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In this note we prove that every Eberlein compact linearly ordered space is metrizable. (By an

Eberlein compact space we mean a topological space which can be embedded as a compact subset
of a Banach space with the weak topology.)

AMS Subj. Class.: Primary 54D30, 54F05; Secondary S4E45
Eberlein compact space  linearly ordered topological space
metrization theorem generalized ordered topological space
o-point finite bases

1. Introduction

A topological space X is Eberlein compact if X embeds topaologically [1, 7] as a
compact subset of a Banach space with the weak topology. Equivalently X is
Eberlein compact if X is compact, Hai isdorff, and has a collection & =
U (n): n =1} such that:

(a) each F(n) is a point-finite collection of open F,-subsets of X ; and

(b) if p and q are distinct points of X, then either some Fe Fhaspe F < X —{q} or
else some J* € & has q € F = X ~{p}. The collection % is called an EC-structure for X.

~ A collection of subsets of X which satisfies (b), above, is said to “weakly separate
the points of X. A related prc perty, called “strong separation” of points of X, is

(b)* if p and q are distinct points of X, then some Fe F haspe Fc X ~{q}. It is
known that there are non-metrizable Eberlein compact spaces (cf. (3.11)), a fact
which shows tha: weak and strong separation of points are distinct notions because
one can prove:

1.1. 'l'heorem A compact Hausdoqzﬁ;_ﬁpqce X is metrizable if and only if there is a
o-point finite collection of open F,-subsets of X which strongly separates points of X.

* Thi- research was completed while the second author was a visiting professor at Vrije Universiteit in
Amsterdam.
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Theorem 1.1 can be viewed as a corollary of the followmg well-known metrmﬁon‘
theorem:

1.2. Theorem A compact Hausdorff space with a a-point finite base is metrizable.

In this note we prove that a linearly ordered topological space (LOTS), equipped
with the usual open interval topology, is metrizable whenever it is Eberlein compact,
and we obtain related metrization theorems for certain generalized ordered spaces
which admit certain types of point-separating open covers.

2. Notations and elementary lemmas

2.1. Lemma. If Yand ¥ are point-finite collections of subsets of a set X, then so are the
collecticns

(a) {GNH:Ge%and H € 3},

(b) U,

(b) 9’ ={S:S is a finite intersection of members of ¥}.

2.2 Lemma. Le: 4 be a point-finite collection of suksets of a set X and foreach G e G

let €{G) be a countable collection of subsets of G. Then the collection \_{€(G): G € ¥}
is o-point-finite.

2.3. Lemma. If X is Eberlein compaoct, then X has an EC-structure ¥ =
\AFn): n =1} which satisfies:

(a) XeF(1),

(b) F(n)cF(n+1) foreachn=1;

(c) each F(n) is closed under finite intersections.

2.4. Notation. Let ¥ be an EC-structure for X" as described in (2.3).
(a) Forpe X and n=1, let C(p, n)="{Fe%(n): pe F).
(b) For p, q € X define p ~, q to mean C(p, n) = C(q,n).
(c) ForpeX andn=1let E(p,n)={qe X:q ~.p}

Obviously each relation ~, is an equivalence relation on X.

{a) Let X(n) be asubset of X containing exactly one point from each equivalence
class E{(p n.

2.5. Lemma. For peX and n=1, E(p,n)=C(p, n)- g, n): Clq. n);ii
C(p, n)} and hence eack se:E(p,n):s an F.-subset of X.

2.5. Notation. Use the notations defined in (2.4).
el peX(i)for1=i<n et C(p,Pa-.. 0= YOp,i):1<isn}
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() For each peX(n), use the conclusion of (2. 5) to write E(p, n)m

'_)(E(p,n,k) k;-l} where each set E(p,nk) is a closed (and hence compact)
subset of X.

@ If ppeX(i) and if k;=1 for 1<i=<n, let E(piy....Pns 1y .. ky)=
(XE(ps i, ki): 1<i<n).

2.1. Lemma. Wuh notanons as in (2 6),

(a) the coliection @(n) {C(pl, . Pn): Pi € X (i) for 1<i<n} is a subcollection
of F(n) and so is point-finite ;

®) ifpeX(i)andk;=1for1<i<n,thenE(p,...,pn; ks, ..., k) isasubsetof
C(p1s ... sPn).

