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1. FORMULATION OF RESULTS AND DISCUSSION 

Let A’ = {A,, A,) b e a Banach couple (i.e. A, and A, are two 
Banach spaces both continuously embedded in one and the same 
topological vector space &‘). If a E A, + A, (which is also a Banach 
space continuously embedded in ~2, 

aEA,+A,03a,EA0, a,EA1:u =u,+u,, 

and if 0 < t < co, we set 

K = K(t) = K(t, a) = K(t, a; A) = aj&, (II a0 IlAO + tll a1 IIAJ (1) 
a,@,,.a,~A, 

The functional K(t) plays a major role in the theory of interpolation 
spaces (see e.g. [7J [8], [5], [6], [4]). However in some cases (see e.g. 
[9], [3]) it is more natural to study 

K, = KJt) = K,(t, u) = K,(t, a; A) 

= inf 
13=LlgfB, 

(II a0 II\, + tPll al II$Yp, (2) 
~,EA,,~,EA, 

1 < p < cc (with the usual interpretation if p = co), where p is 
adjusted to the special problem in question. The purpose of this note 
is to study more closely the connection between various KP for 
different values of p. Clearly KI = K. On the other hand K, is in 
a way the most natural one because a + K,(t, u) is the norm corres- 
ponding to the Minkowsky sum of the unit balls of the spaces A, and 
tA, . We shall prove 

THEOREM 1. Let1 <p<q<a.Then 

K,(t) = ivf( 1 + (t/~)~)l’” K,(s), l/r = U/P) - (W 

88 

(3) 
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THEOREM 2. Let 1 < q < p < co. Then 

&l(t) = sy?(l + (WY’” W), l/r = U/d - (l/P)* (4) 

Note in particular that ( p = 4). 

E&(t) = iyf max( 1, t/s) K,(s) = s’fp min(1, l/s) K,(s) (5) 

which can also easily be shown directly. We may disregard this case in 
what follows. 

Before proceeding to the proofs (see Section 2) let us give one 
important application of these results. We introduce for each p a 
binary relation ~8~ in A, + A, (i.e. a subset of the Cartesian product 
(A, + A,) X (A, + A,)) as follows: 

(a, a’) E A?= 0 qt, a) < qt, a’). 

Write W = L%?i . By the same reason as above however 9’, is the most 
natural one. It has already been studied by Gagliardo (cf. e.g. [2]). 
To see the connection let us prove the following lemma which is of 
interest in itself. 

LEMMA. (a, a’) E ST’, o For every E > 0 and every decomposition 
a’ = ah + a; of a’, with aA E A,, , ai E A, , there exists a decomposition 
a = a,, + a, of a, with a, E A,, , a, E A, , such that 

II a0 IlAo d II 4 IlAO + Et II a1 II/t1 d II 4 HA1 + E. (6) 

Proof. From (6) follows 

UC a) < ma41 a0 LO, tll al lL4,) d ma4 41 IlAO, tll 4 II,,) + l max(1, t) 

Making ah , a; vary we get 

L(t, a) < J&(4 a’) + E max(l, t) 

and making E vary 

Km(t, a) B K&, a’). (7) 

This settles the implication +. For the converse + we choose, given 
ai , a; , t in such a way that 

4 IlAO + 42 = 414 llAl + 42). 
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By definition we can now, given E, find a,, , a, so that 

max(ll a0 IlAo, tll al Il.+) < fL(t, 4 + 42 min(L th 

and we also have 

K& 4 G m=44 IlAo, fll4 IIAJ 

From (7) now follows 

II a0 11.4, G ma4 a0 IL, , tll a~ IlaJ d W, 4 + d2 min(l, f) 

< K&t, a’) + c/2 < max(ll $ Ilao , 414 ILJ + 42 = II 4 IIA~ + 6 

In the same way we find 

II a1 IIA, d II 4 l/A, + E- 

The proof is complete. 
Returning to the general case we find at once 

COROLLARY (of Theorem 1 and Theorem 2). 9, is independent of p, 
i.e. 9i?* = 9. 

Remark. Let us call a K,-space a Banach space A continuously 
embedded in &’ such that (cf. [2]) 

U’EA, (a, a’) E %!%& 0 a E A, II a II‘4 G II a’ II.4 . 

(These are particular interpolation spaces.) Let us say K-space 
instead of Kr-space. Then we may formulate the corollary also as 
follows. Every K,-space is a K-space and vice versa. 

EXAMPLE. Choose A, = L, = L,(Rn), A, = mP = J&JR”) (i.e. 
a E l8$ if and only if grad a EL,). We say that a is a contraction of a’ 
if there exists a real valued function f satisfying 

If(u) -f(w)1 < I u - v I 

such that a = f o a’. Contractions have been much studied by 
Beurling (cf. e.g. [I]). W e c aim that if a is a contraction of a’ then 1 
(a, a’) E 9. Indeed let 

a’ = u; + u; , 4 EL,, a; E WD. 
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Taking 

a, =foa’-foa;, a, =foa; 

it follows easily that 

I 44l < I aXx)L I grad al(x)1 G I grad aXx)l (x E R") 

so that 

II a0 II& d II 4 II& 3 II a1 Ilw, d II 4 Ilw, . 

