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1. INTRODUCTION 

Consider the one dimensional flow of a polytropic gas through a homo- 
geneous porous medium. Then the density u of the gas satisfies the nonlinear 
diffusion equation 

4 = (qm (1) 

whenever u > 0. Here, x denotes the space variable, t time and m a constant 
greater than 1 [16, 6571. 

Equation (1) is parabolic at any point (x, t) at which u > 0. However, 
at points where u = 0, it is degenerate parabolic. Because of this degeneracy 
(1) need not always have a classical solution. Classes of weak solutions for the 
Cauchy problem and the Cauchy-Dirichlet problem of Eq. (1) were introduced 
by Oleinik, Kalashnikov and Yui-Lin [l 11. They proved existence and 
uniqueness of such solutions and in addition, they showed that if at some 
instant t,, a weak solution U(X, to) has compact support, then u(x, t) has 
compact support for any t > t, . 

In this paper we shall study a class of similarity solutions of (1) in the 
domain 0 < x < 00, 0 < t < T, where T is some positive constant. Let c1 
and 7 be real numbers. We shall seek solutions of the following three types: 

I. Ul(X, 4 = (t + T)“fl(7)> 7 z x(t + +?(l+(--l)d 

for 7 > 0; 

II. %(X, t) = (7 - t)u.h(7), 7 = x(T - t)-iwm-lh) 

for 7 > T; 

III. ua(x, t) = e*(t+Tlfs(7), 

for any 7. 

7 = x exp(-+(m - I)(t + T)> 

Substitution of ui , ua and 11s into (1) leads to the following equations for 
the functions fi , f2 and f3 : 
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I. (fl”)” + *iI + (m - lb) yfl’ = %fl o<y<co (24 
II. (fi”“), - ${ 1 f (m - l)ar} ?Ifi’ = +a O<T)<” (2b) 

III. (j-p)” + QcX(m - 1) Tlf3/ = cif o<v<co. (24 

At the boundaries we impose the conditions 

f,(O) = U(30), fi(W) = 0 i = 1, 2, 3. 

Thus the solutions ui(s, t) satisfy the lateral boundary conditions 

u,(O, t) = (t + 7)ac:, uz(O, t) = (T - t)w, u,(O, t) = eJl(t+~)u 

and 
up(x, t) -+ 0 as .t”+ a3 i = 1, 2, 3 

for fixed t E [0, T]. 
It was Barenblatt [4], who first discussed the similarity solution pi ; he 

did this for 01 > 0. In a subsequent paper [6] he also investigated the solution 
u3 for CY > 0 and m = 2. Later Marshak [lo] also discussed solution ua ; 
in addition he made a detailed, and partly numerical, study of solution ui for 
(y. = +. For a number of values of 01, explicit solutions were found by various 
authors [I, 4, 5, 7, 9, 11, 12, 15, 161. 

The studies mentioned above are all to a greater or lesser extent of a 
heuristic nature, and it is only recently that a rigorous study of these similarity 
solutions was begun. This was done by Atkinson and Peletier [2, 31 and by 
Shampine [13, 141. They considered the equation 

(k(f If’)’ + &f’ = 0 0 < 7 < 00 (3) 

in which K(s) is defined, real and continuous for s 3 0, with k(0) > 0 and 
K(s) > 0 if s > 0. Clearly, if we set cx = 0, equation (2a) becomes a special 
case of (3). 

In the present paper we shall extend the analysis of [2] to the problem 

(f”)” +Plf’ = 4f> o<rf<m, (4) 
f(0) = Cl, f(a) = 0, (5) 

in which p and q are arbitrary real constants. Plainly, Eq. (4) incorporates 
Equations (2a)-(2c). 

As in [2] it will be necessary to consider weak solutions of problem (4), (5). 
A function f will be said to be a weak solution of Eq. (4) if (a) f is bounded, 
continuous and nonnegative on [0, co), (b) (f m)(T) has a continuous derivative 
with respect T) on (0, CO), and (c)f satisfies the identity 

for all 4 E C,l(O, co). 
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We shall establish the following results: 

(i) Let U > 0. Then problem (4), (5) h as a weak solution with compact 
support if and only if 

P30 and 2P + q > 0. 

