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We show that the pairs (2-element subsets; edges of the complete graph) of 
a set of cardinality 111 can be colored with 4 colors so that every uncountable 
subset contains pairs of every color, and that the pairs of real numbers can be 
colored with 1f0 colors so that every set of reals of cardinality 2~0 contains pairs 
of every color. These results are counterexamples to certain transfinite analogs 
of Ramsey's theorem. Results of this kind were obtained previously by Sierpifiski 
and by Erd6s, Hajnal, and Rado. The Erd6s-Hajnal-Rado result is much 
stronger than ours, but they used the continuum hypothesis and we do not. As 
by-products, we get an uncountable tournament with no uncountable transitive 
subtournament, and an uncountable partially ordered set such that every 
uncountable subset contains an infinite antichain and a chain isomorphic to 
the rationals. The tournament was pointed out to us by R. Laver, and is included 
with his permission. 

1. INTRODUCTION 

T h e  ca rd ina l  n u m b e r  o f  a set S is [ S I • A n  o rd ina l  is ident i f ied  wi th  the  

set o f  all  smal le r  ordinals ,  and  a ca rd ina l  is ident i f ied  wi th  its ini t ia l  

ord ina l .  I f  S is a set a n d  r is a card ina l ,  

IS] r = { x  2 s : I x I = r}. 

* The preparation of this paper was supported in part by NSF Grant GP-22937. 
The first author was also supported by a postdoctoral fellowship at the University of 
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For  cardinals a, b, r, k (k > 0), the symbol a ~ [b]~ denotes the following 
statement, and a - ~  [b]~ denotes its negation: if [A I = a and [ I [  = k, 
then, for  any family of  pairwise disjoint sets K~ _C [A] ~ (i ~ / ) ,  there exist 
i0 ~ I and B _C A such that  [ B ] ---- b and [B] ~ n Kio = ;~. Thus, a +-~ [b]~ 
holds iff the edges of  the complete graph with a vertices can be colored 
with k colors so that  every complete subgraph with b vertices has edges of  
every color. This notat ion is due to ErdSs, Hajnal,  and Rado  [3, p. 144]. 
In this notation, Ramsey's theorem [10, Theorem A] says that  n o -+ [n0] ~ 
for all r < n 0 . 

The first negative result is due to Sierpifiski, who proved [11] in effect 
that  2 ~o +-> [111] ~ . (We remark that  an easy generalization of  Sierpifiski's 
p roo f  shows that  2~0-~ [n~]~!c,_~) ! for  every positive integer r.) Erd~Ss, 
Hajnal,  and Rado proved [3, Theorem 17, p. 145] that, if  2 ~ = n~+~, 
then n~+~ +-~ [n~+~]g~+ . Erdt~s and Hajnal  asked [2, Problem 15, p. 25] if 
any of  the statements 2 ~o +-~ [n~]~, 2 ~0 - ~  ~r2 ~01~j~ , n~ +-~ [n~]~ can be proved 
without  the cont inuum hypothesis. Clearly, the first statement is the 
strongest of  the three; as we have not  been able to prove it, we conjecture 
that  the positive relation 2 ~0 ~ [n~]~ is consistent with Z F C  (Zermelo- 
Fraenkel  set theory including the axiom of  choice). The other two state- 
ments are provable in ZFC;  indeed we prove 2 ~o - ~  [2~o]~o (Theorem 1) and 
n 1-~  [nl] ~ (Theorem 2). The weaker results 2 ~0-~ [2~0]~ (for n < no) and 
n I ~ [nl] ~ were proved independently by R. Laver (private communica-  
tion). Our  results were announced in [6]. 

Theorem 1 seems best possible, in view of  a result of  R. Solovay [9, 
Theorem 1.13, p. 11] which says, in particular, that,  if  2 ~0 is real-measur- 
able, then 2 ~0 ~ [2~0]~ for every r < ~o- As for Theorem 2, to the best 
of  our knowledge everything from n~-~  [n~]~ to n~-~  [n~]~ is open with 
regard to its provabili ty in ZFC. However,  we know that  n~-~  [n~]~ ; in 
fact, n~+-~ [n~]~ +~ for every positive integer n. This was concluded by 
Shelah from a result of  Galvin; the p roof  will appear elsewhere. 