Therefore (a, a’) E W, by the lemma and so (a, a’) E W by the 
corollary. By the remark we see that in this case, A = {Lp , I&,}, 
every K-space is contraction invariant. It is conceivable that the 
converse is not true. It follows also that KJt, u) only depends on 
1 a(x) - u(y)l, i.e. we have 

Ju, 4 = @Al 44 - 4r)ll 

for a certain functional @jp (depending on t too). This should be 
confronted with other expressions for K,(t, a) (cf. e.g. [S]). There 
arises the question of the explicit determination of ~3~ . If n = 1 and 
p = 2 it follows from [9] and from Parseval’s formula that 

K2(t, a) = (l/t Jj I a(x) - a( y)lwx-Yl’t dx dy)Y 

2. PROOFS 

In the proof of Theorem 1 and Theorem 2 we shall use the 
“Gagliardo indicator” (cf. [2]): 

r = r(a) = (2 = (x0, x1) I 3a, E A, ) a, E A, : 

a = a0 + a1 3 II a0 IIA, G x0 9 II a, Ila, < 4. 

This is thus a convex plane set. (Note that the lemma can be 
reformulated so that 

-- 
(a, a’) E w, 0 T(a) 3 qa’) *) 

Let ar denote the boundary. From (2) we at once obtain 

K,(t) = @-lf(x,~ + tpx,yp = jd?P + PX#“. 
El- 

(8) 
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Proof of Theorem 1. In view of Holder’s inequality we have 

(xop + tP~,p’)~Ip = i:f ((1 + (t/s)“)l/n(xoq + syX14)1’q 

Therefore by (8) we get 

I&(t) = inf inf (1 + (t/s)“)““(xoQ + sQXIQ)l~g 
&I- s 

= iyf (1 + (t/s)*)l’n in: (xop + sqxlq)l/n 

= iqf (1 + (t/s)“)‘l”“KQ(s), 

which thus establishes (3). 

Proof of Theorem 2. The inequality > in (4) follows from 
Theorem 1 (or directly). It remains to prove the inequality 6. To 
this end we choose x0 = X,,(S) and x1 = x1(s) so that the inf is assumed 
in (8), with p replaced by Q and t by s. In other words we have 

K,(s) = ((x&))Q + s”(.@))“)““. (9) 

We distinguish two cases: a) 1 < q < co, b) q = 1. (We may 
exclude q = co, because of (5).) 

a) 1 < q < co. In this case x&s) and x1(s) are uniquely determined. 
This follows from the fact that 

2 -+ (xoQ + sQx~~)~‘~ 

is strictly convex. From the uniqueness follows easily that x0(s) and 
x1(s), as functions of S, are continuous. Also x,,(s) is increasing and 
x1(s) decreasing. To see this we rewrite (8) as 

where x^r = +(x0) is the equation for ar, and note that, since +(x0) is 
convex and decreasing, and q > 1, the function (+(x,J)Q will have the 
same properties. From Holder’s inequality and (8) follows that 

K,(s) < ((x&))P + ~%(S))P)l’p(l + (s/W’” 
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with equality if and only if 

K~,(~))pl/l = [t”(xl(s))“li[(s/t)“l, 
or 

[xo(s)]/[xl(s)] = tl+“‘%-s-“‘“. 

Now I+) = L%(41/b4~)1 is increasing and g(s) = tl+nlps--nlP is 
decreasing, with lim,,,g(s) = co and lim,,, g(s) = 0. Since both 
are continuous it follows that there exists a number (J (depending 
thus on t) so that f(u) = g(u), i.e. 

((x0(u))” + t”(xl(u))“)“” = (1 + (u/t)“)-l’“&(u). 

But by (2) 

&l(t) d &%(W + tPM~NP)l’P. 

Therefore we get 

K,(t) < (1 + (wy”K&) < “YP (1 + (w)-l’“) W) 

which complets the proof in this case. 

b) Q = 1, Now it may happen that x,,(s) and x1(s) are not unique. 
Let s = u be a value of non-uniqueness. Then (x,,(o), x1(u)) may be 
any point on a straight line segment contained in ar, along which 
thus the inf is assumed. Moreover x0(s) and x1(s) have both jumps at 
s = u. The functionf(s) defined as above is not continuous. Therefore 
at the start we cannot always find u so that f(u) = g(u) but at any 
rate we can achieve 

But by the above we can then redefine x,,(u) and x1(u) so that still 
f(u) = g(u) can be obtained. The rest of thep roof runs as in case (a). 
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