This solution is unique. 

(ii) Let U = 0. Then problem (4), (5) has a nontrivial weak solution 
with compact support if and only if 

P>O and 2p + q = 0. 

In this case there exists a one parameter family of such solutions. 

2. THE METHOD 

Let f be a weak solution of problem (4), (5) with compact support in 
[0, co). Then, as we shall see later, f  is positive in a right neighborhood of 
7 = 0. More specifically, there exists a number a > 0 such that 

f>O on (0, a); f=O on [a, co). 

It was shown in [2] that in a neighborhood of any point where f  > 0, f  is a 
classical solution of equation (4). Thus we shall be mainly concerned with 
proving the existence and uniqueness of a classical positive solution of (4) 
on an interval (0, a) which satisfies the boundary conditions 

f(0) = u, (6) 

f(a) = 0, (f”)’ (u) = 0. (7) 

The condition at 7 = a follows from the requirement that f  and (f”“)’ be 
continuous on (0, co). 

The existence proof is based on a shooting technique. Let a be an arbitrary 
positive number. Then we shall show that for suitable p and Q, there exists a 
unique positive solution of problem (4), (7) in a left neighborhood of 77 = a, 
and that this solution can be continued back to 7 = 0. We then ask whether 
a can be chosen so that condition (6) is satisfied. 

Before turning to the question of existence we obtain a preliminary non- 
existence result. 

LEMMA 1. The existence of a nontrivial weak solution of Eq. (4) with 
compact support implies one of the following propositions. (i) p > 0 01 (ii) p = 0 
and q > 0. 
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Proof. Suppose f is a nontrivial weak solution of equation (4) with 
compact support. Then there exists an a > 0 such that f > 0 in (u - E, a) 
for some E > 0 and f = 0 in [a, co). Thus, in (a - E, a) f satisfies (4), and 
at 7 = a, f satisfies (7). Integration of (4) from 71 E (Q - E, a) to a yields 

-(f")' (4 = P17f(d -t (P + d 1" f(f) d5. -1 (8) 

In view of the continuity off and (f ,,I)’ it is possible to find an ~a E (a - E, a) 
such that f ‘(To) < 0. Hence p and p + Q cannot both be less than zero. Thus, 
if p = 0, 4 must be positive. 

Suppose now that p < 0. Then, by (8) p + CJ > 0 and hence q > 0. It 
follows from (4) that f cannot have a maximum in (a - E, u) and hence, 
thatf’ < 0 on (a - E, u). Therefore 

--mf’“-“(77)f’(q) -PI <(p + q)(a - 77) 

for all 7 E (a - E, a). If we now let 7 tend to a, we obtain a contradiction. 

3. SOLUTIONS NEAR -q = u 

Let a be an arbitrary positive number. It is clear from the proof of Lemma 1 
that a necessary condition for the existence of a positive solution of problem 
(4), (7) in a left neighborhood of 7 = a is that either p > 0 or p = 0 and 
q > 0. The object of this section is to show that this condition is also sufficient. 

We begin by assuming that p - 0 and q > 0. Then we can solve problem 
(4), (6), (7) uniquely. F or it follows after an elementary computation that the 
function 

f(77;u) = i d” - 1)2 (u _ ?7)2y-1’ 

l 2m(m + 1) \ 
0 < 77 <u 

(9) 

is the unique solution of problem (4), (7). Because f(0; a) is a continuous, 
monotonically increasing function of a, such that f (0; 0) = 0 and f (0; co) = co, 
the equation f(0; a) = U is uniquely solvable for every U 3 0. Let u(U) 
be its solution. Then f = f (7; u(U)) is th e unique solution of problem (4), 

((9, (7). 
Next, we turn to the case p > 0. We first prove a preparatory lemma. 

LEMMA 2. Let b E (0, a), and let f be a positive solution of problem (4), (7) 
on [b, a). 
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(i) 1jp + q b 0 thenf’(7]) < 0 on [b, a). 

