
brought to you by COREView metadata, citation and similar papers at core.ac.uk

her Connector 
Direct Binding of Cenp-C
Current Biology 21, 391–398, March 8, 2011 ª2011 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2010.12.039
provided by Elsevier - Publis
Report

to the Mis12 Complex
Joins the Inner and Outer Kinetochore
Emanuela Screpanti,1,6 Anna De Antoni,1,6

Gregory M. Alushin,2 Arsen Petrovic,1 Tiziana Melis,1

Eva Nogales,3,4 and Andrea Musacchio1,5,*
1Department of Experimental Oncology, European Institute of
Oncology, Via Adamello 16, 20139 Milan, Italy
2Biophysics Graduate Group
3Howard Hughes Medical Institute, Department of Molecular
and Cell Biology
University of California, Berkeley, Berkeley, CA 94720, USA
4Life Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, CA 94720, USA
5Max Planck Institute of Molecular Physiology,
44227 Dortmund, Germany

Summary

Kinetochores are proteinaceous scaffolds implicated in the
formation of load-bearing attachments of chromosomes to

microtubules during mitosis. Kinetochores contain distinct
chromatin- and microtubule-binding interfaces, generally

defined as the inner and outer kinetochore, respectively
(reviewed in [1]). The constitutive centromere-associated

network (CCAN) and the Knl1-Mis12-Ndc80 complexes
(KMN) network are themainmultisubunit protein assemblies

in the inner and outer kinetochore, respectively. The point
of contact between the CCAN and the KMN network is

unknown. Cenp-C is a conserved CCAN component whose

central and C-terminal regions have been implicated in chro-
matin binding and dimerization [2–10]. Here, we show that

a conserved motif in the N-terminal region of Cenp-C binds
directly and with high affinity to the Mis12 complex. Expres-

sion in HeLa cells of the isolated N-terminal motif of Cenp-C
prevents outer kinetochore assembly, causing chromosome

missegregation. The KMN network is also responsible for
kinetochore recruitment of the components of the spindle

assembly checkpoint, and we observe checkpoint impair-
ment in cells expressing the Cenp-C N-terminal segment.

Our studies unveil a crucial and likely universal link between
the inner and outer kinetochore.

Results and Discussion

The KMN network is a supramolecular assembly of the four-
subunit Mis12 complex (abbreviated as Mis12C and contain-
ing Dsn1, Nnf1, Nsl1, and Mis12), the four-subunit Ndc80
complex (Ndc80C, containing Ndc80, Nuf2, Spc24, and
Spc25), and the two-subunit Knl1 complex (Knl1C, containing
Knl1 and Zwint). The inner core of the kinetochore is built on
specialized chromatin containing the histone H3 variant
Cenp-A as well as neighboring H3-containing nucleosomes
(reviewed in [1]). A group of proteins, including Cenp-C,
Cenp-H, Cenp-I, Cenp-K through Cenp-U, Cenp-W, and
Cenp-X, comprises the constitutive centromere-associated
*Correspondence: andrea.musacchio@ifom-ieo-campus.it
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network (CCAN, also known as NAC/CAD) and is closely asso-
ciated with centromeric chromatin (reviewed in [1]). Within the
CCAN, at least two subunits, Cenp-N and Cenp-C, contact
Cenp-A directly [3, 5, 11].
Among the first kinetochore subunits to be cloned, Cenp-C

(whose predicted domains are shown in Figure 1A) is enriched
in affinity purifications of tagged subunits of the KMN network
and is required for kinetochore recruitment of a subset of outer
kinetochore proteins in different species [12–23]. Thus, Cenp-
Cmight provide an attachment site for the recruitment of outer
kinetochore components and their associated partners,
including the components of the spindle assembly checkpoint.
Here, we set out to formally test this hypothesis and describe
an interaction responsible for these properties of Cenp-C.

