A US postmarketing evaluation of the frequency and safety of live attenuated influenza vaccine use in nonrecommended children younger than 5 years: 2009–2010 season

Patricia Tennis a,*, Seth L. Toback b, Elizabeth B. Andrews a, Lisa J. McQuay a, Christopher S. Ambrose b

a RTI Health Solutions, 3040 Cornwallis Road, Post Office Box 12194, Research Triangle Park, NC 27709, USA
b MedImmune, LLC, 1 MedImmune Way, Gaithersburg, MD 20878, USA

A R T I C L E I N F O

Article history:
Received 25 May 2012
Received in revised form 12 July 2012
Accepted 13 July 2012
Available online 25 July 2012

Keywords:
Asthma
Wheezing
Children
Immunocompromised
Live attenuated influenza vaccine
Trivalent inactivated influenza vaccine

A B S T R A C T

The 2007 US approval for use of Ann Arbor strain live attenuated influenza vaccine (LAIV) in children aged 24 through 59 months included precautions against use in (1) children <24 months and children aged 24 through 59 months with (2) asthma, (3) recurrent wheezing, and (4) altered immunocompetence. Results from the third season (2009–2010) of a 3-year study postmarketing commitment to monitor LAIV vaccination rates and frequency of hospitalizations or emergency department visits within 42 days after LAIV are reported here. As in the first 2 seasons, LAIV usage in cohorts 1, 2, and 4 were low relative to those in LAIV-recommended populations. The only numerically increased risk observed was for respiratory events in children aged <24 months administered LAIV, compared to those administered trivalent inactivated influenza vaccine (TIV). The number of children vaccinated with LAIV was small and precluded precise quantification of rare event.

© 2012 Elsevier Ltd. Open access under CC BY-NC-ND license.

1. Introduction

In September 2007, Ann Arbor strain LAIV was approved for use in children 2 through 4 years of age with precautions against use in children <24 months of age and children aged 24 through 59 months of age with asthma, recurrent wheezing, or altered immunocompetence. Because data from a large randomized study showed an increased risk of medically significant wheezing in LAIV-vaccinated children aged 6 through 23 months of age [1], LAIV was not approved for use in children younger than 24 months. MedImmune committed to the US Food and Drug Administration to conduct a 3-year study assessing the frequency of use and safety of LAIV in specific groups of children <5 years of age who are not recommended to receive LAIV.

The results from the first 2 study seasons have been reported by Tennis et al. in 2011 [2]. The current report describes the results from the third influenza vaccination season, 2009–2010. Among the 3 monitored seasons, 2009–2010 includes the largest number of children vaccinated with LAIV. This monitoring effort evaluated the rate of LAIV vaccination and frequency of emergency department (ED) visits or hospitalizations within 42 days postvaccination with LAIV compared with that of trivalent inactivated influenza vaccine (TIV) among the nonrecommended pediatric populations. This activity was designed to monitor for previously unidentified safety concerns rather than test specific hypotheses about increased risks of specific conditions.

2. Methods

Detailed definitions are provided by Tennis et al. [2]. In brief, 4 cohorts of interest were ascertained among children younger than 60 months who received LAIV or TIV during the study period and enrolled in a health insurance plan with claims data captured by MarketScan® Research Data (Thomson Reuters, New York, NY, USA). Cohort 1 included all children <24 months of age. The cohorts aged 24 through 59 months of age were defined as follows: cohort 2, with asthma (i.e. with an asthma diagnosis and treatment in the previous 12 months), cohort 3, with recurrent wheezing (i.e. with a relevant treatment occurring ≥1 time in the previous 12 months but no asthma diagnosis), and cohort 4, with immunocompromise (i.e. with a relevant diagnosis, use of glucocorticosteroids, or use of immunosuppressive medication). To provide context for the frequency of use in the 24 through 59-month cohorts of interest, a
general population cohort was created comprising children aged 24 through 59 months who met the enrollment criteria but did not meet the inclusion criteria for the other cohorts.

All cohort members had to meet the eligible ages between August 1, 2009, and February 17, 2010, and their cohort membership status was based on available claims from August 1, 2008, through February 17, 2010. Because children could move into a new age category and enter, leave, or change cohorts throughout the vaccination season, we used the number of relevant vaccinations/child-days of follow-up to derive a vaccination rate in each cohort. Vaccination rates were calculated by dividing the number of children vaccinated in a cohort by the total child-days of follow-up within a cohort. Confidence intervals were estimated using EpiSheet [3]. We evaluated the severity of disease classification by characterizing utilization of medical services for each cohort.