2. 2 ~° +-> [2~0]~ ° 

A set B _C o9~ is cofinal in oJ~ if, for  every/~ e ~o~, there is v e B such that 
/z ~< v. For  an infinite cardinal no, c f  n~ denotes the least cardinal b such 
that  o9~ has a cofinal subset of  cardinality b. It is well known that  
cf  2 ~o > n o . Let  R be the real line. 

LEMMA 1. Let  n~ = 2 ~o, n ~ co. Le t  fo .... , f~  : ~o~ --> R be 1-to-1 
mappings, and suppose that f o r  any cofinal B C_ ~o~ there exist  tz, v E B such 
that f~(lz ) < f~(v) f o r  all i ~ n. Then there is a 1-to-1 mapping g : ~o~ --+ R 
such that, f o r  any cofinal B C ~o~ : 
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(1) there exist  /Z, v E B such that fi(/z) < fi(v) f o r  all i <~ n, and 
g(/z) > g(v); 

(2) there exist  /Z, v ~ B such that fi(/z) < fi(v) f o r  all i ~ n, and 
g(/z) < g(v). 

Proof. We write f(/z) < f ( v )  to mean  that  fi(/z) < f i ( v )  for  all i ~< n. 
Since (2~0) ~0 = 2 ~o, we can write Imp] ~o = {A, :/Z < c~}. 

Let  v e c%, and suppose that  g(/z) has been defined for  all/Z < v. N o w  
choose g(v) ~ R so that:  

(3) g(v) v~ g(/z) for  all/Z < v; 

(4) i f /Z < v and A,  C v, then g(v) is neither the sup nor  the inf  of  
{ g(~) : ;~ e A,  and f(/~) < f ( v ) } .  So g : o9~ ~ R is defined and 1-to-1. 

Consider  any cofinal B C oJ~, and suppose that  (1) fails; this means  
that,  for/z,  v ~ B,f( /Z)  < f ( v )  ~ g(/z) < g(v). Define h : ~o~ --+ R "+2 so tha t  
h(v) = (fo(v), . . . , f ,(v),  g(v)). Since R "+2 is a separable metric  space, we 
can choose/Z ~ w~ so that  A,  _C B and h(A,)  is dense in h(B). Let such a/Z 
be fixed. Recall that  of 2 ~o > 1% ; consequently, i f  we part i t ion a cofinal 
subset o f  o9~ into countably  m a n y  parts,  at  least one of  the parts  will be 
cofinal. Let  B '  = {v ~ B :/Z < v and A,  C v}; then B'  is cofinal and, for  
every v ~ B',  g(v) > sup{ gO)  : A E A . ,  f(A) < f(v)}. Choose e > 0 and 
B" C B'  so tha t  B" is cofinal and, for  every v ~ B", 

g(v) - e > sup { g()0 : ~ ~ A . ,  f(A) < f(v)}. 

Choose a cofinal B"  C C_ B" so tha t  J g(vO --  g(v2)l < e/2 for  all v l ,  v~ ~ B ' .  
Choose ~0, v ~ B"  so that  f(,~0) < f (v ) .  Since h(A,)  is dense in h(B), we 
can choose ~ ~ A~ so tha t  [ gOt) - gO0)l < e/2 and 

If~(,~) --fiOto)l < f i ( v )  - - f i (1o)  for  all i ~< n. 

Then f(,~) < f ( v )  and g(A) > g(v) - -  e; but  this is a contradiction,  since 
v ~ B". This proves  that  (1) holds; (2) follows by symmetry.  This completes 
the p r o o f  of  L e m m a  1. 

LEMMA 2. Let  ~ = 2 g0 . There are 1-to-1 mappings f~  : ~o~ --+ R(n ~ w) 
such that, f o r  any eofinal B C_ w~ and n ~ co, there exist/Z, v ~ B such that 
fi(/z) < f~(v) f o r  all i <~ n but f~+l(l*) > f , + l ( v ) .  

Proof. Start  with any 1-to-1 mapp ing  f0 : w~ ~ R, and then obtain 
f l ,  f2 .... by repeated applicat ion of  L e m m a  1. 

Clearly, the me thod  used to prove  L e m m a  1 would also suffice to prove  
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the following generalization of Lemma 2. We do not need it for the proof 
of Theorem 1, but we state it anyway in case it will have some future use. 