The N-Terminal Region of Cenp-C Binds Directly

to the Mis12 Complex
A Cenp-C deletion construct retaining only the C-terminal half
of Cenp-C localizes normally to kinetochores but fails to recruit
outer kinetochore components [18]. Thus, we initially tested
whether a recombinant segment of Cenp-C encompassing
residues 1–400 (Cenp-C1–400) bound directly to recombinant
KMN constituents reconstituted as recently described
[24, 25]. When analyzed by size-exclusion chromatography
(SEC, which separates based on size and shape), stoichio-
metric combinations of Cenp-C1–400 and Ndc80CBonsai (an en-
gineered Ndc80C retaining microtubule-binding and kineto-
chore-binding domains [24]) did not interact (see Figure S1A
available online). Conversely, Cenp-C1–400 interacted tightly
with an engineered version of Mis12C in what appeared to
be a 1:1 complex (Figure 1B). The Mis12C utilized in these
experiments, Mis12CNsl1(1–227), bears a 50-residue deletion in
the C-terminal tail of the Nsl1 subunit that prevents the interac-
tion of Nsl1 with Knl1 [25]. Additional deletion mutants of
Mis12C, including Mis12CNsl1(1–258), Mis12CMicro, and Mis12-
CMini (the latter two bear additional deletions in the Nsl1
and Dsn1 subunit; see Supplemental Experimental Proce-
dures), also interacted with Cenp-C1–400 (Figure S1B and data
not shown). Cenp-C1–400 also interacted with the Mis12C-
Knl12106–2316 complex, a complex of full-length Mis12C and the
C-terminal region of Knl1 [25] (Figure 1C). Although Cenp-C
wasunable tobindNdc80CBonsai or full lengthNdc80C, a ternary
complexwas formedwhenMis12Cwas alsopresent (Figure 1D;
Figures S1C andS1D). Overall, these results indicate that Cenp-
Cbinds directly toMis12Cand that the interaction is compatible
with additional interactions of Mis12C with Ndc80C and Knl1.
The Cenp-C-Mis12C interaction appears stoichiometric, in
agreement with a recent analysis of kinetochore subunit copy
number [26].

Structural Analysis of KMN-Cenp-C Subcomplexes
When imaged by negative-stain electron microscopy, the
human Ndc80C appears as a 60 nm flexible rod (Figure 2A).
When in complex, Ndc80C and Mis12C add their lengths in
series and appear as anw80 nm whip, with a thicker ‘‘handle’’
corresponding to Mis12C (Figure 2B). This feature is empha-
sized in the complex of Ndc80C and Mis12C with Cenp-C1–400

(Figure 2C). Images of the Mis12C and Mis12C-Cenp-C1–400
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Figure 1. Cenp-C1–400 Binds Mis12C

(A) Schematic depiction of the domain organization of human Cenp-C.

(B) Size-exclusion chromatography elution profiles and SDS-PAGE analysis of recombinant Mis12CNsl1(1–227) (uppermost gel), recombinant Cenp-C1–400

(middle), and their stoichiometric combination (lower). Complex formation is indicated by a shift in the elution profile of Cenp-C1–400 and Mis12CNsl1(1–227)

and their appearance, in stoichiometric amounts, in early elution volumes.

(C) As in (B), but with Mis12CFL-Knl12106–2316 instead of Mis12CNsl1(1–227). The middle gel is the same as in (B).

(D) Incorporation of theNdc80Bonsai complex in theCenp-C1–400-Mis12CNsl1(1–227) complex. The uppermost gel and the lowermiddle gel are the sameas in (B).

For more details, see Figure S1.
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complexes in the absence of Ndc80C (Figures 2D and 2E) were
used for 2D single-particle analysis (Figures 2F and 2G; Fig-
ure S2). Class averages of the Mis12C-Cenp-C1–400 complex
appear as a straight rod, generally with a globular domain
visible at one end. In the absence of Cenp-C1–400, the averages
are far more heterogeneous, showing both straight and bent
conformations, aswell as variability in the presenceor absence
of a visible globular head domain.When the two data sets were
mixed, our classification procedure robustly sorted them into
classes that recaptured these essential features (Figure S2).