To assess the type and number of ED visits or hospitalizations occurring within 42 days postvaccination in each cohort, only vaccinated children were followed. The vaccinated asthma and recurrent wheezing cohorts were combined for the safety analysis because of the presumed similar pathophysiology in both cohorts. To avoid confounding from vaccination for the 2009 H1N1 pandemic influenza strain, we excluded children who had a vaccination for H1N1 on or within 42 days after seasonal influenza vaccination. Outcomes of interest were (1) in all cohorts, any unique ED visit or hospitalization, (2) among children ≤24 months of age and those with asthma and recurrent wheezing, any ED visit or hospitalization for specific lower respiratory conditions [4], and (3) among those in the immunocompromised cohort, any ED visit or hospitalization for an infectious disease.

3. Results

3.1. Vaccination incidence

During the 2009–2010 season, there were 666,599 total children in cohort 1 (≤6 months of age, 12%; 6 through 11 months, 20%; 12 through 17 months, 28%; and 18 through 23 months, 40%), 79,325 children in cohort 2 (24 through 59 months of age with asthma), 86,849 children in cohort 3 (24 through 59 months of age with recurrent wheezing), and 54,809 children in cohort 4 (24 through 59 months of age with immunocompromise). Among cohorts 1, 2, 3 and 4, respectively, there were 775, 3457, 5821, and 361 children vaccinated with LAIV (Table 1). The incidence ratio for vaccination with LAIV in nonrecommended populations compared with LAIV vaccination in the general population ranged from 0.79 (95% CI, 0.77–0.81) for cohort 3 to 0.012 (95% CI, 0.011–0.013) for cohort 1.

3.2. Safety analysis

Among the 868 cohort 1 children vaccinated with LAIV and without vaccination for the 2009 H1N1 pandemic strain concurrently or during follow-up, there were few lower respiratory outcomes of interest (Table 2). Hospitalization or ED visits for asthma and pneumonia were more frequent among LAIV-vaccinated compared with TIV-vaccinated children (difference in frequency of asthma visits, 3.1 [95% CI, −1.9 to 8.0] per 1000; difference in frequency of pneumonia visits, 2.4 [95% CI, −2.6 to 7.3] per 1000). The frequency of any hospitalization or ED visit was similar among LAIV and TIV recipients.

Among the 8308 children aged 24 through 59 months with asthma or wheezing vaccinated with LAIV and without vaccination for H1N1 concurrently or during follow-up, there were few lower respiratory outcomes of interest (Table 3). Hospitalization or ED visits for each LRI evaluated were not more frequent among LAIV-vaccinated compared with TIV-vaccinated children. The frequency of any hospitalization or ED visit among LAIV recipients did not show an excess relative to that among TIV recipients.

Of the 361 LAIV-vaccinated children in cohort 4, 229 (63%) qualified as immunocompromised because of a prescription for systemic corticosteroids, while 64 (18%) qualified due to a diagnosis code for chemotherapy, 55 (15%) qualified due to congenital immune deficiency, and 8 (2%) qualified due to a hematologic or lymphatic cancer. After excluding 37 (10%) children with a 2009 H1N1 pandemic vaccination, among the remaining 324 LAIV-vaccinated children with immunocompromise, 14 children experienced an ED visit for common childhood conditions and injuries; there were no hospitalizations. Six were associated with primary diagnosis codes that could be considered infectious diseases (3 for croup and 1 each for pharyngitis, acute respiratory infection, and otitis media), for a frequency of 18.5 (95% CI, 6.8–39.9) per 1000 vaccinations, compared with a frequency of 53.8 (95% CI, 43.5–65.8) per 1000 immunocompromised TIV-vaccinated children. The rate of ED visit or hospitalization among LAIV recipients was 43.2 (95% CI, 23.6–72.5) per 1000 vaccinations, and among TIV-vaccinated children was 237 per 1765 vaccinations (134 [95% CI, 118–152] per 1000 vaccinations).

Over the 3 seasons of the entire study period, cumulative LAIV vaccinations included in the denominators for the annual safety analyses were 1361 children <24 months, 11,353 children with asthma or wheezing, and 425 immunocompromised children.

4. Discussion

As in previous years [2], the low rates of vaccination with LAIV in cohorts 1, 2, and 4 indicate that healthcare providers in general are complying with the product labeling. In addition, the rate of use in recommended and nonrecommended populations continued to rise at a similar rate to that observed between years 1 and 2, suggesting that clinicians are more often choosing to vaccinate young children with LAIV. This same increase in the use of LAIV in children was observed in another large database of US healthcare claims data [5].

Continuing the trend observed in the preceding 2 seasons, the somewhat similar rates of LAIV use in those with recurrent wheezing and in the general population suggest that our definition of recurrent wheezing may not match providers’ definitions of recurrent wheezing and may have been overly inclusive. We based our study definition of recurrent wheezing, 1 or more dispensings of a short acting beta agonist in the previous 12 months and the absence of an asthma diagnosis, on the Advisory Committee on Immunization Practices (ACIP) recommended definition of 1 episode of asthma or wheezing in the previous 12 months. By definition, recurrent wheezing requires multiple episodes of wheezing and frequently in the medical literature a definition of 3 or more episodes is applied over a period of 6–12 months [6–12]. The disparity in these definitions and the subsequent vaccination decision-making by clinicians is likely at the root of the less restricted use of LAIV in this population.