LEM~A 3. Let 11, = 2~0. There are 1-to-1 mappings f ,  : co~ ~ R(n ~ w) 
such that, for any cofinal B C co, and any disjoint finite I, J C_ co, there exist 
t~, v ~ B such that f~(~) < f~(~) for  all i ~ l and f~.(t~) > f~.(v) for al l j  E J. 

LEMMA 4. Let I,I~ = 2~o. There are pairwise disjoint sets 

K, C [oj~] ~ (n ~ co) 

such that [B] ~ c5 K~ ~ ;~ for every cofinal B C_ co~ and every n ~ co. 

Proof. Let the mappings f ,  : co~ ~ R be as in Lemma 2, and let K,  
consist of all pairs {/x, v} ~ [co~]2 such that f~(/z) < f & )  for all i ~< n but 

L+I(~) > f.+~(~). 

THEOWZM 1. 2~0-~[2~q~o. 

Theorem 1 follows immediately from Lemma 4. Note that Lemma 4 
says more than Theorem 1 if 2 ~0 is singular. For example, Lemma 4 implies 
cf2~,+-~ [cf2~0]~ . Thus, if cf2 ~o = l~l, then lfl+-~ [1tl]~0 ; compare this 
with Theorem 2 and with the ErdiSs-Hajnal-Rado theorem mentioned in 
the introduction. 

3, ~'{l"b-)" [~'~1]~ 

The order type of a (totally) ordered set (S, < )  is denoted by tp (S, <),  
or simply tp S if there is no danger of confusion; if 50 = tp S, we write 
I 5O [ for [ $1 • If 5o is an order type, 5O* is the converse type; i.e., 
5O* = tp(S, > )  if 5O = tp(S, <).  If  % ~b are order types, 5O /> ~h means 
that an ordered set of type 50 has a subset of type 4. The order types of the 
real numbers and the rational numbers are A and ~7, respectively. 

An order type 5O is a Specker type if ] 50 [ = 1~1,5O ~ col, 50 .~ col*, and 
there is no uncountable order type ¢ such that ¢ ~< ~o and ¢ ~< k. The 
existence of such types was shown by E. Specker [4, p. 443, n. 7]. As 
Specker's construction does not appear in print, we mention that it is like 
the construction of an Aronszajn tree, which can be found in [8, p. 2]; the 
only difference is that the elements (certain increasing transfinite sequences 
of rationals), instead of being partially ordered by inclusion, are totally 
ordered lexicographically. 
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LEMMA 5. Let  tp S be a Specker type, and let f :  S--~ [0, 1] be 1-to-1. 
Then there exists Xo ~ S such that { y ~ S : y > x o and f ( y )  > f(x0)} is 
uncountable. 

Proof. For x ~ S ,  let g(x) = the least t~  [0, 1] such t h a t f ( y )  < t for 
all but countably many y > x. Since g is a decreasing real-valued function 
on S, g can only have countably many different values; otherwise there 
would be an uncountable type ¢ ~< tp S, ~b ~< A. Hence g is constant on 
some uncountable So _C S. We can choose x ~ So so that { y ~ So : y > x} is 
uncountable; otherwise So would have a subset of type oJl*. Now we can 
choose Xo ~ So so that Xo > x andf(xo) < g(x). Since g(Xo) = g(x) > f (xo) ,  
there are uncountably many y > Xo such that that f ( y )  > f(Xo). This 
completes the proof  of Lemma 5. 

LEMMA 6. I f  tp(S,: < l )  is a Specker type and tp(S, <~) ~< A, then there 
is an x ~ S such that { y ~ S : x <1 Y and x <2 Y} is uncountable. 

Proof. This is just a restatement of Lemma 5. 

THEOREM 2. ~1 ~ [tfl]]. 

Proof. Let IS1 = ~1. Choose orderings < 0 ,  < 1 ,  <2 so that 
tp(S, <o) = c°1, tp(S, <1) is a Specker type, and tp (S, <2) ~< ;~. Analo- 
gously to Sierpifiski's proof  of 2 ~o ++ [1¢1] ~ , we define a partition 

[ S ] 2 = K 1 U K 2 W K a t , . a K 4 ,  

where 

K 1 = {{x ,y} :x  <oY, x %1Y, x < 2 y } ,  

K2 = {{x, y} : x <o Y, x <1 Y, Y <2 x}, 

K3 = {{x, y} : x <o Y, Y <1 X, X <2 Y}, 

K 4 = { { x , y } : x < o y ,  Y < l x ,  y < 2 x } .  