To investigate the complexes’ flexibility, we constructed
a simplified three-point model of each class average (Fig-
ure 2H), with points placed at the center of the globular
head, the hinge point, and the tip of the tail. We thenmeasured
the bending angle, q, for each modeled class average. When
weighted by the particle distribution across the classes, histo-
grams of the bending-angle distribution present in each
sample population demonstrate far greater rigidity of the
complex in the presence of Cenp-C1–400 (Figure 2H). Neverthe-
less, the Mis12 complex can access straight conformations in
the absence of Cenp-C1–400, albeit infrequently relative to bent
ones.
We applied chemical crosslinking methods to identify

potential sites of contact between Cenp-C and the Mis12
complex, but the data, as a result of technical limitations,
were not conclusive (data not shown). The electron micros-
copy analysis also did not provide a firm localization of
Cenp-C, because there is no strong additional density present
in the Mis12C-Cenp-C1–400 complex averages that does not
appear in the averages of theMis12C alone (Figure S2), despite
the differences in the conformational landscapes of the two
populations. This suggests that the majority of Cenp-C1–400

is flexible relative to Mis12C, in agreement with the small
portion of Cenp-C1–400 that is sufficient for Mis12C binding
(see below).

Mis12C Binds a 20-Residue Motif in the N-Terminal Region
of Cenp-C

Next, we sought to dissect the Cenp-C region mediating the
interaction with Mis12C. We created progressively shorter



Figure 2. Electron Microscopy Analysis of the Cenp-

C-Mis12C Complex

(A) Representative single particles of human Ndc80C (full

length). Scale bar represents 50 nm.

(B)RepresentativesingleparticlesofNdc80C-Mis12CNsl1(1–258).

(C) Representative single particles of Ndc80C-

Mis12CNsl1(1–258)-Cenp-C1–400.

(D) Representative field of single particles of the

Mis12CNsl1(1–258)-Cenp-C1–400 complex. Particles are indicated

by asterisks. Scale bar represents 10 nm.

(E) Representative field of particles of Mis12CNsl1(1–258). Addi-

tional analyses of this complex have been recently published

[25, 39, 40].

(F) Selected reference-free class averages of the

Mis12CNsl1(1–258)-Cenp-C1–400 complex. The complex appears

as a linear rod, generally with a prominent bump at one end.

Scale bar represents 10 nm.

(G) Selected reference-free class averages of

Mis12CNsl1(1–258) alone. The complex adopts varying degrees

of bending, and the globular lobe is often absent or diminished

in size.

(H) Bending-angle analysis of the Mis12 complex in the pres-

enceandabsenceofCenp-C1–400. Thecomplex is substantially

rigidified upon Cenp-C binding.

For more details, see Figure S2.
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GST fusions of theN-terminal region ofCenp-Cand tested their
ability to bind Mis12C (data not shown). GST-Cenp-C1–71 coe-
luted with Mis12C from a size-exclusion column (Figure 3A),
and the same was true for Cenp-C1–71 after removal of the
GST moiety (Figure S3A).

Cenp-C1–71 contains two short conserved motifs and is pre-
dicted to fold as three consecutive helices (Figure 3B). We
tested the effects of several single alanine point mutations
in conserved residues. Substitutions K10A and Y13A in pre-
dicted helix aA reduced the interaction between Cenp-C1–71

and the Mis12 complex (Figures 3C and 3D). On the other
hand, introduction of alanine mutations in additional residues,
including R19A and F42A in predicted helix aB, did not affect
Mis12C binding (Figures S3B and S3C). Essentially identical
results were obtained when the chromatography experiments
were performed with the isolated Cenp-C1–71 segment and
related mutants after cleavage of the GST moiety (data not
shown). Overall, these results indicate that theMis12C-binding
site of Cenp-C maps to a conserved (predicted)
helix in the N-terminal region of Cenp-C. In agree-
ment with this idea, further C-terminal deletions of
Cenp-C, including Cenp-C1–46 and Cenp-C1–21,
also coeluted with Mis12C in SEC runs (Figures
S3D and S3E).