Across the 3 evaluated seasons, the frequency of safety outcomes was numerically similar among the LAIV-vaccinated children compared with TIV-vaccinated children in all cohorts, except for among children younger than 24 months in the 2009–2010 season. Among the small number of children younger than 24 months who received LAIV compared with those who received TIV, the confidence interval around the difference in rates for asthma hospitalizations or ED visits was −1.9 to 8.0 per 1000 vaccinations and for pneumonia hospitalizations or ED visits was −2.6 to 7.3 per 1000. The numbers of events were too small to make definitive conclusions about the relative frequency of hospitalizations or ED visits for
asthma or pneumonia among LAIV-vaccinated subjects compared with TIV-vaccinated subjects. These observations are consistent with the increased risk of medically significant wheezing previously seen in children 6 through 23 months of age, which resulted in LAIV receiving approval for eligible children 24 months of age and older [7]. In the results described here and in clinical trials, an increased risk of respiratory events following LAIV has not been seen in children 24 months of age and older.

Among the 3 evaluated nonrecommended cohorts 24 through 59 months of age, no signals for new or unusual conditions during follow-up were identified during the first 2 study seasons [2] nor during this third and last evaluated season. No excess risk of all-cause hospitalizations or ED visits was observed among children with asthma/wheezing or with immunocompromise who were vaccinated with LAIV compared with those vaccinated with TIV. Although the risk of some respiratory conditions in children aged <24 months was numerically greater among LAIV-vaccinated children, the magnitude of this excess was small and the estimate was imprecise. However, the cumulative results should be viewed in light of the available sample sizes. Except for the cohort of children with asthma and wheezing, the sample sizes of children vaccinated with LAIV were too small to detect rare events, e.g., occurring at or less than 1/1000 vaccinations. Over the 3 seasons, LAIV vaccination was recorded among 1361 children <24 months, 11,353 children with asthma or wheezing, and 425 immunocompromised children. These summed sample sizes are sufficient to detect with 95% probability at least 1 event across all 3 seasons for events that occur at rates of >2.2 per 1000 among <24-month-old children, >0.26 per 1000 among the 24- through 59-month-old children with asthma or wheezing, and >7 per 1000 among immunocompromised.

The observational design and lack of randomization or matching is useful for real world safety surveillance but can easily result in

Table 1

Vaccination incidence, season 3 (2009–2010).

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Child-days, n</th>
<th>LAIV vaccination</th>
<th>TIV vaccination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Incidenta per 10,000 child-days (95% CI)</td>
<td>Rateb (95% CI)</td>
</tr>
<tr>
<td>Aged <24 months (cohort 1)</td>
<td>70,800,221</td>
<td>775 (0.109–0.117)</td>
<td>228,875 (32.33–32.46)</td>
</tr>
<tr>
<td>Aged 24–59 months, asthma (cohort 2)</td>
<td>7,804,852</td>
<td>3457 (4.43–4.58)</td>
<td>26,508 (33.96–34.37)</td>
</tr>
<tr>
<td>Aged 24–59 months, recurrent wheezing (cohort 3)</td>
<td>7,914,091</td>
<td>5821 (7.17–7.54)</td>
<td>20,228 (25.21–25.91)</td>
</tr>
<tr>
<td>Aged 24–59 months, immunocompromise (cohort 4)</td>
<td>613,883</td>
<td>361 (5.88–6.49)</td>
<td>2115 (34.45–35.92)</td>
</tr>
<tr>
<td>Aged 24–59 months, general populationb</td>
<td>108,310,074</td>
<td>100,511 (9.28–9.34)</td>
<td>194,476 (17.94–18.04)</td>
</tr>
</tbody>
</table>

LAIV: live attenuated influenza vaccine; TIV: inactivated trivalent influenza vaccine.

<table>
<thead>
<tr>
<th>Condition</th>
<th>LAIV (n = 686)</th>
<th>TIV (n = 190,618)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aged 24–59 months, asthma (cohort 2)</td>
<td>7,804,852</td>
<td>3547 (4.43–4.58)</td>
</tr>
<tr>
<td>Aged 24–59 months, recurrent wheezing (cohort 3)</td>
<td>7,914,091</td>
<td>5821 (7.17–7.54)</td>
</tr>
<tr>
<td>Aged 24–59 months, immunocompromise (cohort 4)</td>
<td>613,883</td>
<td>361 (5.88–6.49)</td>
</tr>
<tr>
<td>Aged 24–59 months, general populationb</td>
<td>108,310,074</td>
<td>100,511 (9.28–9.34)</td>
</tr>
</tbody>
</table>

ED: emergency department; LAIV: live attenuated influenza vaccine; TIV: inactivated trivalent influenza vaccine.