2.8. Lemma. ForanypeX,( XE(p,n): n=1}={p}.

Proof. Clearly p e[ {E(p, n): n=1} and if q #p has ge[ YE(p, n): n =1}, then
C(q, n)=C(p, n) for every n =1. Since & is an EC-structure, we may choose some
F € @, say F € ¥(n,), such that either pe F< X —{g} orelse g€ F = X —{p}. In the
first case we see that C(p, n,) < F so that g C(p, n,) and in the second C(q, n,) < F
and pg# C(q, n,); each case is impossible because C(p, n;)=C(q, n;). O

29. Lemma. Let K, DK, > -+ be nonempty compact subsets of a space X, and
suppose that W is an open set in X having [ {K,: n =1}< W. Then for some n =1,
K.cW.

3. Eberlein compact ordered spaces
3.1. Lemma. Any Eberlein compact LOTS is first countable.

Proof. If X were a non-first countable Eberiein compact LOTS, then we could
embed the usual ordinal space £ =[0, w,] as a closed subset of X, and it would follow
that £2 is Eberlein compact.

Let & be an EC-structure for {2 as described in (2.3). Let #' ={F ¢ #: w, ¢ F}.
Then &' is countable so that there must be an ordinal a <w, such that (a, w,) <
(&' But thenif 8 # y belong to (a, w;), any member F € ¥ which separates 8 and y
must fail to contain w,. Such an F, being o-compact, must be bounded away from w,
so that the collection F—&' is seen to be a point-countable cover of (a, w1) by
bounded open sets, and an easy application of the Pressing Down Lemma shows that
such a cover cannot exist. []

3.2. Lemma. Aﬂy Eberlein compact LOTS X has an EC-structure & satisfying (a),
(b) and (¢) of (2.3), plus
(d) each member of F is an open interval in X.
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Prooi. Let #' be any EC-structure for X and let #" be the family of «ll convex-
components (=maxirnal convex subsets) of members of '. Since X is first countable
and compact, each member of F” is an open £,-subset of X. Now obtain # by
reproving Lemma (2.3) starting with the collection . 3

3 3. Notiation. Let & be an EC-structure for the LOTS X as described in (3.2), and

let the sets E(py, ..., Pa; ki, - - . » ko) be defined from & as in (2.6). Each is compact
and therefore has an infinum and supremum which will belong to the set

C(p1,...,pn)iftheset E(P1,...,Pas K1y. .., ky) #0. Let:
(h) 8 ={q: q is the infimum or supremum of some nonwoid set
E(ph sevs Pny kh seey kn)}
B H(pu,...,pas Kty ooy ka) =
=(convex hull of E(py,...,Pas Kty s Kn))—
~ {infimum and supremum of E(p,...,Pn} K1y ..., ka)}
Then H(pi,...,Pa3 k1, ..., k) is a convex open subset of X contained in
C(py,...,ps). We remind the reader that the sets H(py,...,Pai k1, ..., ky) 8re
defined only in case p;e X (i) and k; =1 for 1 <i<n,
(3) For fixed n and ky, ..., k, =21, let

Kkyy....,k)={E(ps...,Pn3k1y..., k) pi€e X(i)for 1<i=<n and

E(Ph-- -spn;kh- . ~!ku)¢”};
(k) and let =} ky,...,k,):n=1and ky,..., k. = 1}.

3.4. Lemma. The collection ¥ is a o-point finite collection of open F.. sets.

Proof. Fix n=1 and k;=1 for 1<is<n. According to (2.7), the collection
€n)={C(p1,...,pn): ;e X(i)for 1<i=<n} is point finite and E(p1,...,Pn;
ki, ..., kn)=C(py,...,Dpn) Being a member of F(n), C{py, ..., pa) is an interval
sothat H(py,...,pas k1, ..., ka) = C(py, ..., Pa). According to (2.2) the collection
H(ki, . .., k.) must be point-finite and so ¥ is o-point finite. Since each member of
¥ is an interval in a first cousitable LOTS, each member of # is an F,-setin X. [

3.5. Lemma. Le: S be as defined in (3.3). Then there is a o-point finite collection € of
open F,-sers in X which contains a neighborhood base at each point of S.