Effects from Impairing the Cenp-C-Mis12
Interaction in Cells

To gain an indicative estimate of the binding
affinity of the interaction, we carried out a fluores-
cence polarization assay on the interaction of
Mis12C with a synthetic fluorescein-conjugated
peptide corresponding to Cenp-C1–21. The disso-
ciation constant (KD) of the interaction was 629 6
38 nM (Figure 4A). Thus, Cenp-C1–71 binds directly
toMis12C invitrowithhighaffinity.Basedon these
findings, we reasoned that overexpression of the
N-terminal segment of Cenp-C in cells might
prevent Mis12C recruitment to kinetochores
through competition with endogenous Cenp-C. GFP-Cenp-C
(full length) stained kinetochoreswhen expressed in HeLa cells
after transient transfection, indicating that GFP fusions at the
N terminus ofCenp-Cdonot interferewithCenp-C kinetochore
recruitment (Figure S4). GFP-Cenp-C1–71, on the other hand,
was not recruited to kinetochores and showed diffuse cyto-
solic staining in mitotic HeLa cells (Figure 4B). This is in agree-
ment with previous studies showing that the N-terminal region
of Cenp-C is dispensable for kinetochore targeting [3, 10, 18].
In agreementwith our in vitro analysis (Figure 1; Figure 2; Fig-

ure 3), immunoprecipitates revealed Mis12, Ndc80, Knl1, and
the Knl1-associated subunit Zwint as binding partners of
GFP-Cenp-C1–71 (Figure 4C; Figure S5F) Because GFP-Cenp-
C1–71 does not localize to kinetochores, its overexpression
is expected to prevent kinetochore localization of its bind-
ing partners during mitosis. Indeed, kinetochore localization
of Mis12, Knl1, and Zwint was abrogated upon expression
of GFP-Cenp-C1–71 (Figure 4B; Figure S5). Kinetochore



Figure 3. Wild-Type but Not Mutant Cenp-C1–71 Binds Mis12C

(A) Size-exclusion chromatography elution profiles and SDS-PAGE analysis of recombinant Mis12CMini (uppermost gel), recombinant GST-Cenp-C1–71

(middle), and their stoichiometric combination (lower). Complex formation is indicated by a shift in the elution profile of GST-Cenp-C1–71 and Mis12CMini

and their appearance, in stoichiometric amounts, in early elution volumes.

(B) Multiple sequence alignment of the N-terminal region of Cenp-C from the indicated species. The coloring scheme indicates the degree of conservation

(see key at lower left). Below, the position of three predicted helices is shown on the sequence of human Cenp-C.

(C) As in (A), but with a GST-Cenp-C1–71-Y13A mutant. The upper gel is the same as in (A). No shift in elution volume is observed, indicating that binding is

impaired.

(D) As in (A), but with a GST-Cenp-C1–71-K10A mutant. The upper gel is the same as in (A). No shift in elution volume is observed with this mutant either.

For more details, see Figure S3.
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localization of Ndc80was significantly reduced, although small
residual amounts of this protein remained visible (Figure 4D).
On the other hand, mislocalization of outer kinetochore
subunits was not observed upon expression of the GFP-
Cenp-C1–71-K10A/Y13A double mutant (Figures 4B and 4D;
Figure S5). These results demonstrate that the overexpression
of GFP-Cenp-C1–71 prevents the recruitment of the KMN
network to the outer kinetochore.