Consider any uncountable S' _C S. Since tp(S', <1) is still a Specker type, 
and tp (S', <2) ~< 1, by Lemma 6 there is an x s S' such that 

{ y e S '  : x < a y ,  x <2Y} 

is uncountable. Since tp (S', <0) = c o l ,  we can choose y ~ S' so that 
x < l Y ,  x <2Y ,  and x <oY- This shows that [S ']2~ K 1 :/= ;g. Since 
tp (S', >1) is a Specker type and tp (S', >2) ~< A, it follows by symmetry 
that [S'] 2 c~ K~ =/= ~ for i = 2, 3, 4. This completes the proof  of  
Theorem 2. 
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4. TOURNAMENTS AND PARTIALLY ORDERED SETS 

In this section we give some further applications of  the ideas used in 
Theorem 2. First we need to improve Lemma 6. I f  A, B are subsets of  an 
ordered set (S, <) ,  then A < B means that a < b for all a ~ A and b s B. 

LEMMA 7. I f  tp (S, <1) is a Specker type and tp (S, <2) ~ A, then there 
are uncountable sets A, B C_ S such that A <1 B and A <2 B. 

Proof. Let U = the set of all x E S such that { y E S : x "<1 Y, x <2 Y} 
is countable; let L = the set of  all x ~ S such that { y ~ S : y <1 x, y <2 x} 
is countable. Then U is countable, or else we would get a contradiction by 
applying Lemma 6 to U; symmetrically, L is countable. Choose 

x ~ S - - ( U u  L), 

and let A = { y ~ S : y < l x ,  y < 2 x }  and B = { y c S : X < l y ,  x < 2 y } .  

LEMMA 8. Let tp Q = ~7. I f t p  (S, <1) is a Specker type and 

tp (S, <2) ~< A, 

then there are uncountable sets At C_ S (t ~ Q) such that s < t ~ A~ < A~ . 

Proof. Iterate Lemma 7. This is similar to a proof  of Erd~3s and 
Rado [4, Lemma 1, pp. 446-447]. 

A tournament is an oriented complete graph; in other words, it consists 
of a set S and a binary relation R such that, for any x, y ~ S, exactly one of 
the alternatives x = y, xRy,  y R x  holds. We call the elements of S players, 
and instead of xRy  we write: x beats y. Transitive tournament and sub- 
tournament of a tournament are defined in the obvious way. 

I f  a and b are cardinals, the symbol T(a, b) denotes the statement: every 
tournament with a players has a transitive subtournament with b players. 
Stearns [12] showed that T(2% n -k 1) holds for every finite n. Erd/3s and 
Rado [5, Theorem 4, p. 632] considered the transfinite case; they showed, 
for example, that T(g0, g0) and T((2~o) +, gl), where a + denotes the least 
cardinal > a. R. Laver observed that the idea we used to prove Theorem 2 
can also be used to show that T(~I ,  ~tl) is false. 

THEOREM 3 (Laver). There is an uncountable tournament which has no 
uncountable transitive subtournament. 

Proof. Let [ S J = ~1 • Choose orderings < 0 ,  < 1 ,  <2 as in the proof  
of Theorem 2. The elements of  S are the players, and x beats y iff 



COUNTEREXAMPLES IN THE PARTITION CALCULUS 173 

l{i : x <~ Y}I ~ 2. Consider any uncountable S' _C S. By Lemma 7, there 
are uncountable sets B, D C S' such that B <~ D and B >2 D. By Lemma 7 
again, there are uncountable sets C, A _C D such that C <~ A and C <2 A. 
Choose a ~ A , b ~ B ,  c e C  so that a < 0 b < o c .  Then b < l c < l a  and 
c <2 a <~ b. So a beats b, b beats c, and c beats a; i.e., S' is not transitive. 

Our next theorem was also known to ErdOs and Hajnal (private com- 
munication). It shows that, in some sense, T(11o, 110) is weaker than 
Ramsey's theorem. 