(ii) If p + q < 0, and there exists an q. E [6, u) such that f’(7a) = 0, 
then f has a maximum at 7,, , and q,, < {(p + q)/q}u. 

I f f  is a positive solution of problem (4), (7) on [0, a), then if p + q > 0, 
f’(0) < 0; if p + q = 0, f’(0) = 0; and ifp + q < 0, f’(0) > 0. 

Proof. Integration of (4) f rom 7 E [b, a) to a yields, as before, equation (8). 
If p + q >, 0, this implies that (f”)’ (7) < 0 and hence that f’(7) < 0 on 
[b, a). 

If p + q < 0, we note that q < 0 and hence f’(7J = 0 implies that 
f  “(?a) < 0. It follows that f  has a maximum at 7 = 7a , and f  ‘(7) < 0 on 
(71~ , u). To estimate 7,, , we set 7 = 7,, in (8). Using the fact that f’(7) < 0 
on (7a , u) we obtain 

0 = P70f(70) + (P + 4 j’f (4) d5 > P70f(7,J + (P + d jaf ho) d5. 
x7 ‘10 

Hence 

P70 + (P + 4)(a - 70) < 0 

or 

(P + 9) a - Q70 < 0. 

Recalling that q < 0, we obtain the desired upper bound for 7. . 
Finally, if b = 0, (8) yields the relation 

-(f’“)’ (0) = (P + s> joaf(O dt 

from which the sign of f’(0) follows. 
We now turn to the question of existence. 

LEMMA 3. Let p > 0 and let q be arbitrary. Then given any a > 0, there 
exists an E > 0 such that in (u - l , a) problem (4), (7) has a unique positive 
solution. 

Proof. As in [2] we reduce the problem to that of establishing the local 
existence of a solution of an equivalent integral equation. To derive this 
equation we assume that f  is a positive solution in an interval (a - E, a) for 
some E > 0. By Lemma 2, it is possible to choose E such that f’ < 0 in 
(u - E, a). This allows us to formulate the problem in terms of the inverse 
function7 = u(f). 

We write (8) in the form 

(f”)’ (7) = 47f(7) + (P + $9 fU ff’cr, d5‘. 
*77 
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Hence the function u(f) satisfies the integrodifferential equation 

do mf n-1 

q = qf4f) - (P + Q) j; 4~) d9, * 

Integration from 0 to f yields 

or. when we write 

T(f) = 1 - a-‘u(f ), 
(10) 

The next step is to prove that (10) h as a unique positive solution in a 
right neighborhood off = 0. Let y > 0, and let X be the set of bounded 
functions r(f) defined on [0, ~1 such that 

We denote by jj * jj the supremum norm on X. Then X is a complete metric 
space. On X we define the operator 

Suppose r E X. Then 

Thus, M(7) is well defined on the whole of X. Clearly, if 7 E X, M(r): 
[0, ~1 ---f R is nonnegative and continuous; moreover there exists a ‘y. > 0 
such that if y < y. and T E X, I/ &f(T)11 < p. Thus, if y ,< yo, M maps X 
into X. 
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Let TV , 7s E X, and let y < y,, . Then 

II M(Tl) - WT2ll 

Hence, there exists a yi E (0, rs] such that if y < yi M is a contraction on X. 
Thus by the Banach-Cacciopoli contraction mapping principle ([8, 4041) 
M has a unique fixed point in X, and equation (10) has a unique solution. 

It follows from a routine computation that this result implies the existence 
and uniqueness of a positive solution of problem (4), (7) in a left neighborhood 
ofq = a. 

4. BACKWARD CONTINUATION 

Let a > 0, and let f(7) be the solution of (4), (7) we constructed in the 
previous section. Then f is defined and positive in a left neighborhood 
of 7 = a. We now continue f backwards as a function of T]. By the standard 
theory [8] this can be done uniquely so long as f remains positive and bounded. 
There are now three possibilities: 

(A) f (7) -+ ~0 as 77 -1 v1 for SOme rll E to, a); 
(B) f(q) can be continued back to 17 = 0; 

(C) f(q) - 0 as 7 J qz for some r12 E (0, a). 

We begin by ruling out possibility (A). 