Impaired Chromosome Segregation in Cells
Expressing Cenp-C1–71

Next, we monitored the progression of cells expressing Cenp-
C1–71 or Cenp-C1–71-K10A/Y13A through mitosis. We per-
formed time-lapse video microscopy on HeLa cells (stably
expressing histone H2B-Cherry to mark chromosomes)
transfected with GFP-Cenp-C1–71 or GFP-Cenp-C1–71-K10A/
Y13A (Figures 5A and 5B). In 6 of 6 cells transfected with the
GFP-Cenp-C1–71 construct, we observed a dramatic chromo-
some segregation phenotype. Chromosomes in these cells
were unable to form a clear metaphase plate. All cells exited
mitosis prematurely in the absence of a metaphase plate.
None of these effects were observed in cells expressing the
GFP-Cenp-C1–71-K10A/Y13A construct, which instead divided
normally (16 cells observed).
Cells expressing GFP-Cenp-C1–71 appear to be unable to

mounta strongcheckpoint response,because theyexitmitosis
prematurely with many unattached or incorrectly attached
chromosomes (Figures 5A and 5B). Mis12C has been shown
to be important for direct or indirect kinetochore recruitment
of several checkpoint components [19, 27]. Correspondingly,



Figure 4. Cenp-C1–71 Disrupts Outer Kinetochore Assembly

(A) Fluorescence anisotropy measurements of the binding affinity of Mis12Mini for a synthetic fluorescein-conjugated peptide encompassing residues 1–21

of Cenp-C. Error bars represent standard deviation.

(B) Direct fluorescence (GFP and DAPI) or indirect immunofluorescence from the indicated species in HeLa cells. In (B) and (D), arrows indicate nontrans-

fected GFP-negative cells whereas arrowheads indicate transfected GFP-positive cells. Localization of Mis12 in GFP-transfected cells is normal. Mis12

is displaced from kinetochores in cells expressing the wild-type sequence of GFP-Cenp-C1–71. The construct localizes in the cytosol, but it is not enriched

at kinetochores. Mis12 is normally localized in cells expressing the double point mutant GFP-Cenp-C1–71-K10A/Y13A (abbreviated as KY). Scale bar repre-

sents 10 mm.

(C) Lysates fromHeLa cells expressing the indicatedGFP species were used for immunoprecipitations with an anti-GFP antibody. Several outer kinetochore

proteins interact with wild-type GFP-Cenp-C1–71 but not with its mutated form. Contents of immunoprecipitations from 1.5mg of cell lysates, 45 mg of super-

natants, and 45 mg of total cell lysates were loaded on gels.

(D) As in (B), but detecting Ndc80.

For more details, see Figures S4 and S5.
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we found that besides KMN subunits, the GFP-Cenp-C1–71

precipitates also contained Bub1 and BubR1 (Figure 4B).
Indeed, both Bub1 and BubR1 were displaced from kineto-
chores in HeLa cells expressing GFP-Cenp-C1–71 (Figure 5C;
Figure S5B). AlthoughMad1 and Zwilch, two additional check-
point components, were not identified in the GFP-Cenp-C1–71

immunoprecipitates, they too were variably mislocalized
upon expression of GFP-Cenp-C1–71 (Figures S5C–S5E), in
agreement with a previously established requirement for
Mis12C in their kinetochore recruitment [19, 27]. Because
Ndc80 is required for kinetochore localization of Zwilch and
Mad1, we suspect that its residual kinetochore localization in
cells expressing GFP-Cenp-C1–71 is responsible for residual
Mad1 and Zwilch recruitment (Figures S5C–S5E). These
residual amounts of checkpoint proteins in turn might explain
the residual checkpoint response observed in Figures 5A
and 5B.

Conclusions

We report here that the N-terminal region of Cenp-C contains
a crucial link between the inner and outer kinetochore
(Figure 5D). The identification of Mis12C as a direct binding
partner of Cenp-C is consistent with recent superresolution
analyses of the kinetochore [28–30]. These have indicated
that the N-terminal region of Cenp-C is positioned on a plane
perpendicular to the interkinetochore axis, which also hosts
Mis12C subunits.
The evolutionary conservation of the Mis12-binding

motif suggests that its role may be universal. In certain
organisms, such as C. elegans and D. melanogaster, no
homologs of the CCAN subunits, with the exception of
Cenp-C, have been identified thus far. In these organisms,
the interaction between Cenp-C and Mis12C might provide
the only linkage between the inner and outer kinetochore (Fig-
ure 5E), as strongly suggested by an accompanying paper
in this issue of Current Biology reporting an analysis of
the interaction of Cenp-C and Mis12 complex subunits in
D. melanogaster [31].
In most other organisms, including humans, additional

contacts between the CCAN and the KMN network likely exist.
Kinetochore recruitment of Ndc80C in the absence of Knl1 is
unaltered, and it is reduced but not eliminated upon depletion