- Codes: G0008, administration of influenza virus vaccine; V04.81, need for prophylactic vaccination and inoculation against certain diseases: influenza; V06.6, need for prophylactic vaccination and inoculation against combinations of diseases: Streptococcus pneumoniae (pneumococcus) and influenza.

- Children aged 24–59 months in source population.

Table 2

Number of emergency department visits or hospitalizations for lower respiratory conditions among children <24 months of age within 42 days of vaccination, season 3 (2009–2010).

<table>
<thead>
<tr>
<th>Condition</th>
<th>LAIV (n = 686)</th>
<th>TIV (n = 190,618)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aged 24–59 months, asthma (cohort 2)</td>
<td>7,804,852</td>
<td>3547 (4.43–4.58)</td>
</tr>
<tr>
<td>Aged 24–59 months, recurrent wheezing (cohort 3)</td>
<td>7,914,091</td>
<td>5821 (7.17–7.54)</td>
</tr>
<tr>
<td>Aged 24–59 months, immunocompromise (cohort 4)</td>
<td>613,883</td>
<td>361 (5.88–6.49)</td>
</tr>
<tr>
<td>Aged 24–59 months, general populationb</td>
<td>108,310,074</td>
<td>100,511 (9.28–9.34)</td>
</tr>
</tbody>
</table>

ED: emergency department; LAIV: live attenuated influenza vaccine; TIV: inactivated trivalent influenza vaccine.

- An event could be an ED visit or hospitalization.

Table 3

Number of emergency department visits or hospitalizations for lower respiratory conditions among children with asthma or wheezing within 42 days of vaccination, season 3 (2009–2010).

<table>
<thead>
<tr>
<th>Condition</th>
<th>LAIV (n = 8308)</th>
<th>TIV (n = 39,407)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aged 24–59 months, asthma (cohort 2)</td>
<td>7,804,852</td>
<td>3547 (4.43–4.58)</td>
</tr>
<tr>
<td>Aged 24–59 months, recurrent wheezing (cohort 3)</td>
<td>7,914,091</td>
<td>5821 (7.17–7.54)</td>
</tr>
<tr>
<td>Aged 24–59 months, immunocompromise (cohort 4)</td>
<td>613,883</td>
<td>361 (5.88–6.49)</td>
</tr>
<tr>
<td>Aged 24–59 months, general populationb</td>
<td>108,310,074</td>
<td>100,511 (9.28–9.34)</td>
</tr>
</tbody>
</table>

ED: emergency department; LAIV: live attenuated influenza vaccine; LRI: lower respiratory tract infection; TIV: inactivated trivalent influenza vaccine.

- An event could be an ED visit or hospitalization.

- With or without pneumonia.

- Events per 1000 vaccinations.

- Numbers of children with each LRI may not be mutually exclusive if a child experienced 2 separate diagnoses on separate occasions.
comparison of groups with different health status. This imbalance is likely to have occurred for the comparison of LAIV-vaccinated children with TIV-vaccinated children within each cohort. The consistently higher overall frequency of hospitalization and ED visits observed among TIV-vaccinated children with asthma and wheeze and among the cohort with immunocompromise suggests that clinicians on average vaccinated the healthiest children in these populations with LAIV.

The limitations of using healthcare claims for such monitoring efforts were discussed in detail in the previous report for this monitoring effort. Briefly, these issues include potential misclassification of outcomes and cohort membership related to use of claims diagnosis and dispensing codes, rare miscoding of vaccine type, and imprecision of children’s age assignment around the 24-month birthday related to lack of birth date information. After 3 years of monitoring, we have not identified any significant unexpected safety concerns but acknowledge that some sample sizes have been too small to evaluate for rare adverse outcomes associated with LAIV. However, this is entirely appropriate because the sample size indicates that clinicians are not commonly using LAIV in pediatric populations not recommended for LAIV use.

Acknowledgements

Contributors: Study concept and design: all authors. Acquisition of data: Dr. Tennis, Dr. Andrews and Ms. McQuay. Analysis and interpretation of data: all authors. Drafting and revision of the manuscript: all authors. Financial disclosures: Dr. Tennis, Dr. Andrews and Ms. McQuay. All authors have seen and approved the final manuscript for submission.

Role of the sponsor: Employees of MedImmune worked collaboratively with the investigators of RTI Health Solutions in the design of the study, in interpretation of the results, and reviewed and contributed to the manuscript.

Additional contributions: We would like to thank Complete Healthcare Communications, Inc. (Chadds Ford, PA, USA) for editorial assistance in manuscript preparation.

References