1}{2 m} \eta g\right)^{1 / m}, \quad g(a)=0
$$

After a routine computation this yields for f :

$$
f(\eta)=\eta^{1 / m}\left\{\left(\frac{m-1}{2 m(m+1)}\right)^{m}\left(a^{(m+1) / m}-\eta^{(m+1) / m}\right)\right\}^{1 /(m-1)} \quad 0 \leqslant \eta \leqslant a
$$

Returning to the variables x and t we obtain

$$
u_{1}(x, t)=\begin{array}{ll}
\left((t+\tau)^{-1 / m} f\left(x(t+\tau)^{-1 /(2 m)}\right),\right. & 0 \leqslant x \leqslant u(t+\tau)^{1 /(2 m)} \\
10, & a(t+\tau)^{1 /(2 m)}<x<\infty
\end{array}
$$

(ii) $\quad \alpha=-1 /(m+1)$. This solution is often called the 'instantaneous point source solution" $[1,4,12,15,16]$. Eq. (2a) can now easily be integrated to yield

$$
f(\eta)=\left.\frac{m-1}{2 m(m+1)}\left(a^{2}-\eta^{2}\right)\right|^{1 /(m-1)} \quad 0 \leqslant \eta \leqslant a
$$

and hence
$u_{1}(x, t)=\begin{array}{ll}\left((t+\tau)^{-1 /(m+1)} f\left(x(t+\tau)^{-1 /(m+1)}\right),\right. & 0 \leqslant x \leqslant a(t+\tau)^{1 /(m+1)}, \\ 10, & a(t+\tau)^{1 /(m+1)}<x<\infty .\end{array}$
(iii) $\alpha=1 /(m-1)$. This yields the wave solution [5, 11]. The function

$$
f(\eta)=\{[(m-1) / m] a(a-\eta)\}^{1 /(m-1)} \quad 0 \leqslant \eta \leqslant a
$$

satisfies (4) and (7), and gives

$$
u_{1}(x, t)= \begin{cases}\{[(m-1) / m] a[a(t+\tau)-x]\}^{1 /(m-1)}, & 0 \leqslant x \leqslant a(t+\tau) \\ 10, & a(t+\tau)<x<\infty\end{cases}
$$

(b) Similarity Solutions of Type II

An application of Theorem 2 to Eq. (2b) yields the existence of a nontrivial similarity solution of type u_{2} with compact support if and only if $\alpha \leqslant-1 /(m-1)$. In all cases $u_{2}(0, t)$ is positive on $(0, T)$.

When $\alpha=-1 /(m-1)$, Eq. (2b) is the special case of (4) with $p=0$ and $q=1 /(m-1)$. It therefore has an exact solution given by expression (9) with $q=1 /(m-1)$. We derive that

$$
u_{2}(x, t)= \begin{cases}\left\{\frac{m-1}{2 m(m+1)} \frac{\left(a^{2}-x^{2}\right)}{(\tau-t)}\right\}^{1 /(m-1)} & 0<x<a \\ 0, & a \leqslant x<\infty\end{cases}
$$

(cf. [9]).

(c) Similarity Solutions of Type III

By Theorem 2 now applied to Eq. (2c), there are nontrivial similarity solutions of type u_{3} with compact support if and only if $\alpha>0$. In every case the lateral boundary data must be positive.

References

1. W. F. Ames, Similarity for the nonlinear diffusion equation, $I \mathscr{G}$ EC Fundamentals 4 (1965), 72-76.
2. F. V. Atkinson and L. A. Peletier, Similarity profiles of flows through porous media, Arch. Rational Mech. Anal. 42 (1971), 369-379.
3. F. V. Atkinson and L. A. Peletier, Similarly solutions of the nonlinear diffusion equation, Arch. Rational Mech. Anal. 54 (1974), 373-392.
4. G. I. Barenblatt, On some unsteady motions of a liquid an a gas in a porous medium, Prikl. Mat. Meh. 16 (1952), 67-78.
5. G. I. Barendlatt, On a class of exact solutions of the plane onedimensional problem of unsteady filtration into a porous medium, Prikl. Mat. Meh. 17 (1953), 739-742.
6. G. I. Barenblatt, On limiting self-similar motions in the theory of unsteady filtration of a gas in a porous medium and the theory of the boundary layer, Prikl. Mat. Meh. 18 (1954), 409-414.
7. G. I. Barenblatt and Ya. B. Zel'dovich, On the dipole-type solution in problems of unsteady gas filtration in the polytropic regime, Prikl. Mat. Meh. 21 (1957), 718-720.
8. P. Hartman, "Ordinary Differential Equations," John Wiley \& Sons Inc., New York, 1964.
9. A. S. Kalashnikov, The occurrence of singularities in solutions of the nonsteady seepage equation, Z. Vycisk. Mat. i Mat. Fiz. 7 (1967), 440-444. (Translated as: USSR Computational Math. and Math. Phys. 7 (1967), 269-275.)
10. R. E. Marshak, Effect of radiation on shock wave behaviour, Phys. Fluids 1 (1958), 24-29.
11. O. A. Oleinik, A. S. Kalashnikov and Chzhou Yui-Lin, The Cauchy problem and boundary problems for equations of the type of unsteady filtration, Izv. Akad. Nauk. SSSR Ser. Mat. 22 (1958), 667-704.
12. R. E. Pattle, Diffusion from an instantaneous point source with concentrationdependent coefficient, Quart. I. Mech. Appl. Math. 12 (1959), 407-409.
13. L. F. Shampine, Concentration-dependent diffusion, Quart. Appl. Math. 30 (1973), 441-452.
14. L. F. Shampine, Concentration-dependent diffusion. II. Singular problems, Quart. Appl. Math. 31 (1973), 287-293.
15. Ya. B. Zel'dovich and A. S. Kompaneets, On the theory of heat propagation for temperature-dependent thermal conductivity, in "Collection Commemorating the Seventieth Birthday of Academician A. F. Ioffe," pp. 61-72, Izdat. Akad. Nauk SSSR, Moscow, 1950.
16. Ya. B. Zel'dovich and Yu. P. Raizer, "Physics of Shock Waves and HighTemperature Hydrodynamic Phenomena," Vol. II, Academic Press, New York, 1967.