Figure 5. Cenp-C1–71 Disrupts the Spindle Checkpoint

(A) HeLa cells coexpressing histone H2B-Cherry and wild-type GFP-Cenp-C1–71 were filmed as they transited throughmitosis. Cells attempted congression

but failed to align and exited aberrantly, indicative of spindle checkpoint failure.

(B) HeLa cells coexpressing histone H2B-Cherry and mutant GFP-Cenp-C1–71-K10A/Y13A divided normally.

(C) Direct fluorescence (GFP and DAPI) or indirect immunofluorescence from the indicated species in HeLa cells. Arrows indicate nontransfected

GFP-negative cells whereas arrowheads indicate transfected GFP-positive cells. Localization of Bub1 and Ndc80 is severely impaired in cells expressing

Current Biology Vol 21 No 5
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of Mis12C subunits [19, 27, 32–34]. We confirmed these
previous observations, because we consistently observed
residual kinetochore levels of Ndc80 in cells expressing
a dominant-negative construct of Cenp-C. These observations
justify a two-hand model of outer kinetochore assembly [25,
33] in which Ndc80C is recruited via Mis12C as well as via
another point of contact with the CCAN, probably involving
proteins such as Cenp-I, Cenp-T, and Cenp-W [19, 35].

How does Cenp-C act as a linker between the inner and
outer kinetochore? There are DNA-binding and dimerization
domains in the central and C-terminal region of Cenp-C
[2–10]. One such domain binds directly to aCenp-A-containing
specialized centromeric nucleosome [5] (Figure 1A). A crucial
question for future studies is whether the interaction of
Cenp-C with Mis12 occurs on the same specialized Cenp-
A-containing centromeric nucleosome or rather on neigh-
boring H3-containing nucleosomes. The reported association
of Cenp-C and additional centromeric proteins with H3-con-
taining nucleosomes supports the latter hypothesis [36].
In this scheme, Cenp-C might act as a ruler in the inner kinet-
ochore plate (Figures 5D and 5E). We speculate that Cenp-C
contributes to docking the outer kinetochore KMN network
at the required distance from a ‘‘center’’ marked by one or
more Cenp-A nucleosomes.

The significance of Cenp-C’s rigidifying the Mis12 complex
is unclear and is also an important subject for future study.
Structural transitions in the Mis12 complex have been
observed in superresolution studies in response to kineto-
chore-microtubule attachment state [30]. Our results suggest
that interaction with inner kinetochore subunits also modu-
lates the conformation of this complex. It is tempting to spec-
ulate that Cenp-C binding biasesMis12 toward a conformation
suitable for interaction with other cellular factors specifically
when it is localized to kinetochores.

Remarkably, the Aurora B-containing chromosome-
passenger complex, which regulates crucial aspects of spindle
checkpoint signaling and outer kinetochore function, also
associates with H3-containing nucleosomes through a modifi-
cationof theH3N-terminal tail (reviewed in [37]). AuroraB local-
ization is perturbed when Cenp-C is depleted or when the
interaction of the Mis12 complex with HP1 (heterochromatin
protein 1, a histone tail-binding protein) is affected [22, 38].
All of these clues point to the existence of a specialized struc-
ture in the inner kinetochore holding H3-containing and
Cenp-A-containing nucleosomes in close proximity and
possibly interacting through Cenp-C and other subunits.

Supplemental Information

Supplemental Information includes five figures and Supplemental Experi-

mental Procedures and can be found with this article online at doi:10.
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