LEMMA 4. Let b E [0, a), and let f  be a positive solution of problem (4), (7) 

on (b, a). The-n, if p > 0, 

y,qf (q) d [((m - 1)/2m) a2 mm{p, 2p + q}]ljc+l). 

Proof. (i) Assume p + 4 > 0. Then, by Lemma 2, f’ < 0 on (b, a). 
Using this in (8) we obtain: 

-m(f T’ (17) G Pllf (71) + (P + q)f(rl)(a - 77) 

or 
-w-“(?)f ‘(7) e (P + 4) a - 9% b<q<a. 

Integration from 7 to a yields 

P/(m - l)lf +l(rl) < ipa + &da - 41 (a - 7) 6 < rl < a (11) 
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and hence 

ykpi(m - l)lf”-‘(7) < 4(2p + q) a?. 

(ii) Assume p + 4 < 0. Then it follows from (8) that 

-(f”Y (7) G Prlfb?). 

(12) 

If we divide by f and integrate from T to a we obtain the inequality: 

[m/(m - l)]f”‘-‘(7) < g+z” - T/2), b,<q<a. (13) 

Thus 

g4pi’(m - 111 f”‘-‘(q) < &Paz. (14) 

Because the bound of Lemma 4 is uniform in b, f(v) can never become 
unbounded as 7 decreases. 

The estimates (11) and (13) are of some interest in their own right in that 
they provide upper bounds forf(7) which also tend to zero as 7 + a. Lower 
bounds can be derived in exactly the same way; one finds: 

(9 ifp t- 4 3 0, 

[m&72 - l)]f”“-i(v) > frp(a” - $) b<q<a; (15) 

(ii) if p + q < 0, 

[m/@ - l)lf”‘-‘(7) 2 (pa + Ma - 7)) (a - 7), ma+, ~1 < 7 < a 

> $(2p + q) (a’ - 7’). (16) 

The following Lemma distinguishes between the possibilities (B) and (C). 

LEMMA 5. Let f  be the positive so&ion of problem (4), (7) in a left neigh- 
borhood of 77 = a. Assume that p > 0. Then: 

(i) ;f2P+q>O,f(rl)>Oon[O,a); 

(ii) if2p + 4 = 0, f(q) > 0 on (0, a) andf(0) = 0; 

(iii) if 2~ + q < 0, there exists an v* E (0, a) such that f(T) > 0 on 
(7)*, a) andf(7j*) = 0. 

Proof. Integration of (8) f rom ? to a yields the following integral equation 
for f :  

f”(d = p-r j-p,0 d5 + (2~ -t 4) f0 (5 - df(5) dt-. 
R 

(17) 

Lemma 5 now follows at once. 
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Suppose 2p $- q > 0. Then, by the previous Lemma we may continue 
f(7) back to 7 = 0, and f(0) > 0. However, using the bounds for f we 
obtained earlier, we can actually give upper and lower bounds for f(0). 
This will be done in the following Proposition. It will be convenient to 
define the quantities: 

h = (2p + q)/p, p = 1 - [(p + q)/q]2, A = {[(m - 1)/2m]pa2)l/‘“‘-l’. 

PROPOSITION 1. Let p > 0 and 2p + q > 0. Then: 

(i) ifp + 4 > 0 (A 3 1) 

hll”A <f(O) < Xli(m-l)A; 

(ii) ifp + q < 0 (0 < h < 1) 

(pAy( <f(O) < h’i”‘A. 

Both estimates are sharp for p + q = 0. 

Proof. (i) The upper bound follows at once from (11). To obtain the 
lower bound we use (15) in (17), 

f “‘(0) = (2~ + q) j-a tf (5) 6. (18) 
0 

The result follows after an elementary computation. 

(ii) In this case we only have a bound for f on the interval [qo, a), 

where 7. is the value of q for which f reaches its maximum value. By (13) 
and (16) 

hl!(“+l).d{l - (7J/a)y”“-l < f  (7) < A(1 - (T+)“}i/(m-i) 7jo < 7j < a. (19) 

However, f(q) < f  (qo) on [0, ~~1 and therefore (19) holds for 0 < 7 < a. 