THEOREM 4. I f  ~ --~ [l~]], then T(11~ , t~). 

Proof. The conclusion is trivial if 11~ --~ [11~]~, so we can assume that 
11~ +-~ [11~]~. Then by a theorem of Hanf  [7] there is an order type ~ such 
that [ ~o [ = ~ ,  q) ~ oJ~, cp ~ o~*. Let S be a tournament, [ S[  = ~ .  
Choose orderings <0 and <1 so that tp (S, <o) = o)~ and tp (S, <1) = % 
Define a partition [S] 2 = K1 w/(2 w K~ u /£4 ,  where: 

K1 = {{x, y} : x < o  Y, x < 1  Y, 

K 2 = {{x,  y }  : x < 0  J ,  x < 1  J ,  

K~ = {{x, y} : x < o  Y, Y <~  x,  

K~ = {{x, y} : x < 0  y ,  y < 1  x,  

x beats y}, 

y beats x}, 

x beats y}, 

y beats x}. 

Choose S' C S so that I S' ] = 11~ and [S'] 2 meets as few as possible of the 
, , . 11 2 classes K1 K2 /(3 K4 Considering that 1~--~ [ ~]3, q ) •  c%, and 

~ oJ~*, we must have either [S']~_CK1 t3/£3 or [S']2C_K1 w K4 or 
[S'] 2 _C/(2 t3/£3 or [S'] 2 _C/(2 k3 K4. Checking each case, we see that S' is 
transitive. 

We do not know if T(2 ~0 , 1¢1) is consistent with ZFC. The symbol 
2 ~° --+ [111]].~ of Erd6s, Hajnal, and Rado [3, p. 144] denotes the following 
strengthening of the relation 2 ~o --+ [l~1] ~ considered in Section 1 : for any 
coloring of the pairs of real numbers with 4 colors, there is an uncountable 
set of reals which contains pairs of at most 2 colors. A similar argument 
to the proof  of Theorem 4 shows that, if 2 ~0 --~ [111]~,~, then T(2 ~0, 111). 

A subset X of a partially ordered set is a chain if the elements of X are 
pairwise comparable; an antichain if they are pairwise incomparable. 
Sierpifiski [11] constructed an uncountable partially ordered set S having 
no uncountable chain and no uncountable antichain. In fact, every 
uncountable subset of S contains an infinite antichain and a chain of type 
for every c~ < cu a , but no chain of type co*. Sierpifiski's partial order was 
obtained by intersecting the usual ordering of the real numbers with a well- 
ordering. By using a Specker ordering instead of a well-ordering, we get 
a partially ordered set with somewhat different properties. 
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THEOREM 5. There is an uncountable partially ordered set S such that 

every uncountable subset o f  S contains an infinite antichain and a chain o f  

type "1. 

Proof. Let  tp  (S, <1) be a Specker  type and  tp  (S, <2) ~< 2t. Define a 
par t ia l  order ing < so tha t  x < y i f fx  <1 Y and x <2 Y. Clearly there is no 
uncountab le  chain;  i.e., every uncountab le  subset  of  S contains  a pa i r  of  
i ncomparab le  elements.  By a theorem of  Dushn ik  and Mil ler  [1, Theorem 
5.25, p. 608], i t  fol lows tha t  every uncountab le  subset  of  S contains  an  
infinite chain.  (See [4, Theorem 44, p. 475] for  another  p r o o f  of  the 
Dushn ik -Mi l l e r  theorem.)  On the o ther  hand,  i t  fol lows f rom L e m m a  8 
tha t  every uncountab le  subset  of  S contains  a chain of  type 7. 

(Note added June 12, 1972. Let  I S [ =  ~1. ErdSs and Ha jna l  have 
asked [13, P rob lem II] i f  there is a pa r t i t ion  [S] ~ = I0 w I1 ,  I0 n / 1  = ~ ,  
such that ,  for  any i ~ {0, 1} and any uncountab le  set Z _C S, there are 
uncountab le  sets A, B _C Z such tha t  {a, b} ~ I~ for  all a ~ A. b ~ B. A n  
affirmative answer to this quest ion fol lows immedia te ly  f rom L e m m a  7; 
let  I0 = /(1 w K~ and  11 = K S w K~ in the no ta t ion  o f  the  p r o o f  o f  
Theorem 2.) 
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