Froof. Fixky,... . k,=1.1fpe X(i)for 1si<nandif E(py,....Pni K1y .., Kn)
is not empty, then the infimum and supremum of that set belongto C{py, . .., p») s0
that, X being first countable, there is a countable collection
R(ps....,pns ky, ..., k,) of open intervals of X, each contained in C(py, .. , pn),
and containing a neighborhor.d base at each of the two extreme
points of E(py,...,pn;k1,...,ks). Since the collection %(n)=
IClpy, ... pa)ipie X(iYfor1<i<n} is o-point finite, so is the collection
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Bky, ..., k) =\ KB(p, ..., p,., ki,...,kn):pi€e X(i) for 1<i=n}). Therefore
the oollect:on 9 ==d(Q(k,, kp):n= l and k=1 for 1<i<n} is o-point finite
and contains the required nexghberhood bases. [J

3.6. Theorem. Any Ebcrlein compact LOTS is metrizabie.

Proot. Igta.'andgbeasconstmctedm(S 3),(3.4)and (3.5).Let S = U ¥, Then
is a o-point finite collection of open F,-subsets of X. Fix distinct points p and g of X.
We show that some I € # has pe I and qs I In the l:ght of (1.1), that will complete
the proof

Choose an open convex set W withpe WX -{q}. if pe S (cf. (3.3)), then ¥
contains a neighborhood base at p so that some I € # has p € I = W, as required. $o
assume p¢e S. For each n =1, choose the unique point p, of X(z) having p ~.p.
Then pe E(p, n)=E(pn, n)=U{E(pn 1, k): k =1} sc that we may choose the
first index k&, having peE(pmn,k,). Then for each n=>i, pe
E(py,...,Pni K1y .., ka)< E(pa, n)=E(p, n) so we conclude from (2.8) that
(XE(P1s. s Pai Kty ooy kn):n=1}={p}c W. Because the compact seu
E{pry,....Pn3 K1y .. n) are nested, Lemma (2.9) epplies and yields an index »
having E(py,..., p,., ki,...,k.)c W. Since W is convex and pgS we must
have peH(pl,...,p,,;k;, Hk)eWeX—{q} showing that H(p,, ...,
ki, ..., ky) is the required member of £, )

Certain generalizations of Theorem 3.6 are available due to the special metrize-
tion theory already known for generalized ordered spaces. By a generalized ordered
space we mean a triple (X, 7, <) where < is a lincar ordering of X and 7 is a
topology on X such that 5~ coatains the usual open-interval topology of < and such
that 9 has a base of open, order-convex sets. I¢ is known that the class of gencralized
ordered spaces coincides with the class of topological spaces which can be embedded
in some LLOTS [L].

3.1; Theorem. Lei X be a o-compact generalized ordered space which has a a-poini
finite family F of open F,-sets such that if p # q belong to X then somc F € F eiiner has
peFc X —{q} orelse q € F = X ~{p}. Then X is metrizable.

Proof. Write X =\J{Y(n): n =1} where each Y(n) is a compact subset of X
Then each Y(n) is a compact generalized orderec space, and hence a LOTS. By
restricting the structure & to the subspace Y(n), we see thet Y(n) is an Eberlein
compact LOTS and therefore is metrizable. But tasn X, being a countable union of
closed metrizable subspaces, is at least semi-stratifiable in the sense of {2] But a
semistratifiable generalized ordered space is known to be metrizable {6]Jor{d]y. i

To obtain a version of {(3.6) for the class of locally compact generalized ordered

spaces, One. uses. Smirnov’s metrization theorem (A sp ce is metrizable if it »

paracompact and locally raetrizable [4, p. 415]), once the next lemma is estashishe 3.
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The elementary results about statxonary sets used in the proof of the lemmai ma be
found in [5] or [3]. (We say that a subset of § of [0, x), where K is a”regular
uncountable cardinal, is stationary in « if S meets every cofinal closed subset of the
usual crdinal space [0, x).)

3.8. Lemma. Let X be a generalized ordered space which iasa o'-pomt ﬁmte, weakly
point separating collection of open sets. Then X is hereditarily paracompact. o

Proof. According to [S), if such an X is not hereditarily paraeompaet, there is an
uncountable regular cardinal x and a stationary subset S of « such that s embeds
topologicallv in X. By restricting the o-point. finite open collec on in X to the
subspace S, we obtain a collection F =|_}{F(n): n = 1} of open subse! ;of s such that:

(a) each %(n) is point finite; o

(b) ¥ weakly separates points of S.
As usual, we may assume:

(c) each member of & is a convex subset of S;

d) Fn)cF(n+1)foreachn=1.
Let #'={Fe&: F is a bounded subset of S} and let # = F—~ F' . The following
asseriion is an easy consequence of the Pressing Down Lemma:

(%) If T is a stationary subset of «, then there cannot be a point countable
covering of T by bounded oper sets.