Using this estimate in (18) we obtain the desired upper bound. 
To obtain the lower bound, we note that by (18) 

f”(o) 2 (9 + 4) j-a tf(t) dt> 
a* 

(20) 

where a* = ((p + q)/q}a. Because, by Lemma 2, v. < a* we can use (19) 
in (20) to estimate f  (0). 

We conclude this section with a result about the dependence off on the 
choice of a. 

PROPOSITION 2. Let p > 0 and 2p + q > 0. Suppose f  (7; a,) and f  (7; az) 
are solutions of problem (4), (7) on, respectively, (0, a,) and (0, a3). Then, if 

al > a2 , f  (7; al) > f  (7; a2) everywhere on (0, a2). 
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Proof. Denote f(r); ai) by fi(v) f or i = 1, 2. Suppose the Proposition is 
not true. Then there exists an 7, E (0, us) such that jr(q) = f.(q) and fr(v) > 
fa(q) on (7, az). It follows from (17) that for i = 1, 2, 

The second and the fourth term of this expression are nonnegative, whilst 
the other two are positive. We therefore have a contradiction. 

5. THE MAIN RESULT 

We begin by proving the existence and uniqueness of a solution of problem 
(4), (6), (7) which is positive on (0, a). By Lemma 1 a necessary condition 
for the existence of such a solution is that p 3 0. 

Let p > 0. Then, by Lemma 3, for each a > 0 there exists a unique 
positive solution f(?; ~2) of (4), (7) in a left neighborhood of v = a. By 
Lemma 5 this solution can be continued back to 7 = 0 if and only if 
2p + q > 0. Thus the boundary condition at 17 = 0 is satisfied if we can 
find an a > 0 such that 

f(0; a) = ci. (21) 

If only one such an a exists, the solution is unique. 
We distinguish two cases: 

(i) U = 0. Then by Lemma 5, Eq. (21) can only be satisfied if 
2p + q = 0. Moreover (21) is then satisfied for any a > 0. 

(ii) U > 0. It follows from Lemma 5 that now a necessary condition 
for (21) to have a solution is that 2p + q > 0. To prove that it is also sufficient 
we use an observation due to Barenblatt [4]. 

Letf(q; u) be a solution of problem (4), (7) on (0, a). Then for any p > 0 
the function ~-“““‘-l)f(~?; p a is a solution of problem (4), (7) on (0, pu). ) 
Thus, choosing p = a-l: 

f(0; a) = uz-l)f(O; 1). 
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Equation (21) can therefore be written as 

a”/(“‘-l)f(O; 1) = u. (22) 

Because 2p + 4 > 0, f(0; 1) > 0. It follows that for each U > 0, Eq. (22) 
has a unique solution u(U). The functionf(7; a(U)) now satisfies (4), (6) and 
(7). Moreover, in view of the uniqueness of a(V) it is the only function which 
does so. Remembering the solution we constructed for p = 0, we have 
proved the following result. 

THEOREM 1. (i) Let U > 0. Then there exists a unique a > 0 and a 

unique soZution of problem (4), (6), (7) h’ h ’ p ‘t’ w zc zs osz zve on (0, a) if and only 
ifp>Oand2p+q>O. 

(ii) Let U = 0. Then for e-very a > 0 there exists a solution of problem 
(4), (6), (7) which is positive on (0, a) ;f and only ;f p > 0 and 2p + q = 0. 

It is easy to see that the function 

f(rl) = p 4, O<-il<a, 

1 a<rl<a, 

is a weak solution of Eq. (4) which satisfies the boundary conditions (5). 
Hence, it remains to show that if U > 0, this is the only solution of problem 
(4), (5) with compact support, and that if U = 0, this is the only family 
of nontrivial solutions of problem (4), (5) with compact support. 

Let f(T) be a weak solution of problem (4) (5) with compact support. 
It follows from Lemma 5 that if U > 0, problem (4), (5) only has such a 
solution if 2p + q > 0, and that this solution is of the form: 

fh) > 0 on PO, 4, 

f(7) = 0 on [a, a), 

for some a > 0. That is, f must be of the type discussed above, and by 
Theorem 1 there exists only one such solution. 

If U = 0, one might expect, besides the family of solutions discussed 
above, nontrivial solutions which are zero on a disconnected subset of 
(0, co). However, we shall show that such solutions cannot exist. 

Let f be a weak solution such thatf > 0 on (a, , a,), where 0 < a, < a, < co 
and f = 0 at 71 = a, and at 7 = a2 . Then, for f to be a weak solution of (4), 
we must require 

f(ai) = 0, (f”)’ (4 = 0 i = 1, 2. 
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n a, , a,)fis a classical solution of (4), 
g) horn a, to a, : 

and hence we obtain by integrating 

0 = cp + Y) j”’ f(f) df. 
“1 

Because p + 4 = (2~ $ q) -p < 0 and f  > 0 on (a,, a,) n-e have arrived 
at a contradiction. 

It follows that if U = 0, any weak solution of problem (4), (5) with compact 

support must belong to the family of solutions discussed above. 

THEOREM 2. (i) Let i7 > 0. Then there exists a unique weak solution 
with compact support of problem (4), (5) if and only ifp > 0 and 2p + q > 0. 

(ii) Let L’ =: 0. Then there exists a nontrivial weak solution with compact 

support of problem (4), (5) if and only if p > 0 and 2p $- q = 0. For mery 
a > 0 there exists one such solution f  with the property f  > 0 on (0, a) and 
f  = 0 on [a, ~0). 

6. EXAMPLES 

We conclude with a discussion of the implications of Theorems 1 and 2 

for the similarity solutions of Eq. (1) 

(a) Similarity Solutions of Type I. 

In this case, p = +(I + (m -- 1)~) and q = 01. Hence 

p + 4 = 6{1 + (m + lb), 2p + q = 1 + ma!. 

It follows from Theorem 2 that there exists a non trivial similarity solution 
with compact support if and only if cy 3 -l/m. 

Below we tabulate those solutions which may be derived explicitly from 

Eq. (24 

(i) a: = -l/m. This yields the so called “dipole type solution” 
[7, 161. Because 2p + q = 0 in this case, equation (17) becomes 

f”‘(v) = & +I /“f(f) df. 
-II 

Buttingg(n) = Jzj’([) df, we can write this as 

R’h) = - (&r16, i 

1/m 
3 g(a) = 0. 
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After a routine computation this yields for f: 

Returning to the variables x and t we obtain 

((t + 7y"'f(x(t + T)-l/(*'ll'), 
%(X7 t) = ,o, 

O<'x < a(t + T)l/(znI', 
a(t + 7)Wnt' c: .2' < '-cd. 

(ii) 01 = -l/(m + I). This solution is often called the “instantaneous 
point source solution” [1, 4, 12, 15, 161. Eq. (2a) can now easily be integrated 
to yield 

and hence 

(iii) OL = l/(m - 1). This yields the wave solution [5, 111. The function 

f(7) = {[(m - 1)/m] ~(a - q)}lj(+*’ 0 < 17 < u 

satisfies (4) and (7), and gives 

+,, q = )6” - l>hl fw + 4 - 4v--l’> 0 < % < a(t + T), 
1 a(t + T) < s < m. 

(b) Similarity Solutions of Type II 

An application of Theorem 2 to Eq. (2b) yields the existence of a non- 
trivial similarity solution of type u2 with compact support if and only if 
a: 2;: -l/(m - 1). In all cases ua(0, t) is positive on (0, T). 

When LY. = -l/(m - I), Eq. (2b) is the special case of (4) with p = 0 
and 4 = l/(m - 1). It therefore has an exact solution given by expression (9) 
with 4 = l/(m - 1). We derive that 

i 

’ m  _ 1 ($ _ $)[l/(m-1) 

i+(.x,t)= 12m(m+1) (T-t) \ O<.r<a 

1 0 ’ a<x<co 

(cf. [91)* 
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(c) Similarity Solutions of Type III 

By Theorem 2 now applied to Eq. (2c), there are nontrivial similarity 
solutions of type ug with compact support if and only if 01 > 0. In every 
case the lateral boundary data must be positive. 
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