Therefore, the set (%’ cannot be stationary in « so that the set |_J%" must be
stationary in «. Let ¥"(n)= %" F(n) for each n = 1. Since the set {_{(LJF"(n)):
n = 1} is stationary, one of the sets |_J%"(n) must be stationary. Because of (d), above,
we may assume that

(e) for each n =1, _F"(n) is stationary.

Now let T{n) be the set of non-isolated points of the set U\?"(n) Then T(n) is
stationary and for each p € T(n) ther: is a poiii f,(p) <p of S such that [ f.. (p), p]n
S < Cip, n)= WFe%"(n): p|F}. According to the Pressing Down Lemma, there is a
stationary set R(n)< T'(n) and a point q, such thit £, (r) = q, foreachreR (n) Now
let F ¢ #"(n). Since F is a cofinal convex subset ot S and since R(n) is cofinalin S, we
may choose r € R(n) N F. Then g, € [qn, r]n S < C(r, n) < F. Hence each member of
F"(n) contains the point g,. Since F”(n) is point finite, F"(n) is actually finite. Hence
F" is countable. Because « is regular and uncountable, it follows that there must be a
point pe § having § n[p, =)= \F". If there were two distinct points ¢ and r of
§ ~[p, —) such that neither belongs to %", then no member of F could be used to
separaie q and r, contrary to hypothesis. Hence there is a point ¢ = p such lhat the set

T = 8 r~[g, =) =|_J#), and that contradicts observation (*), above
Therefore, X is hereditarily paracompact. [}

3.9. Theoicm. A locally compact generalized ordered space X which has a o-point
finite collection of open ¥ ,-sets which weakly separates poinis of X must be metrizable.
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Pm(af Accordmg to (3 8), such a space is paracompact Accordmg to {3 6} X’” ’é&

"Afslxght e:*tensmn of (3.9) is aVanlable

3.10. llm'y Sap se"Y H{X (n), n= 1} where each X (n) is a locally compact
GOés ace. If Y has a weakly pozntSeparatzng, o-point finite collection of open F ,-sets,
xhen Y:s memzable .

Prooi Each X (n) embeds in Y and inherits a weakly point-separating
o-point finite collection of relatively open, relative F,-sets, so that each X{») i
metrizable. [

J. van Mill has asked whether Theorem 3.6 could be proved for dendrons, i.e.,
compact, connected Hausdorff spaces with the property that any two points can te
separated by a third point. (Such spaces are intimately related to linearly ordered
spaces since it follows from a theorem of Ward [9] that any deridron is the continuous
image of a compact, connected LOTS.) An example suggested by van Mill provides a
negative answer to that question.

3.11. Example. There is a non-metrizable, Eberlein compact dendron.

Proof. The underlying set of the space X is the unit square [0, 1]x{0, 1]. For cach
x €(0, 1], the subspace {x} x (0, 1] is topologized as a copy of the usual space ((}, 1]
Basic neighborhoods of a point (x, 0) of X have the form

N(x, & ) ={((x —& x+)x[0, 1) -({x}x[, 1) X

where £ >0 and 0<r=<1. The resulting space is a dendron and is non-metrizable
since {(x, 3): 0 =< x < 1}is an uncountable relatively discrete subspace of X. To vee that
X is Eberlein compact, let {I(n): n =1} be any countable base of intzrvals for -0, 1]
and let B(n)={x}xI(n): x [0, 11}. Let {J(n): n =1} be and countable bass of
intervals for [0, 1] and let €(n) ={J (1) x[0, 1]}. Then | {B(n)w €(n): n = 1} is the
required o-point finite collecticn of open F,-sets which weakly separates puoints
of X. O

3.12. Remark. After discussing this paper with the avthors, Professor MLE. Rudin
was able to prove a related result, viz., that a first countable compact LOTS w ??Ef:i’ has
a point-countable weakly separating collection of open sets must be metrizable, ©7ret
countability is a necessary hypothesis in Rudin’s result, as can easily be seen by
considerihg the usual space [0, @;]. Rudin’s methods are quite different from the
ones used in this paper. :
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